Tôhoku Math. Journ. 23(1971), 37-48.

GENERALIZED PUPPE SEQUENCE AND SPANIER-WHITEHEAD DUALITY

KISUKE TSUCHIDA

(Recieved June 5, 1970)

Introduction. In [3], I. M. James has discussed the following problem : Let $\xi_k(k = 1, 2, \dots)$ be the orthonormal k-frame bundle associated with a vector bundle ξ and let $p: \xi_k \rightarrow \xi_1$ be the projection. Then under what conditions does this fibration admit a cross-section?

For this purpose James has introduced his ex-homotopy theory. In the ex-homotopy theory the usual suspension SX is extended to the suspension ΣX which is an over-space. The assertion on the usual suspension homomorphism $S: \pi(X, Y) \rightarrow \pi(SX, SY)$ can be generalized to the corresponding one in the exhomotopy theory.

James pointed out that Σ -theory, on the line of the Spanier-Whitehead S-theory, would be worth investigating and asked whether the duality of S-theory can be extended to such a Σ -theory.

In §1 we shall review the outline of James's ex-homotopy theory and list the related definitions. In §2 we shall define the mapping cone in ex-homotopy theory and try to generalize the Puppe sequence [4]. In §3 we try to extend the duality of S-theory to Σ -theory.

1. Preliminaries and notations. In this section we summarize basic definitions in [3]. An over-space is a space A with a map $\varphi: A \to B$, called the projection. (The base space B is mainly fixed.) The notions of over-map and over-homotopy are usually defined. Let A_i (i = 1, 2) be over-spaces with projections φ_i . The direct product $A_1 \times A_2$ is the subspace of the topological product consisting of pairs (a_1, a_2) such that $\varphi_1 a_1 = \varphi_2 a_2$, where $a_i \in A_i$. The projection $\varphi: A_1 \times A_2 \to B$ is given by $\varphi(a_1, a_2) = \varphi_i a_i$. The join of A_1 with A_2 is the over-space $A_1 * A_2$ defined as follows :

$$A_1 * A_2 = A_1 \cup A_2 \cup (A_1 \times A_2) \times I/(x, i) \sim p_i x \qquad i = 1, 2$$

where $A_1 \times A_2$ is the direct product in the above sense and $p_i: A_1 \times A_2 \rightarrow A_i$ is the projection.

The projection $\psi: A_1 * A_2 \to B$ is given by

$$\boldsymbol{\psi}(x,t) = \boldsymbol{\varphi}(x) \qquad x \in A_1 \times A_2.$$

The join of over-maps is defined as usual. The suspension of the over-space A with projection φ is the over-space ΣA defined as follows:

$$\Sigma A = A \times I \cup B \times I/(a,i) \sim (\varphi a,i) \qquad a \in A, i \in I.$$

The projection $\psi: \Sigma A \rightarrow B$ is given by

$$\psi(a,t) = \varphi(a)$$
 $\psi(b,i) = b$ $b \in B, i \in I.$

Taking $A = \phi$, the empty over-space, then $\Sigma \phi = B \times I$.

The *n*-fold suspension $\Sigma^n A$ can be identified $A * \Sigma^n \phi$, where $\Sigma^n \phi = B \times S^{n-1}$. In fact, define $\psi_1 : \Sigma A \to A * \Sigma \phi$ by

$$egin{aligned} &\psi_1 < a,t > = [a,(arphi(a),0),1-2t] & 0 \leqslant t \leqslant 1/2 \ &= [a,(arphi(a),1),2t-1] & 1/2 \leqslant t \leqslant 1\,, \ &\psi_1 < b,i > = [b,i] & b \in B,\ i=0,1. \end{aligned}$$

Also define $\chi_1: A * \Sigma \phi \rightarrow \Sigma A$ by

$$egin{aligned} &\chi_1[a,(arphi(a),0),t] = < a,1-t/2>\,, \ &\chi_1[a,(arphi(a),1),t] = < a,1+t/2>\,, \ &\chi_1[b,i] = < b,i> \qquad i=0,1 \qquad \chi_1[a] = < a,1/2>. \end{aligned}$$

Then ψ_1 and χ_1 are the inverse of each other. Inductively we can prove the assertion for n > 1.

