HOMOGENEOUS HYPERSURFACES IN A SPHERE WITH THE TYPE NUMBER 2

RYOICHI TAKAGI

(Received July 22, 1970)

- **O.** Introduction. There is a problem of giving a complete classification of homogeneous hypersurfaces M^n in a sphere S^{n+1} of dimension n+1 ($n \ge 2$). This problem can be naturally divided into three cases:
 - (i) The rank of the second fundamental form (which is called the type number) is not smaller than 3 at some point.
 - (ii) The type number is equal to 2 at some point.
 - (iii) The type number is equal to 0 or 1 at some point.

In the case (i), it is known by a theorem of Ryan [9] that the full isometry group of every homogeneous hypersurface M^n can be considered as a subgroup of the orthogonal group O(n+2), in other words, M^n is an orbit of a suitable subgroup of O(n+2). Hsiang and Lawson [5] gave a complete list of compact minimal hypersurfaces in S^{n+1} each of which is an orbit of a subgroup of O(n+2).

The condition "minimal" is not essential because among all homogeneous hypersurfaces obtained as orbits of a compact subgroup of O(n+2) there is a minimal one ([5]). Thus our problem is solved in the case (i) if the hypersurfaces are compact.

The purpose of this paper is to determine all hypersurfaces in S^{n+1} in the case (ii). To describe our results, we begin with an example of homogeneous hypersurface in S^4 . Let $S^n(c)$ denote an n-dimensional sphere in Euclidean (n+1)-space R^{n+1} with curvature c. We consider the hypersurface in $S^4 = S^4(1)$ defined by the equations

$$\begin{cases} 2x_2^3 + 3(x_1^2 + x_2^2)x_5 - 6(x_3^2 + x_4^2)x_5 + 3\sqrt{3}(x_1^2 - x_2^2)x_4 \\ + 3\sqrt{3}x_1x_2x_3 = 2, \\ x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 = 1. \end{cases}$$

E. Cartan [2] proved that this space is a homogeneous Riemannian manifold $SO(3)/(\mathbf{Z_2} \times \mathbf{Z_2})$ and its principal curvatures are equal to $\sqrt{3}$, 0, and $-\sqrt{3}$

50 R. TAKGAI

everywhere. We shall denote this hypersurface by CM^3 . Our main results are the following

THEOREM 1. The manifold CM^3 is the only connected homogeneous hypersurface in S^4 whose type number is equal to 2 at some point.

THEOREM 2. Let M be a 2-dimensional connected complete Riemannian manifold of constant curvature $c(\ne 1)$. If M admits an isometric immersion in S^3 , then either c>1 and M is isometric to $S^2(c)$, or c=0, that is, M is flat.

A theorem of Takahashi [11] asserts that there are no homogeneous hypersurfaces in $S^n(n \ge 5)$ whose type number is equal to 2 at some point. Therefore Theorem 1 and 2 give a solution to the case (ii), which will be proved in § 1 and § 2. Finally, the case (iii) is solved by a theorem of O'Neill [8], which will be stated in § 3.

The author wishes to express his hearty thanks to Professor T. Takahashi for helpful discussions.

1. A proof of Theorem 1. In this section, we shall adopt the notations of Takahashi [11] and refer to it for detail. For a moment, for later use we suppose M is an n-dimensional Riemannian submanifold of S^{n+1} . Let $F(S^{n+1})$ denote the bundle of orthonormal frames of S^{n+1} and θ_i , $\theta_{ij}(i, j = 1, \dots, n)$ denote the canonical 1-forms, the connection 1-forms respectively. Then the structure equations for $F(S^{n+1})$ is given by

(2)
$$d\theta_{i} = -\sum_{i} \theta_{ij} \wedge \theta_{j}, \theta_{ij} + \theta_{ji} = 0$$

(3)
$$d\theta_{ij} = -\sum_{k} \theta_{ik} \wedge \theta_{kj} + \theta_{i} \wedge \theta_{j}, \quad i, j, k = 1, \cdots, n+1.$$

The bundle F(M) of orthonormal frames of M can be considered as a subbundle of $F(S^{n+1})$ such that the restriction $\theta_{n+1}|F(M)$ of θ_{n+1} to F(M) vanishes. Then putting $\omega_i = \theta_i |F(M)$ and $\omega_{ij} = \theta_{ij} |F(M)$ we have the following structure equations for F(M):

