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REMARKS ON THE RIESZ DECOMPOSITION FOR

SUPERMARTINGALES
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(Received 26 December 1969)

In this paper we shall give an another proof of the Riesz decomposition
theorem for supermartingales and we shall consider on the Riesz-type decomposition
for local supermartingales.

1. Let (Ω, $, P) be the basic P-complete probability space and let $n be a
sub σ-field of 5 such that SvcS^ whenever m<n. It is clear that E[xn] decreases
if ( £n> $n) is a supermartingale. We assume here the integrability of xn for each
n.

THEOREM 1. Let (xn, $n) be a supermartingale. Then xn can be xυritten
as

xn =xn*+yn

where (xn*, $n) is a martingale and (yn, $n) is a positive supermartingale if
and only if

( A ) inf E[xn] > - oo
n

{there is no uniqueness)

PROOF. The condition is obviously necessary. Let us prove the sufficiency.
Since {xn> %n) is a supermartingale, we have

E[xn+k+ι I δn] ^ E[xn+k 15J g xn .

Put for each n

xn* = lim E[xn+k I dn] -
k

Clearly xn — xn*^0 and xn* is Bvrneasurable. If the condition (A) is fulfilled,
then from the monotone convergence theorem we have
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( 1 ) E[xn - xn*} = £ [ l i m θ n - E{xn+k | &,])]

= lim E[xn - E[xn+k I $ J ]

= E[xn] - lim E[xn+}c]

= E[xn] - inf E[xm] < + oo .
m

Therefore xn — xn* is integrable and so xn* is integrable. Moreover for each pair

nι< n

E[xn* 13rJ = lim E[ {E[xn+}c \ &J} 13fJ
fc-»oo

= lim j

This implies that (^n^, 3*n) is a martingale and so it follows from xn* ^ xn that

Cyn> δn)> where yn = xn — xn*,is a positive supermartingale. This completes the proof.

COROLLARY. If the condition (A) is fulfilled, then one may assume that
(yn, Sn) is a potential, (the Riesz decomposition theorem)

PROOF. In order to prove this corollary, it is sufficient to prove that the process

(yn> 3Vι) constructed in the proof of Theorem 1 is a potential. It follows from (1) that

E[yn] = E[xn] - inf E[xm]

and so lim E[yn] — 0. This implies that (yn, $n) is a potential.
n—»oo

REMARK. If a supermartingale (,rΛ, ?5n) is decomposable into a martingale and
a potential, then the decomposition is unique. Indeed we suppose that (xn, t5J has
two such decompositions :

Then for each k, we have
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x*n

m - x*m = E[y(:ikI &J - E[y£h 13=,].

Since each (y(j\ 5 J , (i = 1,2), is a potential, we have

£[lim E[y(

n% | &,]] ^ lim £[y«> J = 0 .

Thus limjE[3;^|g ίJ = 0. This implies that x*{1)=x*™a.s. and so y^ = y{^a. s.
fc->°°

2. We assume here that we are given on the basic probability space (ί2,3%P)
a right continuous, increasing family (ι$t)o^t<oo of sub σ-fields of 3*. We may, and do,

suppose that each $t contains all ^-sets of P-measure zero.
To begin with, we shall consider on the Riesz decomposition for right continuous

supermartingales.

DEFINITION 1. Let X={xt,^t) and Y = (yt9ιίt) be two stochastic processes.
We say that Y is a modification of X if for each t P{xt =yt) — l

In the followings we assume the integrability of xt for each t if X = (xt, $t)
is a supermartingale.

LEMMA. Let X = (xt, 3̂ ) be a supermartingale. Then there exists a right
continuous modification of X if and only if the function t—>E[xt] is right
continuous.

PROOF. We designate by S a countable set which is dense in [0, °°[. We
consider a sequence (ίn)n=i,2, . of elements of S such that tn>t which decreases
to t. Then the random variables xtn are uniformly integrable. Thus it follows from

t for each n that we have

From the assumption on the right continuity of the family (3^) we have

for each t. Clearly P(xt+=xt) = 1 if and only if

E[xt] = E[xt+] = limE[xtn].

Therefore if there exists a right continuous modification Y = (yt, ffo) of X, then it



560 N. KAZAMAKI

follows from E[xt] = E[yt] for each t that the function t —>E[xt] is right continuous.

Conversely if the mapping t->E[xt] is right continuous, then the stochastic process

X={χt+9%t) is a desired right continuous modification of X Hence the lemma is

established. (This proof is due to P.A.Meyer [1]).

