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HOMOGENEOUS HYPERSURFACES IN A SPHERE

WITH THE TYPE NUMBER 2
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0. Introduction. There is a problem of giving a complete classification of
homogeneous hypersurfaces Mn in a sphere Sn+1 of dimension n + l(?zg:2). This
problem can be naturally divided into three cases :

(i) The rank of the second fundamental form (which is called the type
number) is not smaller than 3 at some point.

(ii) The type number is equal to 2 at some point.
(iii) The type number is equal to 0 or 1 at some point.

In the case (i), it is known by a theorem of Ryan [9] that the full isometry
group of every homogeneous hypersurface Mn can be considered as a subgroup of
the orthogonal group O(n + 2), in other words, Mn is an orbit of a suitable
subgroup of O(n + 2). Hsiang and Lawson [5] gave a complete list of compact
minimal hypersurfaces in *SW+1 each of which is an orbit of a subgroup of O(n + 2).

The condition "minimal" is not essential because among all homogeneous
hypersurfaces obtained as orbits of a compact subgroup of O(n + 2) there is a
minimal one ([5]). Thus our problem is solved in the case (i) if the hypersurfaces
are compact.

The purpose of this paper is to determine all hypersurfaces in Sn+1 in the
case (ii). To describe our results, we begin with an example of homogeneous
hypersurface in *S4. Let Sn(c) denote an n-dimensional sphere in Euclidean
(n + 1) -space Rn+1 with curvature c. We consider the hypersurface in Sί = Si{l)
defined by the equations

2x2

3 + 3{x1

2 + x2

2)x5 -

( 1 ) • +3^3'xίxixi = 2,

Xi2 + X2

2 + XS

2 + X* + X5

2 = 1.

E. Cartan [2] proved that this space is a homogeneous Riemannian manifold

5Ό(3)/(Z2 X Z2) and its principal curvatures are equal to Λ/3, 0, and —A/3
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everywhere. We shall denote this hypersurface by CM3.
Our main results are the following

THEOREM 1. The manifold CM3 is the only connected homogeneous
hypersurface in Si whose type number is equal to 2 at some point.

THEOREM 2. Let M be a 2-dimensional connected complete Riemannian
manifold of constant curvature c( =̂  1). If M admits an isometric immersion
in S3, then either c>l and M is isometric to S2(c), or c — 0, that is, Mis flat.

A theorem of Takahashi [11] asserts that there are no homogeneous hypersurfaces
in Sn(n^5) whose type number is equal to 2 at some point. Therefore Theorem
1 and 2 give a solution to the case (ii), which will be proved in § 1 and §2.
Finally, the case (iii) is solved by a theorem of O'Neill [8], which will be stated
in §3.

The author wishes to express his hearty thanks to Professor T. Takahashi
for helpful discussions.

1. A proof of Theorem 1. In this section, we shall adopt the notations
of Takahashi [11] and refer to it for detail. For a moment, for later use we
suppose M is an n-dimensional Riemannian submanifold of Sn+1. Let F(Sn+1)
denote the bundle of orthonormal frames of Sn+ι and θiy θi5{i, j = 1, , n) denote
the canonical 1-forms, the connection 1-forms respectively. Then the structure
equations for F(Sn+ι) is given by

( 2) dθt = — Σ θi} Λ θj, Qi} + On = 0

o ) aVi) = — 2_jVik l\ u/cj + Oi /\ σjy t9j,tz — L, ,n-\- L .
k

The bundle F(M) of orthonormal frames of M can be considered as a subbundle
of F(Sn+1) such that the restriction θn+ι\F(M) of θn+1 to F(M) vanishes. Then
putting ω4 = θi\F(M) and ωtj = θij\F(M) we have the following structure equations
for F(M):

( 4 ) dωt == — Σ ωi5 Λ «;> G>ί} + <*>ji = 0 ,
3

( 5 ) dωu = - Σ ωίk Λ a>kj + Ω>tj, hj = 1, 9n
k

where ί l^ are the curvature forms of M. The equation ωn+i = 0 implies that
φi = ωn+u(i = 1, , n) is written as
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(6) φi = ΣlHl)ωJ, Hi}=HJt.
j

Then it follows from (2) and (3) that

(7) dφt = -Σ«uΛfc,
3

( 8 ) ίl t 5 = cύi Λ CO5 + φi Λ <fo.