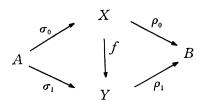
Let A be an over-space (of B) with projection φ . An ex-space of A (over B) is a space X together with maps $A \xrightarrow{\sigma} X \xrightarrow{\rho} B$ such that $\rho \sigma = \varphi$. Then σ and ρ are called the section and the projection of the ex-structure. Let X_i (i = 1, 2) be an ex-space of A, with section σ_i and projection ρ_i . An ex-map $f: X_1 \rightarrow X_2$ is a map such that $f\sigma_1 = \sigma_2$, $\rho_2 f = \rho_1$. An ex-homotopy $f_i: X_1 \rightarrow X_2$ is an ordinary homotopy which is an ex-map for all values of t. The set of ex-homotpy classes of ex-maps is denoted by $\pi(X_1, X_2)$. An ex-homotopy equivalence is similary defined. The direct product and the join in the category of ex-spaces are obtained from those notions in the category of over-spaces by defining the sections appropriately.

An ex-space K of A is called an ex-complex if K is a CW-complex with A as a subcomplex and the inclusion as section.

38

2. Generalized Puppe sequence. Let X, Y be ex-spaces of A (over B) with sections σ_0, σ_1 and projections ρ_0, ρ_1 respectively, and let $f: X \to Y$ be an ex-map. We define the mapping cone of f, denoted by C_f , as follows:

$$C_f = B \cup (X \times I) \cup Y/(x,0) \sim \rho_0(x), \ (x,1) \sim f(x).$$



Then C_f is an ex-space of A with section σ , projection ρ given by

$$\sigma(a) = (\sigma_0 a, 1), \ \rho(b) = b, \ \rho(y) = \rho_1(y), \ \rho(x, t) = \rho_0(x).$$

Note that if B is a point, then C_f is an ordinary (unreduced) mapping cone. Here, different from [3], we shall regard the suspension ΣX as an ex-space by giving the following section and projection, namely

$$\hat{\sigma}(a) = <\!\!\sigma_{\scriptscriptstyle 0} a, 1\!\!>, \, \psi <\!\! x, t\!\!> =
ho_{\scriptscriptstyle 0}(x), \,\, \psi <\!\! b, i\!\!> = b, \,\,\, i \in I.$$

Thus, taking Y = B and $f = \rho_0$ in C_f , then we have $C_f = \Sigma X$. Now define $\alpha_f: Y \to C_f$ by $\alpha_f(y) = y$ and let $i: B \to C_f$ be the inclusion.

PROPOSITION 2.1. Let X, Y be ex-complexes of A. Assume that $\rho: C_f \rightarrow B$ is a fibration. Then we have $\alpha_f \circ f \cong i \circ \rho_0$ (ex-homotopic).

PROOF. We define $m_s: X \times I \cup A \times I \rightarrow C_f$ by

$$m_s(x,0) =
ho_0 x, \quad m_s(x,1) = lpha_f(fx), \quad m_s(a,t) = (\sigma_0 a, s+t-st).$$

Also define $k_s: X \times I \to B$ by $k_s(x,t) = \rho_0 x$ and $h_0: X \times I \to C_f$ by $h_0(x,t) = (x,t)$. Then $\rho h_0 = k_0$ and $\rho m_s = k_s | X \times I \cup A \times I$. Since ρ is a fibration, there is a homotopy $h_s: X \times I \to C_f$ such that $\rho h_s = k_s$ and $h_s | X \times I \cup A \times I = m_s$. If we now define $\eta_t: X \to C_f$ by $\eta_t(x) = h_1(x,t)$, then η_t provides an ex-homotopy between $\alpha_f \circ f$ and $i \circ \rho_0$.

REMARK. If B is a point, then the assertion in Proposition 2.1 reduces to $\alpha_f \circ f \simeq 0$.

