
Tohoku Math. Journ.
23(1971), 59-65.
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1. Statement of results. Let R7 be a Euclidean space of dimension 7.
M.Kobayashi [3] has shown that the properties of the vector cross product on R7

induce an almost contact structure on an orientable 5-dimensional submanifold of
R7, and he proved that (1) if the submanifold is totally geodesic in R7 (for the
induced metric), then the almost contact structure is normal and as a partial
converse (2 ) if the structure is normal and the immersion is totally umbilical,
then the submanifold is totally geodesic. In the present paper we show that

THEOREM 1. Let M be an orientable submanifold of codimension 2 in
R7. If the almost contact structure is normal, M is a minimal submanifold
of R7.

THEOREM 2. Let M be an orientable submanifold of codimension 2 in
R7. M is quasi-Sasakian and have the trivial normal connection if and only
if M is totally geodesic.

The new device to prove the above mentioned theorems is that we can take
locally suitable normal vector fields relative to the almost contact structure on
M. By virtue of Theorem 1, we see that no closed submanifold can satisfy the
normality condition. Furthermore as the second application of the Theorem 1, we
see that the 5-dimensional sphere have at least two different almost contact
metric structures for the same induced metric, since it is well known that the
sphere has a Sasakian structure (i.e., normal contact metric structure). For the
later use, we list up the properties of the vector cross product of R7 [ 2 ] :

( 1 . 1 ) AxB = -BxA,

(1. 2) <A xB,C> = <A, B x C> ,

(1.3) (Axΰ)xCiΛx(ΰxC) = 2<A,C>B-<B,C>A-<A,B>C,
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(1.4) VA(BXC) = VABXC + BX VAC,

for any vector fields A, B and C on R\ where <, > and V are the canonical

Riemannian metric of R7 and the Riemannian connection for < , >, respectively.

2. Types of almost contact Riemannian manifolds. Let M = (M, g) be a

Riemannian manifold and V{M) the module of C°°-vector fields on M. An almost

contact Riemannian manifold M is a Riemannian manifold equipped with a (1,1)

tensor field φ, a vector field ξ and a 1-form η which satisfy φ'2 = — l + ξ®η, η{ξ)=l,

φ(ξ) = 0, η(X) = g{X, ξ) and g(φX, φY) = g(X, Y) -η(X) η(Y). Such a manifold is

orientable and odd dimensional. To describe the geometry of an almost contact

Riemannian manifold M, we consider two special tensors. The first is a 2-form,

w9 and it is defined for A, B <Ξ V{M) by

(2.1) w(A,B) = g(A9φB).

The second, called the torsion tensor of M, is a (1, 2) tensor field Sι defined by

(2.2) Sι (A, B) = [A, B] + φ[φA, B] + φ[A, φB] - [φA,

+ {Bη(A)-Aη(B)}ξ.

The following Proposition is used to prove the Proposition 5.1.

PROPOSITION 2.1. Let A,B,Cz V(M). Then

(2. 3) dw(A B, C) - dw{A, φB9 φC) 4- g(A, Sι(B, φC))

= 2(VAw)(B, C) - η(B){g(A9 VΦcξ) - g(φC, VAξ)}

+ η(C)g(A, S2(B)) - η(C) {g(A, vΦBξ) + g(φB9

where S'2(B) is, by definition,

(2. 4) S2{B) = Vξφ-B - V*φ ξ + V ^

PROOF. The proof of (2. 3) follows from the facts that

(2.5) dw(A, B, C) = ® ( V A H (B, C),

(2. 6) Sι(B, C) = Vφcφ B - S7Bφ-φC - \7φBφ-C +
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where © is a cyclic sum for A, B, C and V is a Riemannian connection for

g. Q. E. D.

{φ, ξ, V, 9)-structure is called normal if Sι = 0. Sι = 0 implies S2 = 0 [ 4 ]. It
is known [ 6 ] that S1 = 0 if and only if

(2.7) ΦVBΦ-C - VΦBΦ-C - (VBV) {Q-ξ = 0.

(</>>£> V> g)-structure is called a quasi-Sasakian structure if it is normal and w is
closed. In a quasi-Sasakian manifold ξ is a Killing vector field [ 1 ]. (S.Tanno has
pointed out [ 5 ] that there are some gaps in the paper [ 1 ], but the above
statement is true.)

3. Five dimensional submanifold of RΊ. Let N% (i = 1, 2) be mutually

orthogonal unit normal vector fields on a neighborhood of i c M. An almost

contact metric structure on M is defined by [ 3 ];

(3.1) ξ=NιxNl9

(3.2) φA = A x ξ ,

(3.3)

where g is an induced metric. The second fundamental forms hi and the third

fundamental form 5 is defined as follows :

(3.4) V ^ 1 = -Λ 1 A +

(3.5) VΛN2 = - h 2 A -

Then we have

(3.6) VAB = \7AB + g{h,A, B)N, + g(h2A, B)N2,

where we define a symmetric tensor H{A, B) by

(3.7) H(A, B) = gfcA, B)M + g(h2A, B)N2.

Let R be a curvature tensor of R7. Calculating the normal part of R(A, B)C,

A,B,Cz V(M)9 we see that the Codazzi-Mainardi's equation is

(3.8) V A δ ~ VBΛI A - s(A)h2B + 5(β)Λ2A - 0,



62 K. KENMOTSU

(3. 9) V A B - VBh2 A + s{A)h,B - s{B)hιA = 0 .

Let R be the curvature tensor of the normal connection V, that is, \/AV

= (VAV)N( = the normal component of VAV) for a vector field V normal to M:

(3.10) R(A, B)V = VΛVBV - VBVΛV - Vu^V .

