
Tόhoku Math. Journ.
22(1970), 547-556.

ON THE JAMES, SAMELSON AND WHITEHEAD PRODUCTS

JOHN W. RUTTER AND CHRISTOPHER B. SPENCER

(Received Dec. 10, 1969)

Introduction. Let Cw be the mapping cone on the Whitehead product map

W: A*B-+SA\/SB9 then we define in §2 maps h : Cw-+SAx SB and k : S(A*B)

—> SA#SB each of which is a homotopy equivalence if A and B are CW complexes.

Given that Y has a multiplication with homotopy identity, we construct in §3 a

homotopy product [SA9 Y] x [SB, Y] -> [S(A*B), Y] which is James's product in

case A and B are spheres and Y has strict identity. With restrictions on P and

Q, two Samelson products [P, Y]x [Q, Y]-+[P#Q9 Y] are defined in §4. In case A

and B have non degenerate base point and P — SA and Q — SB, these Samelson

products correspond to the James product (theorem 5.1) under the homomorphism

k* : [SA#SB, Y] -> [S(A*B\ Y]. In §6 linearity properties and the Jacobi identity

are given for the James and Samelson product.

1. Preliminaries. The functors of unreduced join, suspension and cone are

denoted #, S and C; the unreduced mapping cone o n / : X—>Y is denoted C/. The

symbols used for the reduced join, suspension, cone and mapping cone in the base

point category are *, S, C and Cf in this category V and # denote the wedge

and collapsed product, and X#I=Xx I/*x I. The category of based spaces having

the base point preserving homotopy type of CW complexes is denoted CW.

2. The functorial equivalences. Let W: A#B-*SA\/SB be the projection
defined by

W{a,b,i) =

where 5Ά and 5i3 are joined together at the 1-end of the suspensions: then

W is an unbased Whitehead product (c. f.° 2. 3 of [1]).

1) Our definition of Whitehead product corresponds to taking the commutator xΛ-y—x— y as in
[8], whereas the definition in [1] corresponds to the commutator — x— y + x+y (see 2. 2 of [1]).
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Consider now the induced cofibre sequence

A*B ^

B

A*B

W

SAW SB

• S(A*B) •

We show that this sequence, less the first term, is continuously bijective with a

cofibre sequence induced by the inclusion i: SΆ V SB —> SA X SB.

PROPOSITION 2.1. There are functorial continuous bisections1** h: Cw—>

SA X SB and k : S(A*B) —> SA#SB making the following diagram commutative.

W ~
A*B > SAV • S(A*B)

k

SAVSB- >SAx.SB >SA#SB

Furthermore h and k are homotopy equivalences provided A and B have the

1) These maps are homeomorphίsms if SAxSB and SA#SB are given the quotient topology
from AxIxBxI: this, of course, is the weak topology if A and B are CW complexes.
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homotopy type of CW complexes.

549

PROOF Define h by means of the following diagrams (the second represents
a section with (a,b) fixed)

(0,0)

C(A*B)

The function h clearly defines k: S(A*B)-+§A#SB by taking the quotient.

Since Cψ and S(A*B) have the obvious quotient topologies from Ax IxBx /, h

and k are continuous and the result follows. These maps are related to those of

theorems 2.4 and 2.5 of [3]. Now Ti determines a homeomorphism Cw^SAxΊΪB

where SAxSB is the product SAxSB given the quotient topology from Ax 1

x B x I. Let k be the functor giving the weak topology with respect to compact
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subsets and suppose that A and B are CW complexes, then the composite
k(SAxSB)^ΊSAxSB-+SAxSB is a homotopy equivalence since SAxSB has
the homotopy type of a CW complex (proposition 3 of [7]), and it follows that
SAxSB—>SAxSB is a weak homotopy equivalence. Now A*B has the homotopy
type of a CW complex by the following lemma and thus so does SAxSB since
it has the homotopy type of a cofibre space induced by a cellular map. It follows
that h is a homotopy equivalence and k is a homotopy equivalence by a similar
argument.

