# LACUNARY TRIGONOMETRIC SUM AND PROBABILITY 

Shigeru Takahashi

(Received October 11, 1969)

1. Introduction. In the present note let $\left\{\lambda_{k}\right\}$ denote a lacunary sequence of positive numbers, that is,

$$
\begin{equation*}
\lambda_{k+1} \geqq q \lambda_{k}, k=1,2, \cdots, \quad \text { where } q>1 \tag{1.1}
\end{equation*}
$$

Then the limiting distributions of lacunary trigonometric sums

$$
T_{n}(x)=B_{n}^{-1} \sum_{k=1}^{n} a_{k} \cos \left(\lambda_{k} x+\alpha_{k}\right), \quad \text { where } B_{n}=\left(2^{-1} \sum_{k=1}^{n} a_{k}^{2}\right)^{1 / 2}
$$

were considered by Salem and Zygmund [2] who proved that, over any fixed set of positive Lebesgue measure, $T_{n}(x)$ converges in law to the normal distribution with mean zero and variance 1 , provided if $B_{n} \rightarrow+\infty$ and $a_{n}=o\left(B_{n}\right)$, as $n \rightarrow+\infty$.

In this note we discuss the problem whether the Salem-Zygmund result is valid or not, if we replace the Lebesgue measure by a probability measure on $(-\infty, \infty)$. If the probability measure is absolutely continuous with respect to the Lebesgue measure, then the Salem-Zygmund result implies that $T_{n}(x)$ is asymptotically normal with respect to this probability measure. But nothing like the Salem-Zygmund result is necessarily valid, even if the probability measure is continuous.

However, if we treat the series in $(x, t)$

$$
\sum a_{k} \cos \left(\lambda_{k} x t+\alpha_{k}\right)
$$

we can obtain a similar result, under fairly general conditions. This problem was considered by Kaufman when $a_{k}=1, k=1,2, \cdots[1]$.

In the following $P$ is a probability measure on $(-\infty, \infty)$ satisfying

$$
\left\{\begin{array}{l}
P\{[x, x+h]\} \leqq M h^{\beta}, \quad \text { for all } x \in(-\infty, \infty) \text { and } h>0,  \tag{1.2}\\
\text { where } \beta, 0<\beta<1, \text { and } M \text { are positive constants. }
\end{array}\right.
$$

Theorem. Let us put

$$
S_{n}(x, t)=\sum_{k=1}^{n} a_{k} \cos \left(\lambda_{k} x t+\alpha_{k}\right) \equiv \sum_{k=1}^{n} A_{k}(x, t) .
$$

Then under the assumptions

$$
\left\{\begin{array}{l}
B_{n}=\left(2^{-1} \sum_{k=1}^{n} a_{k}^{2}\right)^{1 / 2} \rightarrow+\infty  \tag{1.3}\\
a_{n}=o\left(B_{n} / \log \log B_{n}\right), \quad \text { as } n \rightarrow+\infty
\end{array}\right.
$$

one has, for a.e.t in $(-\infty, \infty)$, with respect to the Lebesgue measure,

$$
\lim _{n \rightarrow \infty} P\left\{x ; S_{n}(x, t) \leqq y B_{n}\right\}=(2 \pi)^{-1 / 2} \int_{-\infty}^{y} \exp \left(-u^{2} / 2\right) d u,-\infty<y<+\infty .
$$

2. Some Lemmas. Let $\hat{P}(\lambda)$ denote the Fourier-Stieltjes transform of the probability measure $P$, that is, $\widehat{P}(\lambda)=\int_{-\infty}^{\infty} \exp (i \lambda x) P(d x)$. The next lemma is due to Kaufman.

Lemma 1. If $\lambda \neq 0$, then we have

$$
\int_{v}^{v+1}|\hat{P}(\lambda t)| d t \leqq C|\lambda|^{-\beta / 2}
$$

where $v$ is any real number and $C$ a constant independent of $v$.