PROPOSITION 2.2. Let Z be a ex-space of A with a cross-section s and let $g: Y \to Z$ be an ex-map. If $g \circ f \simeq s \circ \rho_0$ (ex-homotopic), then there is an ex-map $l: C_f \to Z$ such that $l \circ \alpha_f \simeq g$ (ex-homotopic)

PROOF. Let φ_t be an ex-homotopy between $g \circ f$ and $s \circ \rho_0$. We define

$$l': B \cup (X \times I) \cup Y \rightarrow Z$$

 $l'(b) = s(b), \quad l'(x,t) = \varphi_t(x), \quad l'(y) = g(y).$

Then l' induces an ex-map $l: C_f \to Z$ satisfing $l \circ \alpha_f \cong g$ (ex-homotopic).

REMARK. If $A = \phi$ and B is a point, then $\pi(,)$ reduces to the ordinary set of homotopy classes and $\pi(C_f, Z) \xrightarrow{\alpha_f^*} \pi(Y, Z) \xrightarrow{f^*} \pi(X, Z)$ is exact in the usual sense.

Let X be an ex-space of A with section σ_0 and projection ρ_0 . Then the cone CX is defined by

$$CX = B \cup (X \times I)/(x, 0) \sim \rho_0(x).$$

Define $\rho_0^c \colon CX \to B$ by $\rho_0^c(b) = b$ and $\rho_0^c(x, t) = \rho_0(x)$ and $\sigma_0^c \colon A \to CX$ by $\sigma_0^c(a) = (\sigma_0 a, 1)$ (here X is embedded in CX as $x \to (x, 1)$). Then CX is an ex-space of A.

PROPOSITION 2.3. Let $f: X \to Y$ be the injection where X and Y are over-spaces. Assume that (Y, X) satisfies the over-homotopy extension property. Then we have an over-homotopy $\chi_s: C_f \to C_f$ with $\chi_0 = 1$ and $\chi_1 | CX \cong \rho_0^c$.

PROOF. We define $\varphi_s : CX \to C_f$ by $\varphi_s(x,t) = (x, (1-s)t)$ and $\varphi_s(b) = b$. Let $j: X \to CX$ be an embedding given by j(x) = (x, 1). Since (Y, X) satisfies the over-homotopy extension property, there is an over-homotopy $\psi_s : Y \to C_f$ such that $\psi_s | X = \varphi_s \circ j$ and ψ_0 is the injection. Now define $\chi'_s : CX \cup Y \to C_f$ by

$$\chi'_s(b) = b \quad b \in B, \quad \chi'_s(x,t) = \varphi_s(x,t), \quad (x,t) \in CX, \quad \chi'_s(y) = \psi_s(y), \quad y \in Y.$$

Then χ'_s induces an over-homotopy $\chi_s: C_f \to C_f$ satisfying the required properties.

PROPOSITION 2.4. The inclusion $\alpha_f: Y \to C_f$ satisfies the ex-homotopy extension property.

PROOF. Let Z be any ex-space of A (over B) and $h_0: C_f \to Z$ an ex-map. Let $g_s: Y \to Z$ be an ex-homotopy with $h_0 \alpha_f = g_0$. According to Puppe [4], we

by

define a homotopy $h_s: C_f \to Z$ by

$$h_s(b) = b \quad b \in B \quad h_s(y) = g_s(y) \quad y \in Y$$
 $h_s(x,t) = egin{pmatrix} h_0(x,t+s/2) & t \geqslant 1/2 & s \leqslant 2-2t \ g_{s+2t-2}(fx) & t \geqslant 1/2 & s \geqslant 2-2t \ h_0(x,t+st) & t \leqslant 1/2. \end{cases}$

Then it is easily checked that h_s is a required ex-homotopy.