Let G be the full isometry group of M and H be the isotropy subgroup at a
fixed point Oe M. If M is homogeneous, the orbit G{uQ) of a frame w0 at O
under the natural action of G on F(M) is a principal fibre bundle over M with
structure group H. The restriction of the differential forms ωtyωij9 and Ωti(f, j
= 1, , w) are invariant under the action of G on G(u0).

Now in order to prove Theorem 1, we assume that M is a connected
homogeneous hypersurface in *S4. By means of Lemma 3.1 and 3. 5 in [11] we
may set

(9) φx = H11ωί +H12ω2,

(10) φ 2 = H 2 1 α ) 1 + ί ] r 2 2 ω 2 ,

(11) φz = 0 ,

(12) ωsi = bω2,

(13) α>32 = cω19

where HnH22— H{2 is a non zero constant and b, c are also constant on G(u0).
Taking the exterior differentiation of (12) and (13), we have

{(b + c)ω12 - (1 + bc)ωz] Λ «i = 0 ,

{(b + c)ω12 + (1 + fc)ωs} Λ ω2 = 0 ,

from which we find that (A) l+bc = 0, 6 + c = 0 or (B) l+bc = 0, ω12 = 0.
In the case (A), taking exterior differentiation of (11), we have

(cH22 — bHnjcdi Λ ω2 = 0

and hence

Hn+H22 = 0.
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Denoting then by λ any principal curvature, we see that λ is equal to one of 0,

U, and — Λ/ΉΠ + Hi2- Therefore λ is constant on G(u0). However,

E. Cartan [2] proved that the manifold CM3 is the only complete minimal

hypersurface in S4 with three distinct constant principal curvatures up to congruences

in S\

In the sequel we want to show that the case (B) can not occur, and for it

assume the contrary. Then ωuω2yω3 form a basis for G(u0). Taking exterior

differentiation of (9) and (10), we have

(14)

(15)

Put

(15)

dHn/\

dHltA

amount to

bHuω2 f\ω3 + dH12 Λ

bH12 G>2 Λ G>3 + dH22 Λ

l2 = ΣΊiωi and

cH12ωι f\a>3 = 0,

Λ <*>3 = 0.

on G{u0). T h e n (14) and

(16) J a3 = cHlz β3 =

bHn = γ3

Taking exterior differentiation of ω12 = 0, we find

(17) HnH22 - H2

12 - be + 1 = 0.

Substituting H11 = rY3/b,H22 = y3/c obtained from (16) into (17), we have the

following differential equation

(dHl2/dx3)
2+H2

12-2 = 0,

where (xu Xi, ^3) be a local coordinate system on a neighbourhood U of G(u0) such

that dx3 = ω3. Then the above equation has the solution H12 = V 2 sin / , where

f is a function on U of the form f(xi,X2,x3) = x3 +a{xux2). Thus from (16)

we get on U

Hn = —ΛJ 2 e cos f,

H22= -«J~T b c o s / .

Then putting df=ω3+f1ω1+f2ω2 we have from (14) and (15)

/1 b sin f—ft cos / = 0 ,
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/i cos f-f2 c s i n / = 0

which imply that fi = 0 and/2^0 on U, namely, df=ω3. Thus we see

0 = d[df) = dω3 = (b — c)ωx f\ ω2

and so b — c = 0, which contradicts the fact that 1 + be = 0. This completes the

proof of Theorem 1. q. e. d.

REMARK. The manifold CM3 appears in the list due to Hsiang and Lawson
(table II, [6]) since it is a minimal orbit of a suitable compact subgroup of O(5)
which is isometric to SO{3).

2. A proof of Theorem 2. We shall prove the following theorems containing
Theorem 2 as a special case.

THEOREM 3. Let Mn(c) denote an n-dimensional connected complete

Riemannian manifold of constant sectional curvature c. If cx < c2 and cx ^ 0,

then M2(Ci) can not be isometric ally immersed in M3(c2).

THEOREM 4. Let cx>c2 and cx>0. If M2{cx) is a surface isometrically

immersed in M3(c2), then M2[cx) is totally umbilic, i. e., it is a standard

sphere S2(cx) in M3(c2).

