REMARK ON BEHAVIOR OF SOLUTIONS OF SOME PARABOLIC EQUATIONS

LU-SAN ChEn*)

(Received October 18, 1969)

1. Consider a parabolic equation

$$
L u=\sum_{i, j=1}^{n} a_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i} \frac{\partial u}{\partial x_{i}}+c u-\frac{\partial u}{\partial t}=0
$$

in $\Omega=R^{n} \times(0, \infty)$, where $x=\left(x_{1}, \cdots, x_{n}\right)$ is a point of the n-dimensional Euclidean space $R^{n}, t \in(0, \infty)$ the time-variable and $a_{i j}=a_{j i}, b_{i}$ and c are functions defined in Ω. In this paper, we have some interests in treating behavior of the continuous solution u of the Cauchy problem

$$
\left\{\begin{array}{l}
L u=0 \quad \text { in } \Omega, \tag{1}\\
u(x, 0)=f(x)
\end{array} \text { in } R^{n} .\right.
$$

In the case where $c \leqq 0$ in Ω, some results were obtained by many authors. For instance, we can prove the following.

Suppose that coefficients of the operator L satisfy the following condition in Ω :

$$
\left\{\begin{array}{l}
\begin{array}{l}
0<\sum_{i, j=1}^{n} a_{i j} \xi_{i} \xi_{j} \leqq K_{1}\left(|x|^{2}+1\right)^{1-\lambda}|\xi|^{2} \\
\quad \text { for any real vector } \xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \neq 0 \\
\left|b_{i}\right| \leqq K_{2}\left(|x|^{2}+1\right)^{1 / 2}, \quad(i=1, \cdots, n) \\
c \leqq 0
\end{array} \tag{2}
\end{array}\right.
$$

for some positive K_{1}, K_{2} and $\lambda \in[0, \infty)$. Further, suppose that there exists a positive function $H(x)$ in R^{n} such that $L H \leqq-\delta$ in R^{n} for a positive constant δ and such that $H(x)$ tends to infinity as $|x|$ tends to infinity. If a continuous function $u=u(x, t)$ in $\bar{\Omega}=R^{n} \times[0, \infty)$, satisfying

[^0]\[

|u(x, t)| \leqq M_{0} \times $$
\begin{cases}\left(|x|^{2}+1\right)^{\mu_{0}}, & \lambda=0 \\ \exp \left[\mu_{0}\left(|x|^{2}+1\right)^{\lambda}\right] & \lambda>0\end{cases}
$$
\]

in Ω for some positive M_{0} and μ_{0}, is a solution of the Cauchy problem (1) and if $|f(x)|<M$ in R^{n} for a constant M, then $u(x, t)$ converges to zero uniformly on every compact set in R^{n} as t tends to infinity.

The special case $\lambda=1$ in the above was proved by Il'in-Kalashnikov-Oleinik [3] and the proof of the above fact is also obtained by using their arguments.

On the other hand, even though c is not non-positive in Ω, we can get the decay of u, similar to the above, under some additional conditions.

The results in this direction were obtained by the writer [2] and by Kuroda [4]. However, in these two works, it was assumed that λ is positive in (2).

In this paper, we shall discuss the asymptotic behavior of solutions of the Cauchy problem (1) under a suitable condition which corresponds to the case $\lambda=0$ in (2) but is different from (2) in the view point that c is not necessarily non-positive.
2. Now suppose that for coefficients of L in (1) there exist positive constants $k_{1}, K_{1}, K_{2}, K_{3}$ and K_{4} such that

$$
\left\{\begin{array}{l}
k_{1}\left(|x|^{2}+1\right)|\xi|^{2} \leqq \sum_{i, j=1}^{n} a_{i j} \xi_{i} \xi_{j} \leqq K_{1}\left(|x|^{2}+1\right)|\xi|^{2} \tag{3}\\
\quad \text { for any real vector } \xi=\left(\xi_{1}, \cdots, \xi_{n}\right), \\
\left|b_{i}\right| \leqq K_{2}\left(|x|^{2}+1\right)^{1 / 2}, \quad(i=1, \cdots, n), \\
c \leqq-K_{3}\left(\log \left(|x|^{2}+1\right)+1\right)^{2}+K_{4} .
\end{array}\right.
$$

The above condition for c is suggested by Kusano [5]. Throughout this paper, we shall say that $u(x, t)$ is a solution of the Cauchy problem (1) when $u(x, t)$ is continuous in $\bar{\Omega}$, twice continuously differentiable in Ω and satisfies (1).

The purpose of this paper is to prove the following theorem.
THEOREM. Let $u(x, t)$ be a solution of the Cauchy problem

$$
\left\{\begin{array}{l}
L u=0 \quad \text { in } \Omega, \\
u(x, 0)=f(x) \quad \text { in } R^{n}
\end{array}\right.
$$

such that $|u(x, t)| \leqq \mu \exp \left(\nu \log \left(|x|^{2}+1\right)+1\right)^{2}$ for some positive constants μ and ν. Assume that the coefficients of L in (1) satisfy (3). If the Cauchy data $f(x)$ is bounded in R^{n} and if

$$
\begin{equation*}
\frac{k_{1} n}{2 K_{1}}\left[\left(2 K_{1}+K_{2} n\right)-\sqrt{\left(2 K_{1}+K_{2} n\right)^{2}+4 K_{1} K_{3}}\right]+K_{4}<0 \tag{4}
\end{equation*}
$$

then $u(x, t)$ converges to zero uniformly in $x \in R^{n}$ as tends to infinity.
3. To prove our theorem, we need the following sharpend version of the maximum principle for parabolic equations with unbounded coefficients obtained by Bodanko [1].