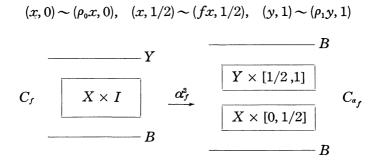
Let X, Y be ex-spaces of A (over B) and let $f: X \rightarrow Y$ be an ex-map. Now we consider the generalized Puppe sequence:

$$X \xrightarrow{f} Y \xrightarrow{\alpha_f} C_f \xrightarrow{\beta_f} \Sigma X \xrightarrow{\Sigma f} \Sigma Y$$

where β_f is defined by the following conditions

$$eta_f(b) = \langle b, 0 \rangle$$
 $b \in B$, $eta_f(x, t) = \langle x, t \rangle$ $(x, t) \in CX$,
 $eta_f(y) = \langle
ho_1 y, 1 \rangle$ $y \in Y$.

We easily see that the mapping cone C_{α_f} may be considered as the quotient space of $CX \cup CY$ by the relations:



Then $\alpha_f^2 \colon C_f \to C_{\alpha_f}$ may be defined by $\alpha_f^2(x, t) = (x, t/2), \ \alpha_f^2(y) = (y, 1/2), \ \alpha_f^2(b) = (b, 0).$

Define $R: C_{a_f} \to \Sigma X$ by R(b, i) = (b, i) $i = 0, 1, \quad R(x, t) = \langle x, 2t \rangle \quad 0 \leq t \leq 1/2,$ $R(y, t) = \langle \rho_1 y, 1 \rangle \quad 1/2 \leq t \leq 1$ and also define $S: \Sigma X \to C_{a_f}$ by $S \langle b, i \rangle = (b, i)$ $i = 0, 1, \quad S \langle x, t \rangle = \begin{cases} (x, t) & 0 \leq t \leq 1/2 \\ (fx, t) & 1/2 \leq t \leq 1. \end{cases}$

If we define a homotopy $\psi_s: \Sigma X \to \Sigma X$ by

$$egin{aligned} egin{aligned} \psi_s < &x, t > = iggl\{ egin{aligned} < &x, 2t/2 - s > & 0 \leqslant t \leqslant 1 - s/2 \ &<
ho_0 x, 1 > & 1 - s/2 \leqslant t \leqslant 1, \ &\psi_s < b, i > = < b, i >, \end{aligned}$$

then ψ_s provides an ex-homotopy between $1_{\Sigma \mathbf{x}}$ and RS. Also define a homotopy $\mathcal{X}_s: C_{\alpha_f} \to C_{\alpha_f}$ by

$$\begin{split} \mathcal{X}_{s}(x,t/2) &= \begin{cases} (x,t/2-s) & 0 \leqslant t \leqslant 1-s/2 \\ (fx,s+2t-1/2) & 1-s/2 \leqslant t \leqslant 1 \\ \mathcal{X}_{s}(y,1+t/2) &= (y,1+s+t-st/2) & 0 \leqslant t \leqslant 1, \end{cases} \end{split}$$

Then \mathcal{X}_s provides an ex-homotopy between $1_{\sigma_{a_f}}$ and SR. Thus C_{a_f} and ΣX have the same ex-homotopy type.

A similar consideration as in C_{α_f} can be applied to $C_{\alpha_f}^*$ and $C_{\alpha_f}^*$ may be considered as the quotient space of $CY \cup C(C_f)$ by the relations: $(y, 0) \sim (\rho_1 y, 0)$ $(y, 1/2) \sim (\alpha_f(y), 1/2), (u, 1) \sim (\rho u, 1) \ u \in C_f.$ Define $R_1: C_{\alpha_f}^* \to Y$ by

$$egin{aligned} R_1(b,i) &= (b,i) \quad i = 0,1, \quad R_1(y,t/2) = (y,t) \quad 0 \leq t \leq 1, \ R(u,1+t/2) &= (
hou,1) \quad 0 \leq t \leq 1 \quad u \in C_f, \end{aligned}$$

and also define $S_1: \Sigma Y \rightarrow C_{\alpha_f}$ by

$$S_1(b,i) = (b,i) \quad i = 0,1, \ S_1(y,t) = egin{cases} (y,t) & 0 \leqslant t \leqslant 1/2 \ (lpha_f y,t) & 1/2 \leqslant t \leqslant 1. \end{cases}$$

Then we have $R_1 \circ S_1 \simeq 1_{\Sigma r}$ (ex-homotopic) and $S_1 \circ R_1 \simeq 1_{\mathcal{C}^*_{a_f}}$ (ex-homotopic). On the other hand, it is easily checked that $R \circ \alpha_f^2 = \beta_f$ and $R_1 \circ \alpha_f^3 = \Sigma f \circ R$.