It is easily verified that for unit vector fields Nt normal to M,

(3.11) R(A, B)NX = 2ds{A, B)N2,

(3.12) R{A, B)N2 = - 2ds{A,

Let (Ei9φEl9ξ) (i = l, 2) be an adapted frame on a neighborhood of xz M. On

account of (1.1)Ή1. 4), we see that Ex xE2 and ExxφE2 are mutually orthogonal

unit (local) vector fields normal to M. Throughout this paper we assume

(3.13) M = £ i X E2 and N2 = Ex x φ £ 2 .

4. Proof of Theorem 1. As the preparation we give a necessary and sufficient

condition for the normality of (φ, ξ, η, g)-structure on M.

PROPOSITION 4.1. The (φ,ξ,η,g)-structure on M is normal if and only if

(4.1) φVφxξ + Vx? = 0 ,

(4.2) H(φX,ξ)=ξxH(X,ξ).

PROOF. (Necessity) : By virtue of (1.4), (3.2) and (3.6), we obtain

(4.3) g(A, Vcφ B) = g(A x B, Vcξ).

From (2.7) and (4.3) we see that Sι = 0 if and only if, for any Λ , β , C ^ V(M),

(4.4) g(φA x B,Vcξ) + g(A x B,VΦcξ) + v(A) {Vcv) (B) = 0 .

On account of φAxB=ξx (AxB)-2η(B)A + η{A)B + g(A, B)ξ, (4.4) is rewritten

as follows :

(4.5) g(A x B, φVcξ + VΦcξ + H(φC, ξ)-ξx H(C, ξ))

- 2η(B)g(A, Vcξ) + 2η(A)g(B, Vcξ) = 0 .
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Setting B = ξ, we obtain

(4. 6) Vcξ + ΦVφcξ = 0 .

If A and B are orthogonal to ξ, by (3.13), AxB have the form

(4.7)

where a and bl are scalars.

From (4. 5) and (4. 7) we also have

(4.8) H(φC,ξ)=ξxH(Qξ).

The sufficiency follows from (4.5), (4. 6), (4. 7) and (4. 8) by a direct calculation.

Q. E. D.

By virtue of (1.4), (3.1), (3.4) and (3.5) we have (c.f. [3])

(4.9) VA£ + φVφAξ = -h1AxN2 + h2A x ΛΓ, + KφA x ΛΓ,

+ hiφAxN,-H(A,ξ)-ξxH(φA,ξ).
Then we obtain

PROPOSITION 4. 2. Lei H be a mean curvature vector of M. Then

(4.10) g(HM) = g(V*i

+ g(H(ξ,ξ),N1),

(4.11) g{H, Nt) = - g(VElξ + ΦVΦEιξ, Et) + g(VE,ξ + φVΦE£, Et)

+ g(H(ξ,ξ),N2).

PROOF. From the properties of the vector cross-product on RΊ, we have

N1xψE2 = φEu N2 xφE2 = -El9

(4.12)
x φEx = — φE2y N2 x φEλ = E2.

The mean curvature vector H is, by definition,
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(4.13) H=Σ, [H(Et, Et) + H(φEt, φE,)} + H[ξ, ξ)

= Σ {ff(h,Et, Et) + g(h}φEt, φEt)}N}

Since the g{h3A, B) is symmetric, Proposition 4. 2 follows from (4. 9), (4.12) and

(4.13). Q.E.D.

The proof of Theorem 1 follows from the Proposition 4.1 and 4. 2.

COROLLARY 4. 3. Let M be an orientable 5-dimensional submanifόld of
R7. Then if the almost contact structure induced from the vector cross product
is normal, M cannot be compact.

PROOF. M must be a minimal submanifold, but it is well known that there

are no compact minimal submanifold of R7.

5. Proof of Theorem 2.

PROPOSITION 5.1. Let M be an orientable ^-dimensional submanifold of

R7 with the almost contact structure [φ,ξ,η,g). The following conditions are

equivalent:

(1) (φ, ξ, η, g)-structure is a quasi-Sasakian structure,

(2 ) VA£ - 0,

(3) h1=φhi.

PROOF. ( (1) -> ( 2 ) ) : From (2. 3) and the last of § 2, we have

(5.1) (VΛτv) (B, C) - η{B)g(A, Vφcξ) = 0.

Putting C = ξ in this equation and using (4. 3), we get VΛ£ = 0.

(2)—>(1) : By (4.3) we have \/cw=0 and so dw=0. From the Proposition
4.1 5 1 = 0 is clear.

( 2 ) o ( 3 ) : On account of VΛξ=-h1AxN2+hiAxN1 (c. f. [3]), VAξ=0 is

equivalent to h1AxN2=h2AxN1. By Nι =N2xξ, this equation is equivalent to
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hx = φh2. Q. E. D.

PROPOSITION 5.2. Under the same assumption as Proposition 5.1, we

have

R(A, B)N, = 2g(h2A, φh2B)N2,

R(A9 B)N2 = - 2g{h2A, φh2B)Nx.

PROOF. Since the curvature tensor of R7 is zero, we obtain

0 = VAVBN, - VBVΛN, - Vw,s] Ni

+ {A(s(B)) - B(s(A)) - 5([A, B])}N2 + s(B)VAN2

-S(A)VBN2 (by (3.4))

= Λ(A, B)iVx - 2^(/ι2A, φh2B)N2 (by (3. 8) and ( 3.11)).

The latter half of the Proposition 5. 2 can be shown by a similar fashion. Q.E.D.

Since g{hxA,B) is symmetric, hλ = φh2 implies htφ = — φht. Thus the proof

of Theorem 2 follows directly from the Proposition 5.1 and 5. 2.
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