Toéhoku Math. Journ.
23(1971), 37-48.

GENERALIZED PUPPE SEQUENCE AND
SPANIER-WHITEHEAD DUALITY

KISUKE TSUCHIDA

(Recieved June 5, 1970)

Introduction. In [3], I. M. James has discussed the following problem : Let
£E(k=1,2,---) be the orthonormal k-frame bundle associated with a vector
bundle £ and let p: & —§&, be the projection. Then under what conditions does
this fibration admit a cross-section ?

For this purpose James has introduced his ex-homotopy theory. In the
ex-homotopy theory the usual suspension SX is extended to the suspension X
which is an over-space. The assertion on the usual suspension homomorphism
S: 7(X,Y)—>#(SX,SY) can be generalized to the corresponding one in the ex-
homotopy theory.

James pointed out that 3-theory, on the line of the Spanier-Whitehead
S-theory, would be worth investigating and asked whether the duality of S-theory
can be extended to such a 3-theory.

In §1 we shall review the outline of James’s ex-homotopy theory and list
the related definitions. In § 2 we shall define the mapping cone in ex-homotopy
theory and try to generalize the Puppe sequence [4]. In §3 we try to extend
the duality of S-theory to =-theory.

1. Preliminaries and notations. In this section we summarize basic
definitions in [3]. An over-space is a space A with a map @: A— B, called the
projection. (The base space B is mainly fixed.) The notions of over-map and
over-homotopy are usually defined. Let A; (¢ =1, 2) be over-spaces with projections
@;. The direct product A; X A, is the subspace of the topological product consisting
of pairs (a,, a,) such that @,a, = @,a,, where a;€ A;. The projection @: A, XA,
—B is given by @(a;,a;) =@;a;. The join of A; with A, is the over-space
A, % A, defined as follows :

AxAy =AUA U (A X Ay) X Iz, i)"’?ix 1=1,2

where A, X A, is the direct product in the above sense and p,: A; X A;— A, is
the projection.
The projection Yr: A% A;— B is given by
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Yz, t) = @(x) ze A, X A,

The join of over-maps is defined as usual. The suspension of the over-space A
with projection @ is the over-space A defined as follows :

SA=AXIUBXxI/(a,)~ (pa,i) ac A, i¢el
The projection ¥ : ZA — B is given by
Y(a, t) = @(a) (b,7) = b beB, iel

Taking A = ¢, the empty over-space, then Z¢ =B x L.
The n-fold suspension 3"A can be identified A%3"¢p, where Z"¢p =B x S"~.
In fact, define ¥, : SA—Ax3¢ by

<a, t> = [a, (p(a),0),1 —2] 0<e<<1/2
= [a, (pla),1),2¢ —11 1/2<:<1,
Y <b,i>=1[bi] beB,i=0,1.

Also define X, : Ax3¢p—>3A by

Xila, (p(a),0),t] = <a,1—t/2>,
xl[a, (¢((l), 1)a t] = <(l, l + t/2> ’
X.[b,1] =< b,i> 1=0,1 Xilal = <a,1/2>.

Then 4, and X, are the inverse of each other. Inductively we can prove the
assertion for n>1.
Let A be an over-space (of B) with projection @. An ex-space of A (over B)

is a space X together with maps AL x LN B such that pe =@. Then ¢ and
p are called the section and the projection of the ex-structure. Let X; (z=1,2)
be an ex-space of A, with section o; and projection p;. An ex-map f: X, —X,
is a map such that fo, =gy, pof = p;. An ex-homotopy f;: X; — X, is an ordinary
homotopy which is an ex-map for all values of £. The set of ex-homotpy classes
of ex-maps is denoted by =(X;, X,). An ex-homotopy equivalence is similary
defined. The direct product and the join in the category of ex-spaces are
obtained from those notions in the category of over-spaces by defining the sections
appropriately.

An ex-space K of A is called an ex-complex if K is a CW-complex with A
as a subcomplex and the inclusion as section.
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2. Generalized Puppe sequence. Let X,Y be ex-spaces of A (over B) with
sections oy, oy and projections p,, p; respectively, and let f: X—Y be an ex-map.
We define the mapping cone of f, denoted by C;, as follows :

C,=BUXxI)UuY/(x, 0)~P0(x)’ (x’ 1) ~f(x)
X Po
L
o\,x 4'

Then C; is an ex-space of A with section &, projection p given by

Y

ola) = (00a, 1), p(b) = b, p(y) = Pu(y), plz, t) = po().