Summarizing the preceding statements, we get a following main theorem :

THEOREM 2.5. Let X, Y be ex-spaces of A (over B) and let $f: X \rightarrow Y$ be an ex-map. Then we have the following commutative diagram:

42

$$X \xrightarrow{f} Y \xrightarrow{\alpha_{f}} C_{f} \xrightarrow{\alpha_{f}^{2}} C_{a_{f}} \xrightarrow{\alpha_{f}^{3}} C_{a_{f}^{2}}$$

$$\downarrow 1 \qquad \downarrow 1 \qquad \downarrow 1 \qquad \downarrow R \qquad \downarrow R_{1}$$

$$X \xrightarrow{f} Y \xrightarrow{\alpha_{f}} C_{f} \xrightarrow{\beta_{f}} \Sigma X \xrightarrow{\Sigma f} \Sigma Y$$

in which R and R_1 are ex-homotopy equivalences.

CROLLARY 2.6. Let Z be an ex-space of A (over B) with a cross-section s. Suppose that $\rho: \Sigma X \rightarrow B$ and $\rho: \Sigma Y \rightarrow B$ are fibrations. Then the similar statements as in Prop. 2.2 hold in the following sequences:

$$\pi(\Sigma X, Z) \xrightarrow{\beta_f^*} \pi(C_f, Z) \xrightarrow{\alpha_f^*} \pi(Y, Z)$$
$$\pi(\Sigma Y, Z) \xrightarrow{(\Sigma f)^*} \pi(\Sigma X, Z) \xrightarrow{\beta_f^*} \pi(C_f, Z).$$

REMARK. If $A = \phi$ and B is a point, then we have the usual Puppe exact sequence:

$$\pi(\Sigma Y, Z) \xrightarrow{(\Sigma f)^*} \pi(\Sigma X, Z) \xrightarrow{\boldsymbol{\beta}_f^*} \pi(C_f, Z) \xrightarrow{\boldsymbol{\alpha}_f^*} \pi(Y, Z) \xrightarrow{f^*} \pi(X, Z).$$

PROPOSITION 2.7. Let Z be an ex-space of A (over B) with section σ' and projection ρ' . Let X, Y be ex-spaces of A and $f: X \to Y$ an ex-map. If $g: Z \to Y$ is an ex-map such that $\alpha_f \cdot g \cong i\rho'$ (ex-homotopic), then there exists an ex-map $h: \Sigma Z \to \Sigma X$ such that $\Sigma g \cong (\Sigma f)h$ (ex-homotopic).

PROOF. Let $\varphi_t: Z \to C_f$ be an ex-homotopy between $i\rho'$ and $\alpha_f g$. Now define $k: C_q \to C_f$ by k(b) = b, $k(z, t) = \varphi_t(z)$, $k(y) = \alpha_f(y)$. Then the desired map $h: \Sigma Z \to \Sigma X$ is given by $h < b, i > = <b, i >, i = 0, 1, h < z, t > = \beta_f k(z, t)$. Obviously h is well defined and an ex-map. If we define $\chi_s: \Sigma Z \to \Sigma Y$ by

$$egin{aligned} \chi_s < &z, t > = \Sigma f m{\cdot} h < &z, t (1+t-st)/1-s+t >, \ \chi_s < &b, i > = < b, i > \quad i = 0, 1, \end{aligned}$$

then χ_s is well defined and gives an ex-homotopy between $\Sigma f \cdot h$ and χ_1 (where $\chi_1 \langle z, t \rangle = \langle g(z), 1 \rangle$). Next define $\xi_s \colon \Sigma Z \to \Sigma Y$ by $\xi_s \langle z, t \rangle = \langle g(z), t(1 + st) / s + t \rangle$ and $\xi_s \langle b, i \rangle = \langle b, 1 \rangle$ i = 0, 1. Then ξ_s is well defined and provides an ex-homotopy between χ_1 and Σg . Thus we have $\Sigma f \cdot h \simeq \Sigma g$ (ex-homotopic).