LEMMA 2. 2. Let A and B be CW complexes, then A*B has the homotopy
type of a CW complex.

PROOF. The map A*B->S{AxB) gives a domination of A*B by S(AxB)

and since S(A x B) has the homotopy type of a CW complex (proposition 3 of [7]),

the lemma follows from results of [12].

Consider now the base point case of the above situation. Clearly W determines
a quotient function W: A*B-+SA\/SB. Let h: Cw->SAxSB and k: S(A*B)
—*SA#SB also be the quotients of h and k. Since collapsing a contractible subset
of a CW complex is a homotopy equivalence, the following corollary is now proved.

COROLLARY 2.3Ό. There are functorial maps h and k making the
following diagram commutative.

W j p
A*B >SAVSB-^-+ Cw-^—^S{AoB)

SAW SB—1—+ SAxSB > SA#SB

Furthermore h and k are homotopy equivalences for A and B in CW.

3. The generalized James product. In this section we define the generalized
James product and prove that it is equivalent to the generalized Samelson product.
We assume from here onwards that all maps preserve base points.

DEFINITION. An M-space is a space Y with a multiplication m : YxY-^Y

1) c. f. Theorem 4. 2 of [1].
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having homotopy identity, that is, m\Y\jY is homotopic to the folding map.

Now let Y be an M-space and / : SA->Y and g : SB-^Y be maps; then

P\
f-ffyff'f' SAxSB-+Y will denote the products of the two maps SAxSB ••

SA-^-^Y and SAxSB-^+SB *Y using the multiplication in Y. Let

H:mi*-c:Y\/Y-+Y beagiven homotopy and let Lλ=c{H{jJ#l)\/H{j%gif^))

and L2 = c(H(j2f#ϊ) V H(j\g#ϊ)) be the maps (SA V SB)#I -> Y where

JDJΪ' Y-+Y\/Y are the inclusions. Then, denoting track addition in (A*B)#I

by +, it is clear that the maps (/• g)h + Lλ(W#l) and (#./)/*+ L 2(W#1):C(A#B)

—>Y agree on the base of the cone and thus their difference is defined

d(J. 9, g f) = (/• 9)h

as in the following diagram.

- L,(W#1) - (g.f)h : S(A*B) - Y

C.-

CΛ/

LEMMA 3.1. The class of d(f.g, g.f) depends only on the classes of f

and g.

PROOF. If / 0 ~ / i and g^gu then d(ft.gt, gt.ft) gives a homotopy

Definition. The James product0 is the function < , >j: [SA, Y] x [SB, Y]

->[S(A*B),Y] given by <f, g>j={d(f. g, g.f)}.

The homotopy H: mi~~ c: Y\/Y—+Y is used in the above definition, however

the construction < , >j is independent of the choice of this homotopy.

PROPOSITION 3.2. < , >j is independent of the homotopy H: mi — c:

1) A similar product is defined by K. Tsuchida in §4 of [11] in case Y has strict identity and
all spaces are path connected countable CW complexes. However it differs from ours by
involutions because of our different conventions for commutators.
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PROOF. By considering the difference in [S(A*B),Y] of the d(f. g, g.f)
for different H's, it is clearly sufficient to show that the homomorphism W*:
XWSBQT ; (β gy^^7CίA*B(χ; (ju gyψ) j s z e r α S i n c e A*β i s a n /f'-space1)2),

this is equivalent to showing that Γ((/. g)i, W): nfAV8B(X; *)->;r/*B(Y; *) is

zero where Γ is defined in 3. 2 of [9]. However, by the co-primitivity theorem

3.3.3 of [9], T(ίf.g)i9W) = W*. The result follows since ^ ^ " ( Y ; *)

^ πfXY, *) Θ T Γ ^ Y , *), W* is linear, and the composite functions A*B

->SA\ISB->SA and A*B-+SA\/SB-+SB are clearly nulhomotopic.