Note that if B is a point, then C, is an ordinary (unreduced) mapping cone.
Here, different from [3], we shall regard the suspension %X as an ex-space by
giving the following section and projection, namely

~N

ala) = <owa, 1>, v<x,t> = py(x), ¥<<b,i>=0>b, icl

Thus, taking Y = B and f=p, in C,, then we have C; =3X. Now define
a;: Y—C, by as(y) =y and let i: B—C; be the inclusion.

PROPOSITION 2.1. Let X, Y be ex-complexes of A. Assume that p: C;— B
is a fibration. Then we have ay;of=iop, (ex-homotopic).

PROOF. We define m,: X x IUA x I-C; by
ms(x, 0) = poxr, ms(x, 1) = ay(fx), ms(a,t) = (oo, s + ¢ — st).

Also define k,: XXI—B by ks(x,t) =pyx and hy: XX I—C; by hy(z,t) = (z, t).
Then phy =%k, and pm,=k|X x [ UAx I Since pis a fibration, there is a
homotopy hs: X x I—C; such that phs =%k, and k| X x [UA X I=m,. If we
now define 7,: X—C; by n/(x) =h,(x,t), then 5, provides an ex-homotopy
between a;of and 7o p,.

REMARK. If B is a point, then the assertion in Proposition 2.1 reduces to
af Of: O
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PROPOSITION 2.2. Let Z be a ex-space of A with a cross-section s and
let g: Y—Z be an ex-map. If gofczsop, (ex-homotopic), then there is an
ex-map l: Cr—Z such that loa;~= g (ex-homotopic)

PROOF. Let @, be an ex-homotopy between gof and sop,, We define

' BU(XxI)uY—Z
') =sb), U(xt) =elx), U'(y) =gy

by

Then 7’ induces an ex-map [: C,— Z satisfing loa,= g (ex-homotopic).

REMARK. If A=¢ and B is a point, then #( , ) reduces to the ordinary
* *

set of homotopy classes and #(C;, Z) = =Y, Z) —f~> (X, Z) is exact in the usual
sense.

Let X be an ex-space of A with section o, and projection p,. Then the
cone CX is defined by

CX = BU (X x I)/(x, 0) ~ po().

Define pj: CX—B by pi(b) =b and pi(x,t) =p,(x) and of: A—CX by aila)
=(00a, 1) (here X is embedded in CX as x— (x,1)). Then CX is an ex-space of A.

PROPOSITION 2.3. Let f: X—Y be the injection where X and Y are
over-spaces. Assume that (Y, X) satisfies the over-homotopy extension property.
Then we have an over-homotopy Xs: C;—C, with Xy =1 and X,|CX=p;.

PrROOF. We define @,: CX—C; by @s(x,t) =(x, (L —5)t) and @.(d) =b.
Let j: X—CX be an embedding given by j(x)=(x,1). Since (Y,X) satisfies
the over-homotopy extension property, there is an over-homotopy ¥s: Y —C; such
that Y| X =@s05 and 4, is the injection. Now define X;: CXUY—C, by

Xi(b) =b beB, X(x,t) = ps(x,2), (x,t)eCX, Xi(y) =Vs(y), yeY.

Then X, induces an over-homotopy X,: C;—C, satisfying the required properties.

PROPOSITION 2.4. The inclusion a;: Y —C, satisfies the ex-homotopy
extension property.

PROOF. Let Z be any ex-space of A (over B) and A,: C,—Z an ex-map.
Let gs: Y—Z be an ex-homotopy with A, = g,. According to Puppe [4], we
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define a homotopy As: C;—Z by

hib) =b beB  h(y) = gs(y) yeY
ho(z, t + s/2) t>=1/2 s<2-2t
Gsra-2(f) t=>1/2 s=2-2t

hs(z, t) =
Lho(x, t+st) t<1/2.

Then it is easily checked that A; is a required ex-homotopy.

Let X,Y be ex-spaces of A (over B) and let f: X—Y be an ex-map. Now
we consider the generalized Puppe sequence :

S

x Loy % Brsx 2,

SY
where B, is defined by the following conditions

Bs(b) = <b,0> beB, Bz t)=<xt> (z,t)eCX,
Br(y) = <puy,1> yeY.

We easily see that the mapping cone C., may be considered as the quotient space
of CX UCY by the relations:

(x70)~(Pox’O): (.’L', 1/2)~(fx’ 1/2)7 (y’ 1)~(P1y, 1)

B

Y

Y x [1/2,1] 1
Cf X X I a?, Cuf
X x [0,1/2] |

B

B

Then af: C;—C., may be defined by aj(z, ) = (x,2/2), o(y)=(y,1/2), ai{b) =
(,0).