Lemma 1 (Kusano [5]). Let the differential operator L in (1) satisfy the condition (3) in Ω. If a continuous function $u(x, t)$ in $\bar{\Omega}$ is a solution of $L u=0$ in Ω in the usual sense such that

$$
|u(x, t)| \leqq \mu \exp \left(\nu \log \left(|x|^{2}+1\right)+1\right)^{2}
$$

for some positive constants μ and ν in Ω and if $u(x, 0) \geqq 0$ for $x \in R^{n}$, then $u(x, t) \geqq 0$ throughout Ω.

Lemma 2. Let α be a positive root of the quadratic equation $A X^{2}+B X+C$ $=0(A \neq 0)$, where $B \geqq 0$ and $C<0$. Then the function

$$
\varphi(t)=\alpha \tanh A x t
$$

satisfies the inequality

$$
\boldsymbol{\varphi}^{\prime}(t)+A \boldsymbol{\varphi}^{2}(t)+B \boldsymbol{\varphi}(t)+C \leqq 0
$$

Proof. Evidently

$$
\boldsymbol{\varphi}(t)=4 A \alpha^{2} e^{-2 A \alpha t}\left(1+e^{-2 A \alpha t}\right)^{-2}
$$

so we get

$$
\begin{gathered}
\boldsymbol{\varphi}(t)+A \boldsymbol{\varphi}^{2}(t)+B \boldsymbol{\varphi}(t)+C \\
=\left[4 A x^{2} e^{-2 A \alpha t}+A \chi^{2}\left(1-e^{-2 A \alpha t}\right)^{2}+B x\left(1-e^{-4 A \alpha t}\right)\right. \\
\left.+C\left(1+e^{-2 A \alpha t}\right)^{2}\right]\left(1+e^{-2 A \alpha t}\right)^{-2} \\
=\left[A \alpha^{2}+B x+C+e^{-2 A \alpha t}\left(4 A \alpha^{2}-2 A \alpha^{2}+2 C\right)\right. \\
\left.+e^{-4 A \alpha t}\left(A \alpha^{2}-\underline{B} \alpha+C\right)\right]\left(1+e^{-2 A \alpha t}\right)^{-2}
\end{gathered}
$$

$$
=\left(e^{-2 \Delta \alpha t}+e^{-4 A \alpha t}\right) \frac{-2 B \alpha}{\left(1+e^{-2 \Delta \alpha t}\right)^{2}} \leqq 0
$$

4. Now we can state the proof of Theorem.

Let $\boldsymbol{\rho}(t)$ and $\psi(t)$ be functions twice continuously differentiable in $[0, \infty)$. We consider the function

$$
\begin{equation*}
H(x, t)=\exp \left[-\boldsymbol{\varphi}(t)\left(\log \left(|x|^{2}+1\right)+1\right)^{2}+\psi(t)\right] . \tag{5}
\end{equation*}
$$

It is easily verified that

$$
\begin{aligned}
\frac{L H}{H}= & 16 \boldsymbol{\varphi}^{2}(t)\left(\log \left(|x|^{2}+1\right)+1\right)^{2}\left(|x|^{2}+1\right)^{-2} \sum_{i, j=1}^{n} a_{i j} x_{i} x_{j} \\
& +8 \boldsymbol{\varphi}(t)\left(\log \left(|x|^{2}+1\right)+1\right)\left(|x|^{2}+1\right)^{-2} \sum_{i, j=1}^{n} a_{i j} x_{i} x_{j} \\
& -8 \boldsymbol{\varphi}(t)\left(|x|^{2}+1\right)^{-2} \sum_{i, j=1}^{n} a_{i j} x_{i} x_{j} \\
& -4 \boldsymbol{\varphi}(t)\left(\log \left(|x|^{2}+1\right)+1\right)\left(|x|^{2}+1\right)^{-1} \sum_{i=1}^{n}\left(a_{i i}+b_{i} x_{i}\right) \\
& +c+\boldsymbol{\varphi}^{\prime}(t)\left(\log \left(|x|^{2}+1\right)+1\right)^{2}+\psi(t) .
\end{aligned}
$$

It follows from (3) that

$$
\begin{aligned}
\frac{L H}{H} \leqq & \left(\log \left(|x|^{2}+1\right)+1\right)^{2}\left[\boldsymbol{\varphi}^{\prime}(t)+16 K_{1} \boldsymbol{\varphi}^{2}(t)+\left(8 K_{1}+4 K_{2} n\right) \boldsymbol{\varphi}(t)-K_{3}\right] \\
& +\left(-4 k_{1} n \boldsymbol{\varphi}(t)+K_{4}-\psi^{\prime}(t)\right) .
\end{aligned}
$$