and

3. Spanier-Whitehead duality in Σ -theory. In [3], I. M. James has proved the following theorem :

THEOREM A (Thm 2.1 in the loc. cit.) Let E be a fibre bundle over B with projection $\varphi: E \rightarrow B$. Suppose that fibre F is compact and that base B is regular and locally compact. Then the over-space ΣE is a fibre bundle with projection $\psi: \Sigma E \rightarrow B$.

THEOREM B (Thm 6.4 in the loc. cit.) Let B be regular and locally compact. Let A be a CW-complex represented as an over-space of B and let E be an ex-space of A. Let K be an ex-complex of A. Suppose that the projection $\rho: E \rightarrow B$ is a fibre bundle with compact fibre. If the fibre is r-connected, then the suspension $\Sigma_*: \pi(K, E) \rightarrow \pi(\Sigma K, \Sigma E)$ is injective if dim $K \leq 2r$, surjective if dim $K \leq 2r + 1$.

In the following the above theorem play essential roles. Henceforth we denote by $\pi($,) the set of over-homotopy classes of over-maps. We shall use Thm B in the cace $A = \phi$.

Throughout §3 we assume that B is a finite CW-complex and L, M are finite CW-complexes represented as over-spaces of B.

Assume that projection $M \to B$ is a fibre bundle with compact fibre F. Then we shall define $\{L, M\}$ to be $\lim_{\to} \pi(\Sigma^k L, \Sigma^k M)$. According to Theorems A and B, this is well defined. Here note that the fibre of $\Sigma^k M$ is the ordinary suspension $S^k F$ and hence (k-1)-connected. As in [3; p. 374], we define the functions

$$\begin{split} L^{\texttt{*}} : \ \pi(Z, M) &\rightarrow \pi(L * Z, L * M) \text{,} \\ L_{\texttt{*}} : \ \pi(Z, M) &\rightarrow \pi(Z * L, M * L) \end{split}$$

by taking the join with the identity on L, where Z is an over-space. We consider maps $u: L * M \to \Sigma^{n+1} \phi$. Such a map defines two functions

and $\begin{aligned} u_q: \ \{\Sigma^{q+1}\phi, M\} \to \{L * \Sigma^{q+1}\phi, \Sigma^{n+1}\phi\} \\ u^q: \ \{\Sigma^{q+1}\phi, L\} \to \{M * \Sigma^{q+1}\phi, \Sigma^{n+1}\phi\} \end{aligned}$

by taking the direct limit of the compositions

$$\pi(\Sigma^{q+k+1}\phi,\Sigma^{k}M) \xrightarrow{L^{*}} \pi(L * \Sigma^{q+k+1}\phi,L * \Sigma^{k}M) \cong \pi(\Sigma^{k}(L * \Sigma^{q+1}\phi),\Sigma^{k}(L * M))$$

$$\xrightarrow{(\Sigma^{k}u)_{*}} \pi(\Sigma^{k}(L * \Sigma^{q+1}\phi),\Sigma^{k}(\Sigma^{n+1}\phi))$$

and

$$\pi(\Sigma^{q+k+1}\phi,\Sigma^{k}L) \xrightarrow{M_{*}} \pi(\Sigma^{q+k+1}\phi*M,\Sigma^{k}L*M) \cong \pi(\Sigma^{k}(M*\Sigma^{q+1}\phi),\Sigma^{k}(L*M))$$

$$\xrightarrow{(\Sigma^{k}u)_{*}} \pi(\Sigma^{k}(M*\Sigma^{q+1}\phi),\Sigma^{k}(\Sigma^{n+1}\phi))$$

respectively. An over-map $u: L * M \rightarrow \Sigma^{n+1} \phi$ is called an (n-1)-duality if the above u_q , u^q are both bijections.