(4)
$$d\omega_i = -\sum_j \omega_{ij} \wedge \omega_j, \, \omega_{ij} + \omega_{ji} = 0$$
,

(5)
$$d\omega_{ij} = -\sum_{k} \omega_{ik} \wedge \omega_{kj} + \Omega_{ij}, \quad i, j = 1, \cdots, n$$

where Ω_{ij} are the curvature forms of M. The equation $\omega_{n+1} = 0$ implies that $\phi_i = \omega_{n+1}$ $(i = 1, \dots, n)$ is written as

(6)
$$\phi_i = \sum_j H_{ij} \omega_j, \ H_{ij} = H_{ji}.$$

Then it follows from (2) and (3) that

$$d\phi_i = -\sum_j \omega_{ij} \wedge \phi_j,$$

(8)
$$\Omega_{ij} = \omega_i \wedge \omega_j + \phi_i \wedge \phi_j.$$

Let G be the full isometry group of M and H be the isotropy subgroup at a fixed point $O \in M$. If M is homogeneous, the orbit $G(u_0)$ of a frame u_0 at O under the natural action of G on F(M) is a principal fibre bundle over M with structure group H. The restriction of the differential forms ω_i, ω_{ij} , and $\Omega_{ij}(i, j = 1, \dots, n)$ are invariant under the action of G on $G(u_0)$.

Now in order to prove Theorem 1, we assume that M is a connected homogeneous hypersurface in S^4 . By means of Lemma 3.1 and 3.5 in [11] we may set

$$\phi_1 = H_{11}\omega_1 + H_{12}\omega_2,$$

$$\phi_2 = H_{21} \omega_1 + H_{22} \omega_2,$$

$$\phi_3=0\,,$$

$$\omega_{31} = b\,\omega_2\,,$$

$$\omega_{32}=c\,\omega_1\,,$$

where $H_{11}H_{22} - H_{12}^2$ is a non zero constant and b, c are also constant on $G(u_0)$. Taking the exterior differentiation of (12) and (13), we have

$$\{(b+c)\omega_{12}-(1+bc)\omega_3\}\wedge\omega_1=0$$
 , $\{(b+c)\omega_{12}+(1+bc)\omega_3\}\wedge\omega_2=0$,

from which we find that (A) 1 + bc = 0, b + c = 0 or (B) 1 + bc = 0, $\omega_{12} = 0$. In the case (A), taking exterior differentiation of (11), we have

$$(cH_{22}-bH_{11})\omega_1\wedge\omega_2=0$$

and hence

$$H_{11} + H_{22} = 0$$
.

Denoting then by λ any principal curvature, we see that λ is equal to one of 0, $\sqrt{H_{11}^2 + H_{12}^2}$, and $-\sqrt{H_{11}^2 + H_{12}^2}$. Therefore λ is constant on $G(u_0)$. However, E. Cartan [2] proved that the manifold CM^3 is the only complete minimal hypersurface in S^4 with three distinct constant principal curvatures up to congruences in S^4 .

In the sequel we want to show that the case (B) can not occur, and for it assume the contrary. Then $\omega_1, \omega_2, \omega_3$ form a basis for $G(u_0)$. Taking exterior differentiation of (9) and (10), we have

(14)
$$dH_{11} \wedge \omega_1 + bH_{11} \omega_2 \wedge \omega_3 + dH_{12} \wedge \omega_2 + cH_{12} \omega_1 \wedge \omega_3 = 0,$$

(15)
$$dH_{12} \wedge \omega_1 + bH_{12} \omega_2 \wedge \omega_3 + dH_{22} \wedge \omega_2 + cH_{22} \omega_1 \wedge \omega_3 = 0.$$

Put $dH_{11} = \sum_{i} \alpha_{i} \omega_{i}$, $dH_{12} = \sum_{i} \gamma_{i} \omega_{i}$ and $dH_{22} = \sum_{i} \beta_{i} \omega_{i}$ on $G(u_{0})$. Then (14) and (15) amount to