4. The generalized Samelson products. We now define two Samelson

products. We are interested in the case that Y is an il̂ ί-space such that for suitable

K the set of homotopy classes [K, Y] is a loop3).

LEMMA 4.1. (c. f. theorem 1.1 of [5]). Let K belong to <W and Y be a
path connected** M-space, then [K, Y] is a loop under the multiplication on Y.

Consider now the following sequence which is exact for P and Q having non
degenerate base points:

• •->[5(PχQ), Y] -> IS(PVQ), Y]- [P#Q, Y] - [PxQ, Y] - [PVQ, Y] •

LEMMA 4. 2. Let P and Q have non degenerate base point and nk: [ P # Q , Y]

—>[PxQ, Y] be a homomorphism of loops, then π* is injective.

PROOF. The proof given here is elementary (c. f. proposition 4 of [2]). The

homomorphism [S(PxQ),Y]->[S(P\jQ),Y] is surjective, hence by exactness the

kernel of π* is zero. Since a homomorphism of loops is injective if and only if

its kernel is zero, the result is immediate.

Now let P and Q have non degenerate base point, and let Y be an M-space

for which the functions [P#Q, Y]->[Px Q, Y]->[PVQ, Y] are homomorphisms of

loops: this is true if either P and Q are in *W or if Y has homotopy inverses.

Let f:P->Y and g: Q->Y then f.g = (fp1).(gp*) and g.f=(gp*).(fp1):

PxQ->Y are well defined and {f-g} r{g.f} in the loop [PxQ,Y] depends only

1) An H'-space has a homotopy associative comultiplication with homotopy identity and homotopy
inverses.

2) e.g. it is dominated by SQAxB^): there is in fact a simply denned comultiplication.
3) A set having a binary structure with two sided identity and unique solutions x and^ for xa = b

and ay = b.
4) Or more generally let the M-structure induce a loop structure on the path components of Y.
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on the homotopy classes {/} and {g}. Since z*: [PxQ,Y]-+[PVQ,Y] is linear,

**({/-ff}-riff-/)) = {*}> a nd thus there is a unique <f,g>Sι in [P#Q,Y] with

π*<f,g>sι= {f g}.r{g.f}. Similarly there is a unique <f9g>St in [P#Q,Y]

with π*<f,ff>s.=l{ff.f}.{f.ff}.

DEFINITION. The right and left Samelson0 products are the functions50

< , >Sl and < , >8t: [P,Y]x[Q,Y]-+[P#Q,Y].

5. The relation between the products. We now prove that, with P=SA

and Q = SB, the James product < , >.,: [SA,Y]x[SB,Y]-+[S(A*B),Y] and

the Samelson product < , >Sι: [SA, Y] x [SB, Y]->[SA#SB, Y] correspond under

the functorial homomorphism k* : [SA#SB, Y] -> [S(A*B)> Y] when both products

are defined: furthermore that if k* is also an isomorphism then the Samelson

products < , >Sι and < , >St are equal.

THEOREM 5.1. Let Y be an M-space, and let the James product < , >j i

[SAX] x [5B,Y]->[S(A*B), Y], and Samelson product < , >8ι: [SA,Y] x [SB,Y]

-+[SA#SB,Y] both be defined, then k*<f,g>Sι = <f,g>j under the

homomorphism^ k* : [SA#SB, F]->[5(A*J5), Y]'\ Moreover, when k* is an

isomorphism, the two Samelson products < , >S l and < , >#, are equal.