REMARK. If B is a point, then u becomes an n-duality in the sense of Spanier-Whitehead (see [2], [5]).

THEOREM 3.1. Let L, M be sphere bundles over B associated with the euclidean bundles ξ , η respectively. If the Whitney sum $\xi \oplus \eta$ is a trivial (n+1)-plane bundle, then there is an (n-1)-duality.

PROOF. Since $L * M = (\xi \oplus \eta)_1$ (see [3]), it follows that L * M is homeomorphic to $\Sigma^{n+1}\phi$, as an over-space. Denote this homeomorphism by $u: L*M \to \Sigma^{n+1}\phi$. We shall prove that u is actually an (n-1)-duality. We only prove that u^q is a bijection. Consider $M^*: \pi(\Sigma^{q+k+1}\phi, \Sigma^k L) \to \pi(M^*\Sigma^{q+k+1}\phi, M^*\Sigma^k L)$ and $L^*: \pi(M^*\Sigma^{q+k+1}\phi, M^*\Sigma^k L)$ $M * \Sigma^k L \rightarrow \pi (L * M * \Sigma^{q+k+1} \phi, (L * M) * \Sigma^k L)$. It is well known that $(L * M)^* = L^* M^*$ and $(\Sigma^k \phi)^*$ is the q-fold suspension. By Thm B, the suspension $\Sigma_* : \pi(\Sigma^{q+k+1}\phi, \Sigma^k L)$ $\rightarrow \pi(\Sigma^{q+k+2}\phi, \Sigma^{k+1}L)$ is bijective if $k \ge \dim B + q + 2$. Hence the composite $\{\Sigma^{q+1}\phi, L\}$ $\xrightarrow{M^*} \{\Sigma^{q+1}M, M*L\} \xrightarrow{L^*} \{\Sigma^{q+n+2}\phi, \Sigma^{n+1}L\} \text{ is a bijection. This shows that } M^*:$ $\{\Sigma^{q+1}\phi, L\} \rightarrow \{\Sigma^{q+1}M, M * L\}$ admits a left inverse and $L^*: \{\Sigma^{q+1}M, M * L\} \rightarrow \{\Sigma^{q+1}M, M * L\}$ $\{\Sigma^{q+n+2}\phi, \Sigma^{n+1}\phi\}$ admits a right inverse.

Now let ζ be an euclidean bundle such that $\zeta \oplus \xi$ is the trivial plane bundle and let N be a sphere bundle associated with ζ . Then repeating the preceding argument, it is shown that $L^*{\Sigma^{q+1}M, M*L} \rightarrow {\Sigma^{q+n+2}\phi, \Sigma^{n+1}L}$ admits a left inverse. Hence L^* is a bijection. Thus $M^*: \{\Sigma^{q+1}\phi, L\} \to \{M * \Sigma^{q+1}\phi, M * L\}$ is a bijection.

If an *n*-duality $u: L * L' \to \Sigma^{n+2}$ exists, then L' is called an *n*-dual of L. The following is immediate from Theorem 3.1.

PROPOSITION 3.2. If L is a sphere bundle over B, then there exists an n-dual for some n.

THEOREM 3.3. Let L, L' and K be fibre bundles having finite CWcomplexes as fibres. Let $u: L * L' \to \Sigma^{n+1} \phi$ be an (n-1)-duality. Then

and

$$u_{K}: \{K, L'\} \to \{L * K, \Sigma^{n+1}\phi\}$$
$$u^{K}: \{K, L\} \to \{K * L', \Sigma^{n+1}\phi\}$$

are bijections.

PROOF. First consider the situation when B is an m-cube $I^m(m \ge 0)$. If B is a point and F_K, F, F' are fibres of K, L, L' respectively, then it follows from [2; p. 207] that $u_K : \{F_K, F'\} \rightarrow \{F * F_K, S^n\}$ and $u_K : \{F_K, F\} \rightarrow \{F_K * F', S^n\}$ are bijections. If B is an m-cube I^m , then L, L' and K are trivial bundles and hence u_K and u^K are both bijections.

