GENERATORS OF W*-ALGEBRAS

HORST BEHNCKE

(Received Dec. 4, 1969; Revised June 12, 1970)

Recently Wogen [1] has shown that any properly infinite W^* -algebra on a separable Hilbert space is singly generated. Further results on generators of W^* -algebras have been obtained by Saito [2] and Pearcy [3]. In this note we shall extend these results and present new proofs for them. We shall show for example that any properly infinite W^* -algebra $\mathfrak A$ is generated by a single subnormal operator T. We will also see that $\mathfrak A$ is generated by two unitary operators U and U with $U^2=1$ and $U^3=1$. These results have some interesting consequences. Throughout U will be a separable Hilbert space and U will be a properly infinite U^* -algebra on U. Though some of our results are also valid for certain singly generated U^* -algebras, we formulate them only for the properly infinite ones.

LEMMA 1. A is singly generated.

PROOF. Since \mathfrak{A} is properly infinite it can be written as $\mathfrak{A} = \mathfrak{B} \otimes B(K)$, where \mathfrak{B} is a properly infinite W*-algebra on a separable Hilbert space K and where B(K') denotes the algebra of all bounded operators on the infinite dimensional Hilbert space K'. In this notation $H = K \otimes K'$. We shall write K' as the usual sequence space $l^2(N)$, N the positive integers. Then the elements A of $\mathfrak A$ can be considered as matrices with entries from \mathfrak{B} , $A = (a_{i,j})$ and $a_{i,j} \in \mathfrak{B}$ is clearly generated by a countable number of operators b_i , $i = 1, 2, \cdots$. Without loss of generality we shall assume that all b_i are positive invertible contractions. Now let $A = (a_{i,j})$ and $B = (b_{i,j})$ with $a_{i,j} = \delta_{i,j} \ 1/i \cdot 1$ and $b_{i+1,i} = b_{i,i+1} = b_i$ and $b_{i,j} = 0$ otherwise. Then A and B are selfadjoint. Let \Re be the W*-algebra generated by A and B and let $C^* = C \in \Re'$. Since CA = AC we see immediately that C is diagonal, $C = (c_{i,j})$ with $c_{i,j} = \delta_{i,j} c_i$. We shall denote this by $C = \text{diag } (c_1, c_2, \cdots)$. Then BC = CB shows $b_i c_{i+1} = c_i b_i$ $i = 1, 2 \cdot \cdot \cdot$. The adjoint of this equation is $c_{i+1}b_i = b_ic_i$ because $c_i = c_i^*$. Thus $c_ib_i^2 = b_ic_{i+1}b_i = b_i^2c_i$. However b_i is positive, therefore $c_i b_i = b_i c_i$ and $(c_{i+1} - c_i) b_i = 0$. Since b_i is invertible we see $c_{i+1} = c_i$. Thus $c_1 = c_2 = \cdots = c$ and $cb_i = b_i c$. \mathfrak{B} is generated by the b_i . Therefore $c \in \mathfrak{B}'$ and $\Re' = \Re' \otimes C$ or $\Re = \Re$. Thus \Re is generated by the two hermitean operators A and B.

The above construction actually gives us a continuous family $\{A_k, B_k\}_{k \in (0,1)}$ of pairwise unitarily inequivalent generators of \mathfrak{A} . Simply choose for B_k $b_1 = k$. These remarks will also apply to all following results.

THEOREM 1. \mathfrak{A} is generated by a single subnormal operator T.

PROOF. Let a and b be positive operators on the separable Hilbert space K with $0 < a^2 < b^2$. Following [4] we define on $(K \oplus K \oplus \cdots) \oplus (K \oplus K) \oplus (K \oplus K \oplus \cdots)$ = $H \oplus H' \oplus H''$ the operator

	$abb b \vdots$	$\begin{bmatrix} a \\ 0 \\ 0 \\ \vdots \end{bmatrix}$	0 c 0 :	
$N = \frac{1}{2}$		0	0	b
		c	0	0
				0 <i>b</i> 0 <i>b</i>

with $c = (b^2 - a^2)^{1/2}$. A simple computation shows that N is normal. The subspace H is clearly invariant under N and thus T = N | H is subnormal.