THEOREM 2. Let X= (xt, %t) be a right continuous supermar tin gale. Then

there exist a right continuous martingale X*=(xt*, 5ί) and a positive right

continuous super mar tin gale Y = (yt9 $t) satisfying

if and only if

(B) inf E[xt]>-oo.

PROOF. The condition (B) is obviously necessary. Let us prove the sufficiency.

For each t E[xnyί\%t\ decreases with respect to n. We define:

xt*=)imE[xn\%t\.

Clearly x* is Svnieasurable and P(xt — Xt*^0) = 1 for each t.

It follows from the condition (B) that

E[xt - xt*] = E[xt] - inf E[xt]
0ί

( )

Thus xt—xt* is integrable and so xt* is integrable. Moreover for each pair s<t

we have

= \imE[xn\%s]

n—*°°

— Xs

from the monotone convergence theorem. Thus X* = (xt*9 $t) is a martingale. From

the assumption on the right continuity of the family (S J there exists a right

continuous modification of X*. Without loss of generality we may assume that X*

is right continuous. Then the stochastic process Y = (yt9 $t), where yt — xt — x*,

is a desired positive right continuous supermartingale. This completes the proof.

COROLLARY. / / the condition (B) is fulfilled, then one may assume that
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the positive supermartingale Y — (yt, 3ί) is a potential, (the Riesz decomposition
theorem).

If a right continuous supermartingale X = (xt, 3̂ ) is decomposable into a right
continuous martingale and a potential, then it is easy to show that the decomposition
is unique.

We are now going to investigate the Riesz-type decomposition for local
supermartingales. Let u be a real number, 0^u< +00, and let X— (xt9%t) be a
right continuous stochastic process. We shall say that it belongs to the class (D)
if all the random variables xτ are uniformly integrable, τ being any finite-valued
stopping times with respect to the family (3*$).

DEFINITION 2. A right continuous process X= (xt, 3ι) is a local supermartingale
if and only if there exists an increasing sequence (τn) of stopping times with respect
to the family (3ί), such that

1) P(limτn = +oo) = 1
n—>oo

2 ) for every n, the process (xtAτn, 3ίΛτJ is a supermartingale which belongs
to the class (D).

To be short, we shall say that a stopping time r reduces the right continuous
process X={xt,$t) if (̂ Λτ)o^<oo belongs to the class (D). Note that, in what
follows, we shall not use the uniform integrability of the family (^Λτn)o^<°° for
each n.

THEOREM 3. Let X — (xt, 3̂ ) be a local supermartingale. Then there
exist a local martingale X*=(x*9 3̂ ) and a positive supermartingale Y=(yt9 3 J
satisfying

P(xt = xt*+yt,Vt^0) =1

if and only if there exists an increasing sequence (τn) of stopping times with
respect to the family ($t), almost surely finite, reducing X=(xt,^t) such that
P(limτn = oo) = 1 and

n-»oo

(C) mίE[xτ,]> -°o.
n

PROOF. Necessity. Since X*=(xt*,ί$t) is a local martingale, there exists an
increasing sequence (τn) of stopping times, almost surely finite, reducing X* such
that P(limτn = oo) ±= 1. We may assume, without loss of generality, that for each

n P(τn^n) = 1 and τn reduces the process X— (xt> 3v) Then for each k x£ is
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integrable and for each pair m<n

E[XnATn\ U(τm Λrn)Λr«] = # V«Λrn)Λrw

because τm/\τn is a stopping time with respect to the family (S^AOO^OO. A S
n/\τn=τn and τm/\τn=τm, we have

. J = < a.s.

Thus (xfΛ9 3vJ is a martingale and it follows from P(xt^x*, Vί^O) = 1 that

for each n. This implies that — oo<JE[αr?1]fginf E[xTn\.
n

Sufϊiciency. Without loss of generality, we may assume that for each ω € ί l,

the trajectory t—>xt(ω) is right continuous. We may also assume that P(τn^n) = l

for all n. Then it is easy to show that (xTv9 3v») is a supermartingale. For each

t and each k, we have

(\/m = 1,2, ), £ [ ^ M I & Λ T J - £[{E[xτm+k+ι 13ίΓβtt]} | g ί Λ T J

^ £ t e J & Λ r ] on (ΛΓί)fc)
c

where JVi,* is a fj-set of P-measure zero which may depend on t and &, and (Nt,k)
c

is the complement of Nttk with respect to ί2. Since £[α:r.>.+J3ίίΛΓΛ] decreases with

respect to m on {Ntk)
c, we can now give the following definition:

. (lim
Xt

k = m—
Γ J ^ Λ J on (Nt,k)

c

on Nt,k.