Proof. We may assume that $|\lambda|>1$. We have

$$
\begin{aligned}
\int_{v}^{v+1}|\hat{P}(\lambda t)|^{2} d t & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{v}^{v+1} \exp \left\{i \lambda t\left(x_{1}-x_{2}\right)\right\} d t P\left(d x_{1}\right) P\left(d x_{2}\right) \\
& \leqq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \min \left(1,2\left|\lambda x_{i}-\lambda x_{2}\right|^{-1}\right) P\left(d x_{1}\right) P\left(d x_{2}\right)
\end{aligned}
$$

Let $r>0$ be the integer defined $2^{-r}<|\lambda|^{-1} \leqq 2^{1-r}$; we sum the integrand over the sets:

$$
\left\{\left|x_{1}-x_{2}\right| \geqq 1\right\},\left\{1>\left|x_{1}-x_{2}\right| \geqq 2^{-1}\right\}, \cdots,\left\{2^{1-r}>\left|x_{1}-x_{2}\right| \geqq 2^{-r}\right\}
$$

and finally over the set $\left\{2^{-r}>\left|x_{1}-x_{2}\right|\right\}$. In each case the product measure can be estimated by (1.2) and the theorem of Fubini, summing up we obtain

$$
\int_{v}^{v+1}|\widehat{P}(\lambda t)|^{2} \quad d t \leqq C^{2}|\lambda|^{-\beta}
$$

and this completes the proof of the lemma.
Next, let us put $p(m)=\max \left\{\mathrm{n} ; B_{n} \leqq \exp (m / \log m)\right\}$. Then by (1.3), we have

$$
a_{p(m)+1}^{2}=o\left(B_{p(m)+1}^{2} /(\log m)^{2}\right), \quad \text { as } \quad m \rightarrow+\infty .
$$

Further, since $B_{n} \sim B_{n+1}$, as $n \rightarrow+\infty$, we have

$$
\begin{aligned}
& \exp \left\{\frac{2(m+1)}{\log (m+1)}\right\}-B_{p(m)}^{2} \geqq \exp \left\{\frac{2(m+1)}{\log (m+1)}\right\}-\exp \left\{\frac{2 m}{\log m}\right\} \geqq \frac{1}{2 \log (m+1)} \exp \left\{\frac{2 m}{\log m}\right\} \\
& \quad \geqq \frac{1}{3 \log m} B_{p(m)+1}^{2}>a_{p(m)+1}^{2}, \quad \text { for } \quad m \geqq m_{0} .
\end{aligned}
$$

Therefore, we can find an integer $m_{0}$ such that if $m>m_{0}$, then

$$
\begin{equation*}
\exp \left\{\frac{m-1}{\log (m-1)}\right\}<B_{p(m)} \leqq \exp \left\{\frac{m}{\log m}\right\} \tag{2.1}
\end{equation*}
$$

In the following, we put

$$
\begin{equation*}
q(m)=\left[\frac{3}{\beta^{\prime}} \log m\right], \quad \text { where } \quad \beta^{\prime}=\beta \log q \tag{2.2}
\end{equation*}
$$

Lemma 2. For any real number $v$, there exists a set $S_{v}$ in $[v, v+1)$ of Lebesgue measure zero such that if $t \notin S_{v}$, then

$$
\lim _{m \rightarrow \infty} B_{p(m)}^{-2} \sum_{k=1}^{p(m)} A_{k}^{2}(x, t)=1, \quad \text { in probability. }
$$

Proof. It is sufficient to show that for a. e. $t$ in $[v, v+1)^{1)}$,

$$
\lim _{m \rightarrow \infty} B_{p(m)}^{-2} \sum_{k=1}^{p(m)} a_{k}^{2} \cos 2\left(\lambda_{k} x t+\alpha_{k}\right)=0, \quad \text { in probability. }
$$

Since $B_{n} \uparrow+\infty$ with $n$, (1.3) implies that

$$
\begin{equation*}
\max _{1 \leqslant k \leqslant n}\left|a_{k}\right|=o\left(B_{n} / \log \log B_{n}\right) \text {, as } n \rightarrow \infty . \tag{2.3}
\end{equation*}
$$

1) The term a.e. $t$ means that a.e. $t$ with respect to the Lebesgue meaeure.