(16)
$$\begin{cases} \alpha_2 = \gamma_1 \\ \alpha_3 = cH_{12} \\ bH_{11} = \gamma_3 \end{cases}, \qquad \begin{cases} \beta_1 = \gamma_2 \\ \beta_3 = bH_{12} \\ cH_{22} = \gamma_3 \end{cases}.$$

Taking exterior differentiation of $\omega_{12} = 0$, we find

(17)
$$H_{11}H_{22} - H_{12}^2 - bc + 1 = 0.$$

Substituting $H_{11} = \gamma_3/b$, $H_{22} = \gamma_3/c$ obtained from (16) into (17), we have the following differential equation

$$(\partial H_{12}/\partial x_3)^2 + H_{12}^2 - 2 = 0$$

where (x_1, x_2, x_3) be a local coordinate system on a neighbourhood U of $G(u_0)$ such that $dx_3 = \omega_3$. Then the above equation has the solution $H_{12} = \sqrt{2} \sin f$, where f is a function on U of the form $f(x_1, x_2, x_3) = x_3 + a(x_1, x_2)$. Thus from (16) we get on U

$$H_{11} = -\sqrt{2} c \cos f$$
,
 $H_{22} = -\sqrt{2} b \cos f$.

Then putting $df = \omega_3 + f_1 \omega_1 + f_2 \omega_2$ we have from (14) and (15)

$$f_1 b \sin f - f_2 \cos f = 0$$
,

$$f_1 \cos f - f_2 c \sin f = 0$$

which imply that $f_1 \equiv 0$ and $f_2 \equiv 0$ on U, namely, $df = \omega_3$. Thus we see

$$0 = d(df) = d\omega_3 = (b - c)\omega_1 \wedge \omega_2$$

and so b-c=0, which contradicts the fact that 1+bc=0. This completes the proof of Theorem 1. q. e. d.

REMARK. The manifold CM^3 appears in the list due to Hsiang and Lawson (table II, [6]) since it is a minimal orbit of a suitable compact subgroup of O(5) which is isometric to SO(3).

2. A proof of Theorem 2. We shall prove the following theorems containing Theorem 2 as a special case.

THEOREM 3. Let $M^n(c)$ denote an n-dimensional connected complete Riemannian manifold of constant sectional curvature c. If $c_1 < c_2$ and $c_1 \neq 0$, then $M^2(c_1)$ can not be isometrically immersed in $M^3(c_2)$.

THEOREM 4. Let $c_1 > c_2$ and $c_1 > 0$. If $M^2(c_1)$ is a surface isometrically immersed in $M^3(c_2)$, then $M^2(c_1)$ is totally umbilic, i. e., it is a standard sphere $S^2(c_1)$ in $M^3(c_2)$.

The case $c_1<0$ and $c_2=0$ in Theorem 3 is the well-known Hilbert's theorem [4]. Theorem 3 can be proved by the method similar to Hilbert's one. In the following we shall check that the formulas he employed remain valid for our situation. Assume $M^2(c_1)$ is isometrically immersed in $M^3(c_2)$ with the property $c_1< c_2$. For a local coordinate system (x_1,x_2) of $M^2(c_1)$ we denote the first fundamental form I and the second fundamental form II of $M^2(c_1)$ by

$$I = Edx_1^2 + 2Fdx_1dx_2 + Gdx_2^2$$
,
 $II = Ldx_1^2 + 2Mdx_1dx_2 + Ndx_2^2$.

From the Gauss equation, we have

$$(18) c_1 = c_2 + (LN - M^2)/g,$$

where we put $g = EG - F^2$. Our assumption implies that

$$LN-M^2<0.$$

It follows that in each tangent plane of $M^2(c_1)$ there are two real asymptotic directions which are defined by the differential equation

$$II = Ldx_1^2 + 2Mdx_1 dx_2 + Ndx_2^2 = 0$$
.