Clearly xt

k is $ ίΛn-measurable. It follows from P{E[xτ+k\^lAτk]^XtAτk,
χ\lm) =1

that for each t and each & we have

P(xtAτk -xt

k^0) = l.

From the monotone convergence theorem we have for each pair s<t and each k
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= xf a. S.

Moreover it follows from the condition (C) that

( 3) E[xtAτk - xf] = E[xtAτk] - inf E[xτJ< + oo .

This implies that xtAtk — xf is integrable. Thus xf is integrable. Therefore for
each k Xk = (xf, ̂ ιAτ,) is a martingale. From the assumption on the right continuity
of the family (&) there exists a right continuous modification Xk = (xf, 3 w ) of
Xk. It is clear that for each t and each k we have

Next we shall investigate on the relation of Xk and Xk+p (/>= 1,2,
Since for each Λί &Λr +p (An[t^τk])n[tAτk^ύ\z ^(V^^O), we have

Thus it follows that for each Λ € 3 ^ ^

E[xTm\%tAτk]dP = f xτmdP
vn[t^)

=ί
Since both -E[̂ τmISίΛrJ and E{xτm\^tAτk+v\ are ^Λr^-measureable, we have that for
each t

m I & Λ J ^ £ [ ^ . 13rίΛr J , ί ^ rk) = 0 .

Thus P(xt

k^aS+p

9t^τk)=0 for each ί. Let Q+ be the set of all positive rational
numbers and we now put:

Then P(N) = 0 where N= \J NrtkfP, and for each ω^N we have
fc,p=l,2f+...

Xrk(ω) = xk+p(ω)

for all p=l, 2, . From the right continuities of Xk and Xk+P it follows that
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We may assume, without loss of generality, that for each ω € Ω the trajectories

t—>Xt[(o) and t —»5J+P(ω) are right continuous. This implies that

(Wi^O), 2«* = xfcl on iVc (*,/> = 1, 2, )

Now we can give the following definition:

ί lim x/ on Nc

{ xt on N.

Then clearly α;** is ^-measurable and we have

P(xTATk = xt\ V t ^ 0) = 1.

Since Xk = (xt

k, &ΛrJ is a right continuous martingale which belongs to the class

(D), X*=(x*, ιίt) is a local martingale. Then Y — (yt, ^ J , where yt = Xt — Xt*9 is a

positive local supermartingale. It is easy to see that for each pair s<t and each

k we have

From the Fatou's lemma we have

Since yo = XoΛτk — x*Λτk is integrable, Y=(yuίίt) is a positive right continuous
supermartingale. This completes the proof.

COROLLARY. If the condition (C) is fulfilled, then one may assume that

the positive supermartingale is a potential, (the Riesz-type decomposition theorem

for local supermartingales).

PROOF. In order to prove this corollary it is sufficient to prove that the process

Y=(yt,ί$t) constructed in the proof of Theorem 3 is a potential. It follows from ( 3 )

that

lim E[yt] = lim E[\im(xtAτk - x*Aτk)]
ί—»oo t—*°o k—*-oo

^ lim lim inf E[xtAτk - .rfΛrJ

rg lim lim E[xtAτκ] — inf E[xτJ .
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Since P{τnt=kn) = 1 and limE[x ί A τ k]^E[x t A τ n] for every n, we have

lim lim E[xtAτJ ^ JS[α:rJ .

for every n. Therefore for every n

^ JB[Λ:rJ - inf E[xτm\ .

This inequality implies that lim £[3^] = 0. Hence the corollary is established.

REMARK. If a local supermartingale X = [xu %t) is decomposable into a local

martingale and a potential which belongs to the class (D), then the decomposition

is unique. In fact, we suppose that X has two such decompositions :

Then there exists an increasing sequence (τn) of stopping times with respect to

the family (&) reducing X =(&,&) and X*<«>= (α:?(ί), ^ ) , (i = 1, 2), such that

P( l imτ n =oo) = 1. Without loss of generality, we may assume that P{τn^n) = 1
ίt—>oo

for every n. It is easy to see that for each u^O we have

Since each Y ( ί ) = (yj^, $t), (i = l92), is a potential which belongs to the class (D),

we have

Therefore x*{1) = x*{2) a. s. and so yί1)=y?) a. s. for each t.
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