Since $p(m)>m-m_{0}$ for $m>m_{0}$, we have, by (2.2) and (2.3),

$$
B_{p(m)}^{-2} \sum_{k=1}^{q(m)-1} a_{k}{ }^{2}=o(1) \quad \text { and } \quad B_{p(m)}^{-4} \sum_{k=1}^{p(m)} a_{k}^{4}=o(1), \quad \text { as } \quad m \rightarrow \infty .
$$

Further, by the fact that $\left|\int_{-\infty}^{\infty} \cos (\lambda t x+\alpha) P(d x)\right| \leqq|\hat{P}(\lambda t)|$, we have

$$
\begin{align*}
& \int_{-\infty}^{\infty}\left|\sum_{k=1}^{p(m)} a_{k}{ }^{2} \cos 2\left(\lambda_{k} x t+\alpha_{k}\right)\right|^{2} P(d x)  \tag{2.4}\\
& \quad=o\left(B_{p(m)}^{4}\right)+\sum_{k=q(m)+1}^{p(m)} a_{k}{ }^{2} \sum_{n=q(m)}^{k-1} a_{n}{ }^{2}\left[\left|\widehat{P}\left\{2 t\left(\lambda_{k}-\lambda_{n}\right)\right\}\right|+\left|\widehat{P}\left\{2 t\left(\lambda_{k}+\lambda_{n}\right)\right\}\right|\right]
\end{align*}
$$

uniformly in $t$, as $m \rightarrow+\infty$. On the other hand from (1.1) and (2.2), we obtain that if $k>n \geqq q(m)$, then

$$
\lambda_{k} \pm \lambda_{n}>c_{0} q^{3 l o o m / \beta^{\prime}}, \text { for some } c_{0}>0
$$

Therefore, we have, by Lemma 1 and (2.2),

$$
\begin{aligned}
& \sum_{m=m_{0}}^{\infty} B_{p(m)}^{-4} \int_{v}^{v+1} \sum_{k=q(m)+1}^{p(m)} a_{k}^{2} \sum_{n=q(m)}^{k-1} a_{n}^{2}\left[\left|\hat{P}\left\{2 t\left(\lambda_{k}-\lambda_{n}\right)\right\}\right|+\left|\hat{P}\left\{2 t\left(\lambda_{k}+\lambda_{n}\right)\right\}\right|\right] d t \\
& \quad=\sum_{m=m_{0}}^{\infty} O\left(e^{-\frac{3}{2} \log m}\right)=O(1) .
\end{aligned}
$$

By (2.4) and the above relation we can prove the lemma.
3. Proof of the Theorem. For the proof of the theorem it is sufficient to show that for any fixed $v$, we have, for a. e. $t$ in $[v, v+1)$,

$$
\lim _{n \rightarrow \infty} P\left\{x ; S_{n}(x, t) \leqq y B_{n}\right\}=(2 \pi)^{-1 / 2} \int_{-\infty}^{y} \exp \left(-u^{2} / 2\right) d u .
$$