A curve is called asymptotic if it is a differentiable curve each of whose velocity vector belongs to one of asymptotic directions. Choose here as (x_1, x_2) the following special one. First draw an asymptotic curve a through a fixed point 0 on $M^2(c_1)$ and denote by p the point on a with parameter x_1 after parametrizing a by arc length from 0. Next draw another asymptotic curve b through p and denote by p the point on p with parameter p after parametrizing p by arc length from p. Then the obtained mapping $(x_1, x_2) \rightarrow q$ is a local diffeomorphism. About such local coordinate system (x_1, x_2) we find

LEMMA 5. Two curves $x_1 = const.$ and $x_2 = const.$ are asymptotic, that is, $L \equiv 0$, $N \equiv 0$, and $M \neq 0$.

PROOF. By definition, it is evident that $x_1 = \text{const.}$ is asymptotic. Thus II must have dx_1 as a factor and so we have N=0. Then the Codazzi's formula amounts to

(19)
$$\begin{cases} \partial M/\partial x_1 + \begin{Bmatrix} 1\\12 \end{Bmatrix} L + \begin{Bmatrix} 2\\12 \end{Bmatrix} M = \partial L/\partial x_2 + \begin{Bmatrix} 1\\11 \end{Bmatrix} M \\ \begin{Bmatrix} 1\\22 \end{Bmatrix} L + \begin{Bmatrix} 2\\22 \end{Bmatrix} M = \partial M/\partial x_2 + \begin{Bmatrix} 1\\21 \end{Bmatrix} M$$

where ${i \choose jk}$ denote the Christoffel's symols*). Now substituting $g=M^2/(c_2-c_1)$ obtained from (18) into the formula

$$\frac{\partial \log \sqrt{g}}{\partial x_i} = \sum_{j} \left\{ \begin{matrix} j \\ ij \end{matrix} \right\}$$

we have

(20)
$$\frac{\partial M}{\partial x_i} = \sum_{i} \left\{ \begin{array}{c} j \\ ij \end{array} \right\} M.$$

Noting that $G \equiv 1$, we can easily see by (19) and (20) that

^{*)} In the remainder of this section the indices i, j, k stand for 1 or 2.

$$(21) \qquad \partial L/\partial x_2 = (c_2 - c_1)(L - 2MF)(\partial E/\partial x_2)/2M^2,$$

(22)
$$\partial E/\partial x_2 = L(\partial F/\partial x_2)/M,$$

from which we have the differential equation on L

$$(23) \qquad \partial L/\partial x_2 = (c_2 - c_1)(L - 2MF)L(\partial F/\partial x_2)/2M^3.$$

For any fixed x_1 , this equation has a special solution $L(x_1, x_2) \equiv 0$. But $L(x_1, 0) = 0$ holds along the asymptotic curve $x_2 = 0$. Thus by uniqueness we see $L(x_1, x_2) \equiv 0$ whenever (x_1, x_2) is defined, which implies that $x_2 = \text{const.}$ is asymptotic. q. e. d,

From (22) it turned out that $\frac{\partial E}{\partial x_2} = 0$, that is, $E \equiv 1$. Now the first and second fundamental forms can be written as

$$I = dx_1^2 + 2Fdx_1dx_2 + dx_2^2,$$

$$II = 2Mdx_1 dx_2.$$

Then the egregium theorem says

(24)
$$c_1 g^2 = \frac{\partial^2 F}{\partial x_1 \partial x_2} g + F \frac{\partial F}{\partial x_1} \frac{\partial F}{\partial x_2}.$$

We denote by φ the angle between two vectors $\partial/\partial x_1$ and $\partial/\partial x_2$. Then (24) means

(25)
$$\frac{\partial^2 \varphi}{\partial x_1 \partial x_2} = -c_1 \sin \varphi.$$

If $c_1 \neq 0$, from (25) we have a generalization of a classical result:

THEOREM 6. Let Γ be a quadrilateral on $M^2(c_1)$ whose edges consist of asymptotic curves. Let S denote the area of Γ and $\alpha, \beta, \gamma, \delta$ denote the four interior angles of Γ . Then

$$S = -(\alpha + \beta + \gamma + \delta - 2\pi)/c_1$$

Making use of Lemma 5 and Theorem 6 essentially, Hilbert [4] proved

THEOREM 7. With respect to the above coordinate system (x_1, x_2) , $M^2(c_1)$

is diffeomorphic to 2-plane.