Thus, if we take

$$
\begin{equation*}
\varphi(t)=\alpha \tanh 16 K_{1} \alpha t \tag{6}
\end{equation*}
$$

where α is the positive root of the quadratic equation in X

$$
16 K_{1} X^{2}+\left(8 K_{1}+4 K_{2} n\right) X-K_{3}=0
$$

then we see from Lemma 2 that

$$
\boldsymbol{\varphi}^{\prime}(t)+16 K_{1} \boldsymbol{\varphi}^{2}(t)+\left(8 K_{1}+4 K_{2} n\right) \boldsymbol{\varphi}(t)-K_{3} \leqq 0 .
$$

Further, it is easy to see that

$$
\begin{equation*}
\psi(t)=-\frac{k_{1} n}{4 K_{1}} \log \left(\cosh 16 K_{1} \alpha t\right)+K_{4} t \tag{7}
\end{equation*}
$$

satisfies

$$
-4 k_{1} n \mathscr{P}(t)+K_{4}-\psi^{\prime}(t)=0
$$

for $\boldsymbol{\phi}(t)$ given by (6). Thus $H(x, t)$ given by (5) for $\boldsymbol{\varphi}(t)$ in (6) and $\psi(t)$ in (7) satisfies

$$
L H \leqq 0
$$

in Ω.
It is evident that $H(x, 0)=1$. Further, we can see

$$
\begin{equation*}
H(x, t) \leqq 2^{\dot{k}_{1} n / 4 K_{1}} \exp \left[\left(-4 k_{1} n \alpha+K_{4}\right) t\right] \tag{8}
\end{equation*}
$$

in Ω. The condition (4) implies boundedness of $H(x, t)$ in Ω. As the Cauchy data $f(x)$ is bounded, we may assume $|f(x)|<M$ in R^{n}.

If we put

$$
W_{ \pm}(x, t)=M H(x, t) \pm u(x, t),
$$

then $L W_{ \pm}=M L H \pm L u \leqq 0$ in Ω and $W_{ \pm}(x, 0)=M \pm u(x, 0) \geqq 0$.
Moreover, we have clearly

$$
\left|W_{ \pm}(x, t)\right| \leqq \mu^{*} \exp \left(\nu^{*} \log \left(|x|^{2}+1\right)+1\right)^{2}
$$

in Ω for some constants μ^{*} and ν^{*}. Hence we see by Lemma 1 that $W_{ \pm}(x, t) \geqq 0$ in Ω, so from (8) we have

$$
\begin{aligned}
|u(x, t)| & \leqq M H(x, t) \\
& <M_{1} \exp \left[\left(-4 k_{1} n \alpha+K_{4}\right) t\right], \quad\left(M=2^{k_{1} n / 4 K_{1}} M\right)
\end{aligned}
$$

for α in (6) throughout Ω. From the assumption (4), it is obvious that $u(x, t)$ converges to zero uniformly in $x \in R^{n}$ as t tends to infinity.
5. Finally, in the following we state an example which shows that there is an operator L in (1) satisfying (3) and (4) and having a coefficient c not necessarily non-positive in R^{n}.

Example. Consider a differential equation of the particular form

$$
\left\{\begin{array}{l}
\left(|x|^{2}+1\right) \sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}{ }^{2}}+c u-\frac{\partial u}{\partial t}=0, \\
c=-K_{3}\left(\log \left(|x|^{2}+1\right)+1\right)^{2}+K_{4}
\end{array}\right.
$$

in Ω. Take positive numbers K_{3} and K_{4} as such as

$$
\frac{K_{4}^{2}+2 n K_{4}}{n^{2}}<K_{3}<K_{4}
$$

This is possible only in the case $0<K_{4}<n(n-2)$. Then we have

$$
K_{4}^{2}+2 n K_{4}-n^{2} K_{3}<0,
$$

which is the condition (4) for our equation. Moreover, we see $c(0, t)=-K_{3}+K_{4}>0$.

References

[1] W. Bodanko, Sur le problème de Cauchy et les problèmes de Fourier pour les équations paraboliques dans un domaine non borné, Ann. Polon. Math., 18(1966), 79-94.
[2] Lu-San Chen, Note on the behavior of solutions of parabolic equations with unbounded coefficients, Nagoya Math. J., 37(1970), 1-4.
[3] A. M. Il'in-A. S. Kalashnikov-O. A. Oleinik, Second order linear equations of parabolic type, Russian Math. Surveys, 17, no. 3 (1962), 1-143.
[4] T. KURODA, Asymptotic behavior of solutions of parabolic equations with unbounded coefficients, Nagoya Math. J., 37(1970), 5-12.
[5] T. KuSANO, Remarks on the behavior of solutions of second order parabolic equations with unbounded coefficients, Funkcial. Ekvac., 11(1968), 197-205.

Department of Mathematics
Taiwan Provincial Cheng-Kung University
Tainan, China

AND
Institute of Mathematics
Academia Sinica
Taipei, China

[^0]: *)This research was supported by National Science Council.