To this end, we first prove that for a. e. $t$ in $[v, v+1)$,

$$
\begin{equation*}
\lim _{m \rightarrow \infty} P\left\{x ; S_{p(m)}(x, t) \leqq y B_{p(m)}\right\}=(2 \pi)^{-1 / 2} \int_{-\infty}^{y} \exp \left(-u^{2} / 2\right) d u \tag{3.1}
\end{equation*}
$$

which is equivalent to the following relation

$$
\lim _{m \rightarrow \infty} \int_{-\infty}^{\infty} \exp \left\{\frac{i \lambda S_{p(m)}(x, t)}{B_{p(m)}}\right\} P(d x)=\exp \left(-\lambda^{2} / 2\right), \quad \text { for all real } \lambda .
$$

i. Let $\lambda$ be any fixed real number and $t \notin S_{v}$, where $S_{v}$ is the null set in Lemma 2. Since

$$
e^{z}=(1+z) \exp \left(\frac{z^{2}}{2}+O\left(|z|^{3}\right)\right), \quad \text { as }|z| \rightarrow 0
$$

we have, by (2.3),

$$
\begin{aligned}
& \exp \left\{\frac{i \lambda S_{p(m)}(x, t)}{B_{p(m)}}\right\} \\
& \quad=\prod_{k=1}^{p(m)}\left\{1+\frac{i \lambda A_{k}(x, t)}{B_{p(m)}}\right\} \exp \left\{\frac{-\lambda^{2}}{2 B_{p(m)}^{2}} \sum_{k=1}^{p(m)} A_{k}{ }^{2}(x, t)+o(1)\right\},
\end{aligned}
$$

uniformly in ( $x, t$ ), as $m \rightarrow+\infty$. Putting

$$
J_{n, m}(x, t, \lambda)=\prod_{k=1}^{n}\left\{1+\frac{i \lambda A_{k}(x, t)}{B_{p(m)}}\right\}, \quad n=1,2, \cdots, p(m)
$$

then we have

$$
\begin{equation*}
\left|J_{n, m}(x, t, \lambda)\right| \leqq \prod_{k=1}^{n}\left(1+\frac{\lambda^{2} a_{k}{ }^{2}}{B_{p(m)}^{2}}\right)^{1 / 2}<\exp \left(\lambda^{2}\right) \tag{3.2}
\end{equation*}
$$

Further, since $B_{p(m)}^{-2} \sum_{k=1}^{p(m)} A_{k}{ }^{2}(x, t) \leqq 2$ and $t \notin S_{v}$, we have, by Lemma 2,

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \exp \left\{\frac{i \lambda S_{p(m)}(x, t)}{B_{p(m)}}\right\} P(d x) \\
& \quad=\exp \left(-\lambda^{2} / 2\right) \int_{-\infty}^{\infty} J_{p(m), m}(x, t, \lambda) P(d x)+o(1), \text { as } m \rightarrow+\infty
\end{aligned}
$$

From (2.2), (2.3) and (3.2) it is seen that

$$
\begin{aligned}
J_{p(m), m}(x, t, \lambda) & =1+\sum_{k=1}^{p(m)} \frac{i \lambda A_{k}(x, t)}{B_{p(m)}} J_{k-1, m}(x, t, \lambda) \\
& =1+o(1)+\sum_{k=q(m)}^{p(m)} \frac{i \lambda A_{k}(x, t)}{B_{p(m)}} J_{k-1, m}(x, t, \lambda)
\end{aligned}
$$

$$
=1+o(1)+T_{m}(x, t, \lambda), \quad \text { uniformly in }(x, t), \text { as } m \rightarrow+\infty,
$$

where $T_{m}(x, t, \lambda)=\sum_{k=q(m)}^{p(m)} \frac{i \lambda A_{k}(x, t)}{B_{p(m)}}\left\{1+\sum_{j=k-r}^{k-1} \frac{i \lambda A_{j}(x, t)}{B_{p(m)}}\right\} J_{k-r-1, m}(x, t, \lambda)$
and $r$ is an integer satisfying

$$
\begin{equation*}
1-\frac{1}{q}-\frac{1}{(q-1) q^{r}}>\frac{1}{2}\left(1-\frac{1}{q}\right)=c_{0}>0 . \tag{3.3}
\end{equation*}
$$