From this theorem we may conclude that $M^2(c_1)$ can not be isometrically immersed in $M^3(c_2)$ if $c_1 > 0$. In the case $c_1 < 0$ the same argument as Hilbert's one induces a contradiction. Thus Theorem 3 is proved. q. e. d.

PROOF OF THEOREM 4. Let λ , μ denote the principal curvatures of $M^2(c_1)$. Whether $M^2(c_1)$ is orientable or not, we may assume that λ^2 , μ^2 are both continuous function on $M^2(c_1)$ with $\lambda^2 \ge \mu^2$. Then an analogous argument to one in [4] implies that λ^2 can not attain a maximum at a point such that $\lambda^2 > \mu^2$. Thus we have $\lambda \equiv \mu$ since $\lambda \mu > 0$ by the relation $c_1 = c_2 + \lambda \mu$. q. e. d

REMARK. In Theorem 2 the author could not clarify the manner of the isometric immersion of a flat Riemannian manifold in S^3 . It seems that a flat hypersurface in S^3 is congruent to a Clifford torus $S^1(r) \times S^1(s)$ with 1/r + 1/s = 1.

3. The case (iii). In this section we shall give another proof of the following theorem due to O'Neill [8]. From this proof we obtain new results as a by-product.

THEOREM 8. If $M^n(c)(c>0)$ is a hypersurface isometrically immersed in $S^{n+1}(c)$, then $M^n(c)$ is isometric to a great sphere $M^n(c)$.

First we shall establish

PROPOSITION 9. Let M^n be an n-dimensional compact Riemannian manifold such that there exists a tangent 2-plane at each point of M whose sectional curvature is not greater than c > 0. Then M can not be isometrically immersed in any open hemisphere in $S^{n+1}(c)$.

PROOF OF PROPOSITION 9. Suppose M is isometrically immersed in $S^{n+1}(c)$. Let σ be a local cross section of M to the bundle F(M) defined in § 1. We denote the 1-forms $\sigma^*\omega_i$, $\sigma^*\omega_i$, and $\sigma^*\phi_i$ pulled back to M by σ by the same letters ω_i , ω_i , and ϕ_i respectively*. We can consider σ as a locally defined orthonormal frame field $(x, e_1, \cdots, e_{n+1}), x \in M^n$, with e_{n+1} normal to M and $\omega_1, \cdots, \omega_n$ as a locally defined coframe field dual to e_1, \cdots, e_n . Then we have the vectorial equations

$$d_{e_i}x=e_i\;,$$

$$d_{e_i}e_j=\sum_k\omega_{kj}(e_i)e_k+\phi_j(e_i)e_{n+1}-\omega_j(e_i)x\;,$$

^{*)} In the following the indices i, j, k run from 1 to n.

where d_{e_i} denotes the derivative in the direction of e_i . For any point p of $S^{n+1}(c)$ consider the mapping $f_p = f : M \to R$ which sends $x \in M$ to $f(x) = \langle p, x \rangle$, where $\langle \cdot, \cdot \rangle$ is the canonical inner product of R^{n+2} . Since M is compact, f attains a minimum at some point of M, say x_0 . If $x_0 = -p$, there is nothing to prove. Thus we assume that $x_0 \neq -p$. For each i we obtain at x_0

(26)
$$d_{e_i}f = \langle p, d_{e_i}x \rangle = \langle p, e_i \rangle = 0$$

and

$$egin{aligned} d_{e_i}^2 f &= < p, d_{e_i} e_i > \ &= < p, \sum_j \omega_{ji}(e_i) e_j + \phi_i(e_i) e_{n+1} - x_0 > \ &= < p, H_{ii} e_{n+1} - x_0 > \geq 0. \end{aligned}$$

Hence

(27)
$$\langle p, x_0 \rangle \leq H_{ii} \langle p, e_{n+1} \rangle, i = 1, \dots, n.$$