Define R: C,,—3X by R(b,71)=(b,7) 1=0,1, Rz, t)=<zx,2t> 0<<t<1/2,
R(y,t) = <pyy,1> 1/2<t<1 and also define S: 2X—-C., by S<b,i> = (b, 1)
(xt) 0<<e<1/2

i=0,1, S<azt> ={ (fr,t) 1/2<t<1.
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If we define a homotopy V¥ : ZX—3X by

<z, 2t/2 — s> 0<t<1—5/2
<pox,1> 1—s5/2<t<],

Y <b,i> = <b,i>,

V<, t> =

then v, provides an ex-homotopy between 1;x and RS. Also define a homotopy
xx:Caf _’Caf by
(x,2/2 —5) o<1l —5/2
(fr,s+2t—1/2) 1—s/2<t<1
Xs(y, 1 +¢/2) = (y, L +s+t—st/2) 0<t<],

Xs(x, t/2) =

Then X, provides an ex-homotopy between lgaf and SR. Thus C., and 3X have

the same ex-homotopy type.
A similar consideration as in C. can be applied to Cz and Cg may be

considered as the quotient space of CY U C(C;) by the relations: (y,0)~ (p.y,0)
(3, 1/2) ~ (as(y), 1/2), (u,1)~ (pu, 1) ue C,.
Define R, : C,,}—»Y by
Rl(b’ Z) = (b, l) i :O’ 1, Rl<y7t/2) = (y’t) O<t<1’
R(u,1+1¢t/2) = (pu,1) 0<2t<1 ueCy,

and also define S, : EY—»Ca’f by

S\(b,3) = (b,4) i=0,1,
(y, ) 0<t<1/2

Sl(y’ t) =
(ary,t)  1/2<¢t<1

Then we have R,oS,=~1;r (ex-homotopic) and S, ORIZICE} (ex-homotopic). On

the other hand, it is easily checked that Roa% =8, and R,ca =3 fcR.

Summarizing the preceding statements, we get a following main theorem :

THEOREM 2.5. Let X,Y be ex-spaces of A (over B) and let f: X—>Y
be an ex-map. Then we have the following commutative diagram :
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ar ay ay

X f C f Ca

Y
ll 11 ll R R,
XY e G 3X o 3V

in which R and R, are ex-homotopy equivalences.

CROLLARY 2.6. Let Z be an ex-space of A (over B) with a cross-section s.
Suppose that p: ZX—B and p: 3Y —B are fibrations. Then the similar
statements as in Prop. 2.2 hold in the following sequences:

25X, 2) 25 n(C, 2) 2 (v, 2)
and
=f)* B3

z(2Y, Z) —— =(3X, Z) — =(C;, Z).

REMARK. If A=¢ and B is a point, then we have the usual Puppe exact
sequence :

7(3Y, Z) G 7(3X, Z) A, 7(Cy, Z) 4, (Y, Z) AR (X, Z).

PROPOSITION 2.7. Let Z be an ex-space of A (over B) with section o
and projection p'. Let X,Y be ex-spaces of A and f: X—Y an ex-map. If
9: Z—Y is an ex-map such that oy-g=1ip’ (ex-homotopic), then there exists

an ex-map h: 3Z—3X such that 3.9 = (3f)h (ex-homotopic).

PROOF. Let @,: Z—C; be an ex-homotopy between ip" and a;9. Now
define k: C,—C; by k(b) =b, k(z,t) = p,(2), k(y) =a,(y). Then the desired map
h: 3Z—3X is given by h<<b,i> = <b,1>,1=0, 1, h<z,t>=8,k(z,t). Obviously
h is well defined and an ex-map. If we define X,: 3Z—>3Y by

X<z, t>=3f-h<z, t(l+t—st)/l—s+1t>,
X;<b,i> = <b,i> =01,
then X, is well defined and gives an ex-homotopy between 3f-h and X, (where
X, <z,t> = <g(z),1>). Next define & : 2Z—-3Y by &<z,t> = <g(z),t(1 + st)

/s+t> and £<b,i>=<b,1> i=0,1. Then & is well defined and provides
an ex-homotopy between X, and %g. Thus we have Sf-hA =3¢ (ex-homotopic).
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3. Spanier-Whitehead duality in S-theory. In [3], I. M. James has proved
the following theorem :

THEOREM A (Thm 2.1 in the loc. cit.) Let E be a fibre bundle over B
with projection ¢ : E— B. Suppose that fibre F is compact and that base B
is regular and locally compact. Then the over-space SE is a fibre bundle
with projection ¢ : 3E— B.