Therefore, for the proof of $\left(3.1^{\prime}\right)$ it is sufficient to show that for a. e. $t$ in $[v, v+1)$, we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{-\infty}^{\infty} T_{m}(x, t, \lambda) P(d x)=0, \text { for all } \lambda . \tag{3.4}
\end{equation*}
$$

Since $\left|\int_{-\infty}^{\infty} \cos (\lambda x t+\alpha) P(d x)\right| \leqq|\widehat{P}(\lambda t)|, \quad$ we have

$$
\left|\int_{-\infty}^{\infty} T_{m}(x, t, \lambda) P(d x)\right| \leqq U_{m}(t, \lambda)
$$

where

$$
\begin{aligned}
& U_{m}(t, \lambda)=\sum_{k=q(m)}^{p(m)} \frac{\left|\lambda a_{k}\right|}{B_{p(m)}}\left[\left|\hat{P}\left(\lambda_{k} t\right)\right|+\sum_{j=k-r}^{k-1} \frac{\left|\lambda a_{j}\right|}{2 B_{p(m)}}\left\{\left|\hat{P}\left(\lambda_{k} t+\lambda_{j} t\right)\right|+\left|\hat{P}\left(\lambda_{k} t-\lambda_{j} t\right)\right|\right\}\right] \\
& \quad+\sum_{k=q(m)}^{p(m)} \frac{\left|\lambda a_{k}\right|}{B_{p(m)}} \sum_{1} \frac{\left|a_{k_{1}} \cdots a_{k_{k}}\right||\lambda|^{s}}{\left(2 B_{p(m)}\right)^{s}} \sum_{2}\left|\hat{P}_{2}\left\{\left(\lambda_{k} \pm \lambda_{k_{1}} \pm \cdots \pm \lambda_{k_{s}}\right) t\right\}\right| \\
& \quad+\sum_{k=q(m)}^{p(m)} \frac{\left|\lambda a_{k}\right|}{\left.B_{p(m)}\right)} \sum_{j=k-r}^{k-1} \frac{\left|\lambda a_{j}\right|}{2 B_{p(m)}} \sum_{1} \frac{\left|a_{k_{1}} \cdots a_{k_{s}}\right||\lambda|^{s}}{\left(2 B_{p(m)}\right)^{s}} \sum_{3}\left|\hat{P}^{s}\left\{\left(\lambda_{k} \pm \lambda_{j} \pm \lambda_{k_{1}} \pm \cdots \pm \lambda_{k_{s}}\right) t\right\}\right|
\end{aligned}
$$

where $\sum_{1}$ denotes the summation over all complexes $\left(k_{1}, \cdots, k_{s}\right)$ such that $1 \leqq k_{1}<\cdots<k_{s} \leqq k-r-1$ and $1 \leqq s \leqq k-r-1, \sum_{2}$ and $\sum_{3}$ over all combinations of + and - . Since for each $t,\left|U_{m}(t, \lambda)\right|$ is an increasing function of $|\lambda|$, the convergence of the series.

$$
\sum_{m=m_{0}}^{\infty} \int_{v}^{v+1}\left|U_{m}(t, \lambda)\right| d t
$$

for any fixed $\lambda$, implies the validity of (3.4) for all $\lambda$. On the other hand from '.1.1) and (3.3), we have, for $\sum_{2}$

$$
\begin{aligned}
& \lambda_{k} \pm \lambda_{k_{1}} \pm \cdots \pm \lambda_{k_{s}} \geqq \lambda_{k}-\sum_{j=1}^{k-r-1} \lambda_{j}>\lambda_{k}\left(1-\sum_{j=r+1}^{\infty} q^{-j}\right) \\
& \quad=\lambda_{k}\left(1-\frac{1}{(q-1) q^{r}}\right)>c_{0} \lambda_{k}>c^{\prime} q^{k}, \text { for some } c^{\prime}>0,
\end{aligned}
$$

and for $\sum_{3}$

$$
\begin{aligned}
& \lambda_{k} \pm \lambda_{j} \pm \lambda_{k_{1}} \pm \cdots \pm \lambda_{k_{k}} \geqq \lambda_{k}-\lambda_{k-1}-\sum_{j=1}^{k-r-1} \lambda_{j} \\
& \quad \geqq \lambda_{k}\left(1-\frac{1}{q}-\frac{1}{(q-1) q^{r}}\right)>c_{0} \lambda_{k}>c^{\prime} q^{k}, \text { for some } c^{\prime}>0
\end{aligned}
$$