As before write $\mathfrak{A}=\mathfrak{B}\otimes B(K')$, with \mathfrak{B} a properly infinite W^* -algebra. By lemma 1 there exist two positive operators $a,b\in\mathfrak{B}$, which generate \mathfrak{B} . We choose them such that 0< a<1 and 2< b<3 and form the operator N and T=N|H as above. Again denote by \mathfrak{R} the W^* -algebra generated by T. One sees easily that

$$T^n T^{*n} = \operatorname{diag}(0, \dots, 0, b^{n-1} a^2 b^{n-1}, b^{2n}, b^{2n}, \dots)$$
$$T^{*n} T^n = \operatorname{diag}(ab^{2n-2} a, b^{2n}, b^{2n}, \dots).$$

Thus R contains any diagonal operator

$$D_n = \operatorname{diag}(0, \dots, 0, 1, 0, \dots)$$
.

Let $C = C^* \in \mathfrak{R}$ then $CD_n = D_nC$ for all n shows $C = \operatorname{diag}(c_1, c_2, \cdots)$. CT = TC implies $c_2a = ac_1$, $c_{i+1}b = bc_i$ i > 1. With the same trick as in lemma 1 we can now show $c = c_2 = \cdots = c$ and ac = ca, bc = cb or $c \in \mathfrak{B}'$. Thus $C = c \otimes \mathbf{1} \in \mathfrak{B}' \otimes \mathbf{C}$ and $\mathfrak{R} = \mathfrak{A}$.

Wogen (private communication) has shown that any properly infinite W^* -algebra is generated by a hyponormal operator. However this construction is much

simpler than his. Since a quasinormal operator is of type I [5] the subnormality condition in theorem 1 cannot be strengthend. Here we give an independent much shorter proof for the result in [5] using C^* -algebra techniques.

DEF. An operator T on a Hilbert space H is called postliminal if the C^* -algebra $\mathfrak E$ generated by T is is postliminal [6,7].

Postliminal operators are clearly of type I, i.e. they generate a W^* -algebra of type I. However the converse is not true.

THEOREM 2. A quasinormal operator T is postliminal.

PROOF. Since T is quasinormal T and T^* commute with (T^*T) .

Let π be an irreducible representation of \mathfrak{C} . Then $\pi(T^*T)$ commutes with $\pi(T)$ and $\pi(T^*)$ and thus with every element in $\pi(\mathfrak{C})$. By irreducibility $\pi(T^*T) = c1$ with c>0. Then $\pi(T)$ $1/\sqrt{c}$ is an irreducible isometry. Thus $\pi(T)$ $1/\sqrt{c}$ is unitary or a simple unilateral shift. In the first case $\dim \pi = 1$, whereas in the second case $\pi(\mathfrak{C})$ contains all compact operators. If one applies now the method of the direct integral decomposition to the identity representation of \mathfrak{C} , one obtains the result of [5].

Now let $\mathfrak A$ be a factor of type III and T a hyponormal generator of $\mathfrak A$. By $\mathfrak C$ denote again the C^* -algebra generated by T. Then $\mathfrak C$ is antiliminal [6]. Let π be a representation of $\mathfrak C$ such that $\pi(\mathfrak C)$ generates a W^* -algebra of finite type. Then $\pi(\mathfrak C)''$ has a complete family of normal traces. Let φ be a trace, then $0 \le \varphi(\pi(T^*T - TT^*)) = \varphi(\pi(T)^*\pi(T)) - \varphi(\pi(T)\pi(T)^*) = 0$. Hence $\pi(T)$ is normal. This gives us many examples of C^* -algebras with representations of type III, but none of type II₁. This also shows that no finite nonabelian W^* -algebra is generated by a hyponormal operator.

The following corollaries are corollaries of lemma 1 or theorem 1.

COROLLARY 1. \mathfrak{A} is generated by an operator T with p(T) = 0, where p(x) is a polynom of degree three or higher.

PROOF. Let
$$p(x) = \prod_{i=1}^n (x-a_i)$$
 and let $\mathfrak{A} = \mathfrak{B} \otimes M_n$.