THEOREM B (Thm 6.4 in the loc. cit.) Let B be regular and locally
compact. Let A be a CW-complex represented as an over-space of B and let
E be an ex-space of A. Let K be an ex-complex of A. Suppose that the
projection p: E—B is a fibre bundle with compact fibre. If the fibre is
r-connected, then the suspension 3y : n(K, E) > n(SK,3E) is injective if dim
K < 2r, surjective if dim K<2r + 1.

In the following the above theorem play essential roles. Henceforth we denote
by m( , ) the set of over-homotopy classes of over-maps. We shall use Thm

B in the cace A =¢.
Throughout §3 we assume that B is a finite CW-complex and L, M are finite

CW-complexes represented as over-spaces of B.
Assume that projection M — B is a fibre bundle with compact fibre F. Then

we shall define {L, M} to be Lim#(3*L,3*M). According to Theorems A and
—_

B, this is well defined. Here note that the fibre of Z*M is the ordinary suspension
S*F and hence (k£ —1)-connected. As in [3; p.374], we define the functions

L*: n(Z,M)—n(LxZ,L+M),
Ly: n(Z,M)—=(ZxL,M=xL)

by taking the join with the identity on L, where Z is an over-space. We consider
maps #: LxM—3""'¢. Such a map defines two functions

ugi (S571g, M} — (Le 30, 3rvig)
ul : {Eq+1¢’ L} > {M*Eq+l¢, 2n+1¢}

and

by taking the direct limit of the compositions

Lst-
w (ST, SEM ) ———> m(Lx S+k+1¢, Lx SEM) 22 w(Sk(L » 39+1¢), S*(L# M)

Sku)y
(Stu)y n(Sk(L%Z0+'g), Sk(Sm+1g))

and
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a(serrnig, 5k L) M0 n(Serkeigu M, SALx M)~ n(SH(Ms 5096, SHLx M)

% ”(Ek (M* 2q+ 1¢)’ Zk (2n+ 1¢))

respectively. An over-map u: LxM—2""'¢ is called an (n — 1)-duality if the
above #,, u are both bijections.

REMARK. If B is a point, then # becomes an #n-duality in the sense of
Spanier-Whitehead (see [2], [5]).

THEOREM 3.1. Let L, M be sphere bundles over B associated with

the euclidean bundles &, n respectively. If the Whitney sum @ n is a trivial
(n + 1)-plane bundle, then there is an (n — 1)-duality.

PROOF. Since L*M = (E@Dn), (see [3]), it follows that LM is homeomorphic
to 2"*!¢, as an over-space. Denote this homeomorphism by % : LxM—3"*'¢. We shall
prove that # is actually an (n — 1)-duality. We only prove that #? is a bijection.
Consider M*: n(39* %+, kL) —»m (M 27+, M« 3*L) and L*: m(M«Z7HkE+1g,
M#3FL) —m(Lx M»37 %+ (L M)%Z*L). It is well known that (L«M)*=L*M*
and (*¢)* is the g-fold suspension. By Thm B, the suspension Sy : 7(Z+k+1g, SEL)
—r(Zek*2h, SEYL) is bijective if £#Z>dim B+g+2. Hence the composite {Z¢*!¢, L}
%%{2"“M, M= L} —L—> {Sornt2g, 3**1LY is a bijection. This shows that M*:
{Ztig, L} — (S M, M+ L} admits a left inverse and L*: {S%'M, MxL}—
{Satn+ig 3m+p} admits a right inverse.

Now let ¢ be an euclidean bundle such that ¢ @€ is the trivial plane bundle
and let N be a sphere bundle associated with §. Then repeating the preceding
argument, it is shown that L*{3¢"'M, ML} — {39 "*%p Sm*1L} admits a left
inverse. Hence L* is a bijection. Thus M*: {3%*'¢, L} - {M%Z7*'¢p, Mx L} is
a bijection.

If an n-duality « : L% L' —3"? exists, then L’ is called an 7-dual of L.
The following is immediate from Theorem 3. 1.

PROPOSITION 3.2. If L is a sphere bundle over B, then there exists an
n-dual for some n.

THEOREM 3.3. Let L,L" and K be fibre bundles having finite CW-
complexes as fibres. Let w: Lx L' —3""'¢p be an (n — 1)-duality. Then

ug: {K, L'} > {L% K, 3"'$}
and

w: {K, L} = {K« L', 2""¢}
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are bijections.

PROOF. First consider the situation when B is an m-cube I™(m>=0). If!B
is a point and Fg, F,F’ are fibres of K, L, L’ respectively, then it follows from
[2; p.207] that ugx: {Fg,F'} > {F%Fg, S"} and ug: {Fg,F} — {FgxF,S"} are
bijections. If B is an m-cube I™, then L, L’ and K are trivial bundles and hence
ux and #® are both bijections.