The case Ci<0 and c2 — 0 in Theorem 3 is the well-known Hubert's theorem

[4]. Theorem 3 can be proved by the method similar to Hubert's one. In the

following we shall check that the formulas he employed remain valid for our

situation. Assume M2(cχ) is isometrically immersed in M3{c2) with the property

cλ<c2. For a local coordinate system [xux2) of M2{cx) we denote the first

fundamental form I and the second fundamental form II of M2(cλ) by

I = Edx{ + 2Fdxx dx2 + Gdx2

2,

II = LdXi2 + 2Mdx! dx2 + Ndx? .

From the Gauss equation, we have

(18) c^c.

where we put g = EG — F'2. Our assumption implies that

LN-M2<0.
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It follows that in each tangent plane of M2{cx) there are two real asymptotic

directions which are defined by the differential equation

II = Ldx? + 2Mdx1dx2+Ndx2

2 = 0 .

A curve is called asymptotic if it is a differentiable curve each of whose velocity

vector belongs to one of asymptotic directions. Choose here as (xl9 #2) the following

special one. First draw an asymptotic curve a through a fixed point 0 on M2[cx)

and denote by p the point on a with parameter xλ after parametrizing a by arc

length from 0. Next draw another asymptotic curve b through p and denote by

q the point on b with parameter x2 after parametrizing b by arc length from p.

Then the obtained mapping (xi,x2)-+q is a local diffeomorphism. About such

local coordinate system [xux2) we find

LEMMA 5. Two curves xx = const, and x2 = const, are asymptotic, that

is, LΞΞO, N=09 and

PROOF. By definition, it is evident that xx = const, is asymptotic. Thus II

must have dxx as a factor and so we have N=0. Then the Codazzi's formula

amounts to

(19)

where j ?J denote the ChristoffeFs symols*3. Now substituting g = M2/{c2

obtained from (18) into the formula

3 logV 9 = y- ί 7 I
3*, Y I ϋl

we have

(20)

Noting that G = l , we can easily see by (19) and (20) that

*) In the remainder of this section the indices i,j,k stand for 1 or 2.
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(21) 3L/dx2 = {c2 - cx) (L - 2MF) {dE/dx2)/2M\

(22) 3E/dx2 = L{dF/dx2)/M,

from which we have the differential equation on L

(23) 3L/dx2 = (c2 -c^L- 2MF)L{3F/dx2)/2M3.

For any fixed xu this equation has a special solution L(xl9 x2) = 0. But L(xl9 0) = 0

holds along the asymptotic curve x2 = 0. Thus by uniqueness we see L(xl9 x2)=0

whenever (xl9 x2) is defined, which implies that x2 = const, is asymptotic, q. e. d,

3F
From (22) it turned out that -~— = 0, that is, EΞΞI. NOW the first and

ox2

second fundamental forms can be written as

I = dxi + 2Fdxλ dx2 + dx2,

II = 2Mdxχdx2 .

Then the egregium theorem says

(24) , dx2

We denote by φ the angle between two vectors d/dXi and d/dx2. Then (24)

means

(25) ^ f ^ r = ~Ci sin ψ

If cx Φ 0, from (25) we have a generalization of a classical result:

THEOREM 6. Let Γ be a quadrilateral on M2{c1) whose edges consist of
asymptotic curves. Let S denote the area of Γ and a, β9 γ, δ denote the four
interior angles of Γ. Then

S = -(a + β + y+δ- 2π)/cx.

Making use of Lemma 5 and Theorem 6 essentially, Hubert [4] proved

THEOREM 7. With respect to the above coordinate system (xl9x2)9 M2(cx)
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is diffeomorphίc to 2-plane.

From this theorem we may conclude that M2{cλ) can not be isometrically
immersed in M3(c2) if c1>0. In the case <Γi<0 the same argument as Hubert's
one induces a contradiction. Thus Theorem 3 is proved, q. e. d.

PROOF OF THEOREM 4. Let λ, μ denote the principal curvatures of M2[cx).
Whether M2{cx) is orientable or not, we may assume that λ2, μ2 are both continuous
function on M2{cλ) with X2^μ2. Then an analogous argument to one in [4]
implies that λ2 can not attain a maximum at a point such that λ2 > #2. Thus
we have X = μ since Xμ > 0 by the relation cx = c2 + Xμ. q. e. d

REMARK. In Theorem 2 the author could not clarify the manner of the
isometric immersion of a flat Riemannian manifold in S*. It seems that a flat
hypersurface in S3 is congruent to a Clifford torus Sι(r) x Sι(s) with 1/r + 1/s
=> 1.