Therefore, we have, by Lemma 1 and (2.2),

$$
\begin{aligned}
& \int_{v}^{v+1}\left|U_{m}(t, \lambda)\right| d t \\
& \quad=O\left(\sum_{k=q(m)}^{p(m)} \frac{\left|\lambda a_{k}\right|}{B_{p(m)} q^{k \beta / 2}}\left\{1+\sum_{j=k-r}^{k-1} \frac{\left|\lambda a_{j}\right|}{B_{p(m)}}\right\}^{k-r-1} \prod_{j=1}^{k-1}\left(1+\frac{\left|\lambda a_{j}\right|}{B_{p(m)}}\right)\right. \\
& =O\left(\sum_{k=q(m)}^{p(m)} \frac{\left|\lambda a_{k}\right|}{B_{p(m)} q^{k \beta / 2}} \exp \left\{\frac{|\lambda|}{B_{p(m)}}\left(\sum_{j=1}^{k-1} a_{j}^{2}\right)^{1 / 2} \sqrt{k}\right\}\right. \\
& =O\left(\sum_{k=q(m)}^{p(m)} \frac{\left|\lambda a_{k}\right|}{B_{p(m)} q^{k \beta / 2}} \exp (|\lambda| \sqrt{2 k})\right)=O\left(q^{-2 q(m) \beta / 5}\right), \text { as } m \rightarrow+\infty
\end{aligned}
$$

Thus, by (2.2), we have

$$
\sum_{m=m_{0}}^{\infty} \int_{v}^{v+1}\left|U_{m}(t, \lambda)\right| d t=\sum_{m=m_{0}}^{\infty} O\left(e^{-\frac{6}{5} \log m}\right)=O(1)
$$

and this proves (3.1).
ii. If $p(m) \leqq n<p(m+1)$, then we have

$$
\begin{align*}
& \left|\frac{S_{p(m)}(x, t)}{B_{p(m)}}-\frac{S_{n}(x, t)}{B_{n}}\right|  \tag{3.5}\\
& \quad \leqq\left|\frac{1}{B_{p(m)}}-\frac{1}{B_{p(m+1)}}\right|\left|S_{p(m)}(x, t)\right|+\frac{1}{B_{p(m)}}\left|S_{n}(x, t)-S_{p(m)}(x, t)\right| .
\end{align*}
$$

On the other hand from (2.1), we obtain

$$
\left|\frac{1}{B_{p(m)}}-\frac{1}{B_{p(m+1)}}\right|=O\left(\frac{B_{p(m+1)}^{2}-B_{p(m)}^{2}}{B_{p(m)}^{3}}\right)=o\left(\frac{1}{B_{p(m)}}\right), \quad \text { as } \quad m \rightarrow+\infty .
$$

Hence, we have, for a. e. $t$ in $[v, v+1)$,
(3. 6) $\quad \lim _{m \rightarrow \infty}\left|\frac{1}{B_{p(m)}}-\frac{1}{B_{p(m+1)}}\right|\left|S_{p(m)}(x, t)\right|=0, \quad$ in probability.