Now consider the general case. We proceed by induction on the sections of B.
Let B, denote m-section of B and K|B,, the restriction of the bundle K on B,,.
From the inductive assumption, #x : 7(3*K|B,,, 2*L’(B,,) = n(3*(L* K)|B,,, Z"*k*'¢
| B,,) is bijective for sufficiently large k.. Here we may assume that B is obtained
from B, by adjoining one cell e™*!. Let : I™*! —g™*' be the characteristic
map. Then ¥*(2¢K), ¥*(3*L) and +*(3*(L*K)) are trivial and hence we
may assume that Y*(ZEK)=I"*'x S¥Fy, Y*(ZFL)=I1"*' x SEF" and *(Z*L* K))
=" x SEF%Fg). Let ¥ : I™* X SE(FxFg) >3¥(L* K)|e™*! etc. be the covering
map of Y. Take an over-map g: 3¥(L*K)—>3**"*'¢p and denote by g, the
restriction of g to 2¥(L*K)|B,,. Then by inductive assumption, there exists an
over-map f, : 2¥K|B,, —3*L'|B,, such that u.[f,] =1[g.], where [ ] denotes the
over-homotopy classes. Let ¢’ be the restriction of ¢ to 3*(L#K)|e™*'. Define
g: I"x SE(F%Fg) — I™*! X S*** by Vg(z, u) = gz, u)), where g(u)=(x).
Then by the former case we have an over-map f: I"™*! X StFg— I™*' x StF” such
that uk[f]z[z]. Next we define an over-map f': 3*K|e™*' —3tL'|e™*! by
f'(W(x, w) =¥f(x,u). Then we easily see that wug[f]=[g’]. Since 3*L —B
is a fibre bundle by Thm A, we can take f" such that f'|2™*' =f, |e™*'. Now
we define an over-map f: 3¥K —3kL’ by

flw) = f@) for weSHK|gm+
= fulu) for we3*K|B,,.

Then f is well defined and #[f]=[g]. From the above construction, we can
see that the over-homotopy class of f is uniquely determined by that of g.

THEOREM 3.4. ¥ Let u: KxK' —3"'¢ and v: LxL'—>3""'¢ be (n—1)-
dualities. Let f: K—L and g: L' — K be over-maps satisfying the condition

uo(lxg) = vo(fx1).

Then there exists a map h: CyxC,—3"*p such that the following squares are
homotopy commutative.

() The corresponding statement in usual homotopy theory is seen in [5, p. 463]. We do not know
whether a map h:C*Cy—3"+2 is an n-duality in the our sense.
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LG 28 Last Is s L)
(A) laf* 1 lEv
h
C,+C, - 2n+2¢
’ 1*“0
Cf*K —_—> Cf*Cg
(B [r*1 |

SKxK <> S(KxK') 5 st

PrOOF. We define h: C;%C, -3¢ by

st(1+2l)(1+s—sl)

<vlf(x),,1], (t+0)(1+s—10)

h[(x’ 5)’ (y’ t), l] =
<ulz, g(y),1],

st(L+¢l)(1+s—sl)
(E+D)(1+s—1)

> s<t,

where (z,s)e C; and (y,t)e C,. Now consider the diagram (A). We easily see
that h(a,*1)[x, (y,2), 1] = <vlz,y,1],t(L +¢l)/t +I>. On the other hand the
homeomorphism 7: L*3L’ —Z(L+L’) may be given by the formula

<[z, y,2tl/1 — 1 +2t1],1 — 1 +2¢1 /2> 0<e<1/2

ﬂ[x, <y> t>, l] = {
<[z,y,20(1 —¢)/L+1—2t1],1 -1 +2t1/2> 1/2<¢t< L.

This formula can be deduced from the remark in §1 and [1; p.225]. Hence in
order to prove that ho(a,%1) =3Zwvono(l%B,), we have only to prove that 7 is
homotopic to the map [x, <y,t>,l]—<[x,,I],t(1 +¢l)/t +1>. But this is

given by the following homotoy :
( <[x,y,2tl/s(L —1) +2tl],L> 0Lt s/2
@slz, <y,t>,1] = { <[z, y,1], L> 5/2<t<1—s/2
<[z, 3y, 201 —2t)l Js(1—=1)+2(L—¢){],L> 1 —s5/2<t<1,

where L =¢(2 —s — sl + 2¢1)/2st + 2(1 — 5)(t +I). By the analogous argument, we
can prove that the square (B) is homotopy commutative.
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