Now retake a cross section σ so that $\lambda_i = H_{ii}$, $i = 1, \dots, n$ are all eigenvalues of the second fundamental form at x_0 . Let $u = \sum_i a_i e_i$, $v = \sum_i b_i e_i$ be an orthonormal basis for a tangent 2-plane whose sectional curvature K(u, v) is not greater than c. Then it is easily seen from the Gauss equation that

$$K(u,v) = c + \sum_{i < j} (a_i b_j - a_j b_i)^2 \lambda_i \lambda_j.$$

Since $K(u,v) \leq c$ and $a_i b_j - a_j b_i (i < j)$ don't all vanish, there exist indices i and j with $\lambda_i \lambda_j \leq 0$. Thus one of $\lambda_i < p$, $e_{n+1} >$ and $\lambda_j < p$, $e_{n+1} >$ is non-positive, and hence from (27) we have

$$\langle p, x_0 \rangle \leq 0$$

which shows that M is not contained in the hemisphere with pole p. Since p is arbitrary, Proposition 9 is proved. q.e.d.

COROLLARY 10. Let M be as in Proposition 9. If M admits an isometric immersion $\iota: M \to S^{n+1}(c)$, then the diameter ρ of M is greater than $\pi/2\sqrt{c}$.

PROOF OF COROLLARY 10. Let d denote the distance function on M. Choose two point x_1, x_2 in M with $d(x_1, x_2) = \rho$. Let p_0 be a point of $\iota(M^n)$ where $f_{\iota(x_1)}$ attains a minimum and $x_0 \in \iota^{-1}(p_0)$. If γ denotes a shortest geodesic

segment from x_1 to x_0 , we have from (28)

$$\rho = d(x_1, x_2) \ge d(x_1, x_0) = \text{length of } \gamma = \text{length of } \iota \circ \gamma \text{ in } \iota(M)$$
 $\ge \text{distance between } \iota(x_1) \text{ and } \iota(x_0) \text{ in } S^{n+1}(c) \ge \pi/2\sqrt{c}.$

But all equalities don't hold simultaneously. In fact, if not so, then $\iota(\gamma)$ must be a geodesic segment of $S^{n+1}(c)$ contained in $\iota(M)$, which contradicts (26). q. e. d.

PROOF OF THEOREM 8. The diameter of M is greater than $\pi/2\sqrt{c}$ since M satisfies the condition of Corollary 10. Theorem 8 now follows from the following theorem of Shiohama [10].

Theorem 11. Let M be a complete Riemnanian manifold whose sectional curvature K satisfies

$$0 < \delta c \le K \le c$$
.

If the diameter of M is greater than $\pi/2\sqrt{c}$, then M is symply connected.

REMARK. Proposition 8 is a slight generalization of a theorem of Myers (Theorem 4, [7]).

REFERENCES

- E. CARTAN, La déformations des hypersurfaces dans l'espaces euclidean réel à n dimensions, Oeuvres completes, Part. III, vol. 1, 185-219.
- [2] E. CARTAN, Familles de surfaces isoparamétriques dans les espaces à curbure constante, ibid. vol. 2, 1431-1445.
- [3] S. S. CHERN, Som new characterization of the Euclidean sphere, Duke Math. J., 12(1945), 279-290.
- [4] D. HILBERT, Ueber Flächen von konstanter Gausscher Krümmung, Trans. Amer. Math. Soc., 2(1901), 87-99.
- [5] W. Y. HSIANG, On the compact homogeneous minimal submanifolds, Proc. Nat. Acad. Sci. U. S. A., 56(1966), 5-6.
- [6] W. Y. HSIANG AND H. B. LAWSON, JR., Minimal submanifolds of low cohomogeneity, to appear.
- [7] S. B. MYERS, Curvature of closed hypersurfaces and non-existence of closed minimal hypersurfaces, Trans. Amer. Math. Soc., 71(1951), 211-217.
- [8] B. O'NEILL, Isometric immersions which preserve curvature operators, Proc. Amer. Math. Soc., 13(1962), 759-763.
- [9] P. J. RYAN, Homogeneity and some curvature conditions for hypersurfaces, Tôhoku Math. J., 21(1969), 363-388.
- [10] K. SHIOHAMA, On the diameter of δ -pinched manifolds, to appear.
- [11] T. TAKAHASHI, Homogeneous hypersurfaces in spaces of constant curvature, J. Math. Soc. Japan, 22(1970).

DEPARTMENT OF THE FOUNDATION OF MATHEMATICAL SCIENCES

TOKYO UNIVERSITY OF EDUCATION

TOKYO, JAPAN