Since $\left|\int_{-\infty}^{\infty} \cos (\lambda x t+\alpha) P(d x)\right| \leqq|\hat{P}(\lambda t)|$, we have

$$
\begin{aligned}
& \max _{p(m) \leq n<p(m+1)} \int_{-\infty}^{\infty} B_{p(m)}^{-2}\left|S_{n}(x, t)-S_{p(m)}(x, t)\right|^{2} P(d x) \\
& \leqq \frac{2 B_{p(m+1)}^{2}-2 B_{p(m)}^{2}}{B_{p(m)}^{2}}+\sum_{k=p(m)+1}^{p(m+1)} \frac{\left|a_{k}\right|}{B_{p(m)}} \sum_{j=p(m)}^{k-1} \frac{\left|a_{j}\right|}{B_{p(m)}}\left\{\left|\hat{P}\left(\lambda_{k} t-\lambda_{j} t\right)\right|+\left|\hat{P}\left(\lambda_{k} t+\lambda_{j} t\right)\right|\right\} \\
& =o(1)+\left[\sum_{k=p(m)+1}^{p(m+1)} \sum_{j=p(m)}^{k-1}\left\{\left|\widehat{P}\left(\lambda_{k} t-\lambda_{j} t\right)\right|+\left|\widehat{P}\left(\lambda_{k} t+\lambda_{j} t\right)\right|\right\}^{2}\right]^{1 / 2},
\end{aligned}
$$

uniformly in $t$, as $m \rightarrow+\infty$. On the other hand from (1.1), it is seen that if $k>j$, then

$$
\left(\lambda_{k} \pm \lambda_{j}\right) \geqq\left(\sqrt{\lambda_{k}}-\sqrt{\lambda_{j}}\right)\left(\sqrt{\lambda_{k}}+\sqrt{\lambda_{j}}\right)>\sqrt{\lambda_{k}}\left(1-\frac{1}{\sqrt{q}}\right)\left(\lambda_{k} \lambda_{j}\right)^{1 / 4}>c_{0} q^{(k+j) / 4}
$$

for some constant $c_{0}>0$.
Further, since (2.1) implies that if $m \geqq m_{0}$, then $p(m)>m-m_{0}$, we have, by the same argument as in the proof of Lemma 2,

$$
\begin{aligned}
& \sum_{m=m_{0}}^{\infty} \int_{v}^{v+1} \sum_{k=p(m)+1}^{p(m+1)} \sum_{j=p(m)}^{k-1}\left\{\left|\hat{P}\left(\lambda_{k} t-\lambda_{j} t\right)\right|+\left|\hat{P}\left(\lambda_{k} t+\lambda_{j} t\right)\right|\right\}^{2} d t \\
& \quad=O\left(\sum_{m=m_{0}}^{\infty} \sum_{k=p(\boldsymbol{m})+1}^{p(m+1)} \sum_{j=p(m)}^{k-1} q^{-(k+j) \beta / 8}\right)=O(1),
\end{aligned}
$$

and this proves that for a. e. $t$ in $[v, v+1)$,

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \max _{p(m) \leqq n<p(m+1)} \int_{-\infty}^{\infty} \frac{1}{B_{p(m)}^{2}}\left|S_{p(m)}(x, t)-S_{n}(x, t)\right|^{2} P(d x)=0 . \tag{3.7}
\end{equation*}
$$

From (3.5), (3.6) and (3.7), we obtain that for a. e. $t$ in $[v, v+1$ ),

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\frac{S_{p(m, n)}(x, t)}{B_{p(m, n)}}-\frac{S_{n}(x, t)}{B_{n}}\right|=0, \quad \text { in probability } \tag{3.8}
\end{equation*}
$$

where $p(m, n)$ in (3.8) is a $p(m)$ satisfying $p(m) \leqq n<p(m+1)$.
By (3.1) and (3.8) we can complete the proof of the theorem.

## References

[1] R. Kaufman, A problem of lacunary series, Acta Sci. Math. Szeged, XXIX(1968), 313-316.
[2] R. Salem and A. Zygmund, On lacunary trigonometric series, Proc. Nat. Acad. Sci. U. S. A., 34(1948), 54-62.

Department of Mathematics
Kanazawa University
Kanazawa, Japan