Then consider the operator matrix $T=(t_{i,j})$ $i, j=1,\dots, n$ with $t_{i,i}=a_i$, $t_{1,2}=a$, $t_{n-1,n}=b$, $t_{i,i+1}=1$ $i=2,\dots, n-2$ and $t_{i,j}=0$ otherwise. Here a and b are positive invertible generators of \mathfrak{B} . If a and b were commuting the theorem of Hamilton

and Cayley would show p(T)=0. It is easy to see however that the only matrix elements of T^k $k \le n$, where a and b appear together are $(T^n)_{,n}$ and $(T^{n-1})_{1,n}$. Thus the theorem of Hamilton and Cayley is also applicable in this case and p(T)=0. Simple matrix computation shows then as in theorem 1 that T generates \mathfrak{A} .

We should remark that an operator T satisfying a polynomial identity of degree 2 is binormal and thus generates a W^* -algebra of type $I_{\leq 2}$. In particular $\mathfrak A$ is generated by an operator T with $T^n=1,\,n=3,\,4,\,\cdots$. Using Weyl's trick on the bounded representation $k\to T^k$ of the cyclic group of order n this shows that T is similar to a unitary operator U with $U^n=1$. Thus $\mathfrak A$ is generated by an operator T which is similar to a unitary operator.

COROLLARY 2. A is generated by a partial isometry.

PROOF. We write $\mathfrak{A}=\mathfrak{B}\otimes M_2$. By lemma 1 \mathfrak{B} is generated by a positive operator $1/2 \geq a \geq 1/4$ and a unitary operator u. Let $b=(1-a^2)^{1/2}u$ then $T=\begin{pmatrix} b & a \\ 0 & 0 \end{pmatrix}$ is a partial isometry with $TT^*=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Thus any operator $C=C^*$ commuting with T must be diagonal, because it commutes with TT^* , $C=\mathrm{diag}\ (c_1,c_2)$. Then TC=CT shows $bc_1=c_1b$ and $ac_2=c_1a$. As before this gives $c_1=c_2=c$ because a is positive and invertible. Thus ac=ca and cu=uc or $c\in\mathfrak{B}'$.

COROLLARY 3. $\mathfrak A$ is generated by an (infinite) projection P and a positive operator S.

PROOF. Let $\mathfrak{A}=\mathfrak{B}\otimes M_2$ and let $P=\begin{pmatrix}1&0\\0&0\end{pmatrix}$ and $S=\begin{pmatrix}a&b\\b&1\end{pmatrix}$ where a and b are generators of \mathfrak{B} with $2\geq a\geq 1$ and $1/2\geq b>0$. The remainder is shown as in the previous corollary.

THEOREM 3. At is generated by three projections P_1 , P_2 and P_3 , two of which may be chosen to be orthogonal, $P_1 \cdot P_2 = 0$.

PROOF. Again we write $\mathfrak{A}=\mathfrak{B}\otimes M_2$. Then by corollary $3\ \mathfrak{B}$ is generated by a projection p and a positive invertible operator a with $1/2 \geq a > 0$. Then let $P_1 = \begin{pmatrix} p & 0 \\ 0 & 0 \end{pmatrix}, \ P_2 = \begin{pmatrix} 1-p & 0 \\ 0 & 0 \end{pmatrix}, \ P_3 = \begin{pmatrix} a & t \\ t & 1-a \end{pmatrix}$ with $t = (a(1-a))^{1/2}$. These are obviously projections and $P_1 \cdot P_2 = 0$. Let \mathfrak{A} be the W^* -algebra generated by P_1 , P_2 and P_3 and let $C = C^* \in \mathfrak{A}$. Then $C(P_1 + P_2) = (P_1 + P_2)C$ shows as before that C is diagonal, $C = \operatorname{diag}(c_1, c_2)$. Then $CP_1 = P_1C$ and $CP_3 = P_3C$ show $c_1p = pc_1$ and $c_1a = ac_1$. By assumption $c_1 \in \mathfrak{B}'$. $CP_3 = P_3C$ gives further $tc_1 = c_2t$. We have

already shown $c_1 \in \mathcal{B}$, thus $c_1 t = c_2 t$ or $c_1 = c_2 t$ since $t_1 = c_2 t$ is invertible.

We should remark that the projections P_i i = 1, 2, 3 are infinite with infinite complement.