PROOF. Let μ: CW^>S(A*B)\/CW denote the coaction. Given any map

h q
q : SAxSB->Y, we denote by q the composite Cw ^SAxSB -Y. Also

let Mi=Lr (r(g.f)j): (SAVSB)#I-*Y(i =1, 2). Then, as maps Cw-+Y, we have

7 57:̂ ^̂
), (g.f) r(g.f) +

and thus, since (#. /) . rQ. /) + M2(W#l) — *, we have

gJ+L2(W#l)).d(r(g.f), r{g.f)))op

1) After the product defined in [10].
2) In case [PxQ, Y] is a group, these products differ from one another only by the obvious

involutions.
3) If A and B are in Ίi\ then both products are defined and k* is an isomorphism.
4) In case A and B are spheres and Y has strict identity, the first part of this theorem is

similar to proposition 1. 3 of [6].
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Consider the exact sequence

[S(SAVSB)9 Y]V ί> [S(A*B), Y] -J—+ [CWy Y].

In the proof of proposition 3. 2 we showed (SW)* = 0, and thus p* is injective
since it is a homomorphism of loops having zero kernel. The first part of the
theorem now follows. It is clear that by a similar argument to the above, multiplying
on the left by IQf.f) instead of on the right by r(g.f), we obtain k*<f,g>8t

and the second part of the theorem is immediate.

6. Properties of the products. We now consider the linearity of the James
and Samelson products and obtain Jacobi identities for them.

Let Y be an M-space, giving group structures to [PxQ,Y] and [P#Q,Y]
where P and Q have non-degenerate base points. Let c denote the automorphism
of [P#Q,Y] corresponding to the inner automorphism x—>c+x—c of [PxQ, Y].
The following relations are elementary from corresponding relations between
commutators :

<aa, b>Sι = <a, b>a

Sι + <a, b>Sl,

bb'>Sl = <a, b>Sι + <a, b'>b

Sl.

We now give conditions ensuring the linearity of the James and Samelson products
in each of their variables.

THEOREM 6.1. Let P and Q have non-degenerate base points and let Y
have an M structure inducing group structures1^ on [PxQ, Y] and [P#Q,Y],
then the product < , >Sl: [P, Y] x [Q, Y] -»[P#Q, Y] satisfies <aά,b>Sι

= <ay b>Sι 4- <a\ b>Sl if P has a comultiplication with homotopy identity
and satisfies <a,bb'>Si = <a,b>Sι+<a,b'>Sl if Q has a comultiplication
with homotopy identity.

PROOF. The comultiplication on P induces comultiplications on PxQ/*xQ
and P#Q with homotopy identity. Thus [Px Q/* x Q, Y] and [ P # Q , Y] are abelian.
From the exact sequence [Q9Y]*-[P*Q,Y]<r-[PxQ/*xQ,Y] it follows that
[a,b] and a both lie in the image of [PxQ/*xQ, Y] and hence commute. The
proof is now clear.

1) e. g. if Y is homotopy associative and P and Q belong to W, or if Y is homotopy associative
with homotopy inverses.
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COROLLARY 6.2. Let A and B be in <W and let Y be a homotopy
associative M-space, then the James product < , >j : [SA, Y] x [SB, Y]
-> [S(A*B), Y] is bilinear.

Given that Y is a homotopy associative M-space and P, Q and R are in <W,
then the Samelson product < , > 5 l satisfies a general Jacobi identity

TX < < - g,/>>, r > * + τ 2 < < - r, q>,p>r + τ 3 < < -/>, r > , g > p = 0

where τl9 τ2 and τ3 are the obvious twisting functions (c. f. §2 of [8]). The
following special case is obtained as in theorem 1 of [8].

THEOREM 6. 3. (The Jacobi identity) Let P, Q and R be in HV and have
comultiplications with homotopy identity and let Y be a homotopy associative
M-space, then in the group [P#Q#R, Y], the Samelson product satisfies

~> +τ.«r,p>,q> + τ2«q,r>,p> = 0

where τx and τ2 are the obvious twisting functions.

COROLLARY 6.4. // A, B and C are in <W and Y is a homotopy
associative M-space, then the James product satisfies the Jacobi identity.
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