3. The case (iii). In this section we shall give another proof of the following
theorem due to O'Neill [8]. From this proof we obtain new results as a by-product.

THEOREM 8. If Mn(c)(c>0) is a hypersurface isometrically immersed
in Sn+1(c), then Mn[c) is isometric to a great sphere Mn{c).

First we shall establish

PROPOSITION 9. Let Mn be an n-dimensional compact Riemannian manifold
such that there exists a tangent 2-plane at each point of M whose sectional
curvature is not greater than c > 0. Then M can not be isometrically immersed
in any open hemisphere in Sn+1(c).

PROOF OF PROPOSITION 9. Suppose M is isometrically immersed in Sn+ί(c).
Let σ be a local cross section of M to the bundle F(M) defined in § 1. We denote
the 1-forms σ*ωu σ*ωtj and σ^φt pulled back to M by σ by the same letters
ωi9 ωtj and φt respectively"50. We can consider σ as a locally defined orthonormal
frame field {x, eu , en+1),x<= Mn, with en+1 normal to M and ωu >ωn as a
locally defined coframe field dual to el9 , en. Then we have the vectorial
equations

detx = et ,

i)ek + Φλei)en+i - <oj[ei)x,

*) In the following the indices i,j,k run from 1 to n.
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where deι denotes the derivative in the direction of eh. For any point p of Sn+1(c)

consider the mapping fp=f- M->R which sends xz M to f(x) = <p,x>, where

< , > is the canonical inner product of Rn+2. Since M is compact, / attains

a minimum at some point of M, say x0. If x0 = — p, there is nothing to prove.

Thus we assume that x0 ^ — p. For each i we obtain at x0

(26) detf = <p, deix> = <p, eθ = 0

and

Φiiei)en+1 - ^0

Hence

(27) <p,xo>^HH<p,en+1>, i = l , . . . , n .

Now retake a cross section σ so that Xt = HH, i = 1, , n are all eigenvalues of

the second fundamental form at ;r0. Let w = Σaiei>v = Σbieι be an orthonormal

basis for a tangent 2-plane whose sectional curvature K(u, v) is not greater than

c. Then it is easily seen from the Gauss equation that

K(u, v) = c + ]Γ (α, &, - α^J 'λ iλ j .

Since K(u,v)^c and aib}—ajbt(i<j) don't all vanish, there exist indices z and j

with λiλj^O. Thus one of Xi<p,en+i> and Xj<p,en+1> is non-positive, and

hence from (27) we have

(28) <p,Xo>^O

which shows that M is not contained in the hemisphere with pole p. Since p is

arbitrary, Proposition 9 is proved, q. e. d.

COROLLARY 10. Let M be as in Proposition 9. If M admits an isometric

immersion L\ M-^Sn+i{c), then the diameter p of M is greater than TC/2Λ/~C~.

PROOF OF COROLLARY 10. Let d denote the distance function on M.

Choose two point xl9 x2 in M with d(xl9 x2) = p< Let p0 be a point of i{Mn)

where / l ( X l ) attains a minimum and xoz t'^Po)- If 7 denotes a shortest geodesic
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segment from xλ to x0, we have from (28)

p = d[xu #2) ^d{xl9 x0) = l e n g t h o f y = l e n g t h of t°y i n ι(M)

^distance between ι{xx) and ι(x0) in Sn+1{c) ^ T T / 2 V C .

But all equalities don't hold simultaneously. In fact, if not so, then t(y) must
be a geodesic segment of Sn+1(c) contained in L(M), which contradicts (26). q. e. d.

PROOF OF THEOREM 8. The diameter of M is greater than 7t/2*/~c~^ since
M satisfies the condition of Corollary 10. Theorem 8 now follows from the
following theorem of Shiohama [10].

THEOREM 11. Let M be a complete Riemnanian manifold whose sectional
curvature K satisfies

If the diameter of M is greater than 7t/2/s/ c , then M is symply connected.

REMARK. Proposition 8 is a slight generalization of a theorem of Myers
(Theorem 4, [7]).
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