COROLLARY. $\mathfrak A$ is generated by two unitary operators U and V, which can be chosen such that $U^2 = 1$ and $V^3 = 1$.

PROOF. Let P_1 , P_2 and P_3 be the projection generators of $\mathfrak A$ as we have determined them above. Let $U=1-2P_3$ and $V=P_1+P_2e^{2\pi i/3}+(1-P_1-P_2)e^{4\pi i/3}$. Since the P_i i=1,2,3 generate $\mathfrak A$ also U and V generate $\mathfrak A$.

Theorem 3 improves a result by Saito [2], who did not show that two of the generating projections may be chosen orthogonal.

This corollary has an interesting consequence. Let $\mathfrak A$ be a properly infinite W^* -algebra on the separable Hilbert space H and let U and V be unitary generators of $\mathfrak A$ with $U^2=1=V^3$. Let $G=Z_2^*Z_3$ be the free product of the cyclic group Z_2 of order 2 and Z_3 , the cyclic group of order 3, with generators α and β , $\alpha^2=e=\beta^3$. Let $\pi(\alpha)=U$ and $\pi(\beta)=V$, then π determines a unitary representation of G such that $\pi(G)$ generates $\mathfrak A$. This shows that any properly infinite W^* -algebra $\mathfrak A$ arises from a representation π of G. Because of our earlier remarks there exists even a continuous family π_k $k \in (0,1)$ of representations of G such that $\pi_k(G)$ generates $\mathfrak A$ and that the π_k are pairwise unitarily inequivalent. Conversely any W^* -algebra which comes from a representation of G is generated by two unitaries U,V with $U^2=1=V^3$.

In the above theorems the separability of H cannot be dropped in general, because there exist properly infinite factors, which are not even countably generated. For example let G be the group of all finite permutations of an uncountable set and let \mathfrak{B} be the left ring of G. Then $\mathfrak{A}=\mathfrak{B}\otimes B(K)$, with K a separable infinite dimensional Hilbert space, is properly infinite. But \mathfrak{A} is not countably generated. To see this assume indirectly that \mathfrak{A} is generated by the operators $\{A_i\}_{i=1}^\infty$ with $A_i=(a_{j,k}^{(i)})$. Then \mathfrak{B} is generated by the countable set $\{a_{j,k}^{(i)}\}, i, j, k=1, 2 \cdot \cdot \cdot$. Every $a_{j,k}^{(i)}$ can be written as $a_{j,k}^{(i)} = \sum_{g \in G} \alpha_g^{(i,j,k)} U_g$ with $\sum_{g \in G} |\alpha_g^{(i,j,k)}|^2 < \infty$, where U_g is the translation by g on $\ell^2(G)$. Thus \mathfrak{B} is generated by the countable set $S=\{U_g | \alpha_g^{(i,j,k)} \neq 0 \text{ for some } (i,j,k)\}$. However the set of all $\{g \in G | U_g \in S\}$ generates a countable and thus proper subgroup H of G and thus the $U_g \in S$ do not generate \mathfrak{B} . This contradiction shows that \mathfrak{A} is not countably generated. Using some cardinal, arithmetic this result can be improved slightly.

H. BEHNCKE

REFERENCES

- [1] W. WOGEN, On Generators of von Neumann Algebras, Bull. Amer. Math. Soc., 1969.
- [2] T. SAITO, Generators of Certain von Neumann Algebras, Tôhoku Math. J., 20(1968), 101-105.
- [3] C. PEARCY, On Certain von Neumann Algebras, which are Generated by Partial Isometries, Proc. Amer. Math. Soc., 15(1964), 393-395.
- [4] J. G. STAMPFLI, Which Weighted Shifts are Subnormal, Pacific J. Math., 17(1966), p. 367.
- [5] A. Brown, On a Class of Operators, Proc. Amer. Math. Soc., 4(1953), 723-728.
- [6] J. DIXMIER, Les C*-algebres et leurs Representations, Gauthier Villars, Paris 1964.
- [7] H. BEHNCKE, Structure of Certain Nonnormal Operators, J. Math. Mech., 18(1968), 103-107.

INSTITUT FÜR ANGEWANDTE MATHEMATIK UNIVERSITÄT HEIDELBERG HEIDELBERG, DEUTSCHLAND