Now consider the general case. We proceed by induction on the sections of B. Let B_m denote *m*-section of B and $K|B_m$ the restriction of the bundle K on B_m . From the inductive assumption, $u_K : \pi(\Sigma^k K | B_m, \Sigma^k L'(B_m) \to \pi(\Sigma^k (L * K) | B_m, \Sigma^{n+k+1} \phi)$ $|B_m\rangle$ is bijective for sufficiently large k. Here we may assume that B is obtained from B_m by adjoining one cell \bar{e}^{m+1} . Let $\psi: I^{m+1} \to \bar{e}^{m+1}$ be the characteristic Then $\psi^*(\Sigma^k K)$, $\psi^*(\Sigma^k L)$ and $\psi^*(\Sigma^k(L*K))$ are trivial and hence we map. may assume that $\psi^*(\Sigma^k K) = I^{m+1} \times S^k F_K$, $\psi^*(\Sigma^k L') = I^{m+1} \times S^k F'$ and $\psi^*(\Sigma^k L * K)$) = $I^{m+1} \times S^k(F * F_K)$. Let $\psi: I^{m+1} \times S^k(F * F_K) \to \Sigma^k(L * K) | \bar{e}^{m+1}$ etc. be the covering map of ψ . Take an over-map $g: \Sigma^k(L * K) \to \Sigma^{k+n+1} \phi$ and denote by g_m the restriction of g to $\Sigma^{k}(L * K) | B_{m}$. Then by inductive assumption, there exists an over-map $f_m: \Sigma^k K | B_m \to \Sigma^k L' | B_m$ such that $u_{\kappa}[f_m] = [g_m]$, where [] denotes the over-homotopy classes. Let g' be the restriction of g to $\Sigma^{k}(L * K) | \bar{e}^{m+1}$. Define $\widetilde{g}: I^{m+1} \times S^k(F * F_K) \to I^{m+1} \times S^{n+k}$ by $\widetilde{\psi}\widetilde{g}(x, u) = g(\widetilde{\psi}(x, u))$, where $g(u) = \psi(x)$. Then by the former case we have an over-map $\tilde{f}: I^{m+1} \times S^k F_K \to I^{m+1} \times S^k F'$ such that $u_k[\widetilde{f}] = [\widetilde{g}]$. Next we define an over-map $f' : \Sigma^k K | \overline{e}^{m+1} \to \Sigma^k L' | \overline{e}^{m+1}$ by $f'(\widetilde{\Psi}(x, u)) = \widetilde{\Psi}\widetilde{f}(x, u)$. Then we easily see that $u_{\kappa}[f'] = [g']$. Since $\Sigma^{k}L \to B$ is a fibre bundle by Thm A, we can take f' such that $f'|\dot{e}^{m+1} = f_m|\dot{e}^{m+1}$. Now we define an over-map $f: \Sigma^k K \rightarrow \Sigma^k L'$ by

$$f(u) = f'(u) \quad \text{for} \quad u \in \Sigma^k K | \overline{e}^{m+1}$$
$$= f_m(u) \quad \text{for} \quad u \in \Sigma^k K | B_m.$$

Then f is well defined and $u_k[f] = [g]$. From the above construction, we can see that the over-homotopy class of f is uniquely determined by that of g.

THEOREM 3. 4. (1) Let $u: K * K' \to \Sigma^{n+1} \phi$ and $v: L * L' \to \Sigma^{n+1} \phi$ be (n-1)dualities. Let $f: K \to L$ and $g: L' \to K$ be over-maps satisfying the condition

$$u \circ (1 * g) = v \circ (f * 1).$$

Then there exists a map $h: C_f * C_g \to \Sigma^{n+2} \phi$ such that the following squares are homotopy commutative.

⁽¹⁾ The corresponding statement in usual homotopy theory is seen in [5, p. 463]. We do not know whether a map $h: C_f^* C_g \to \Sigma^{n+2} \phi$ is an *n*-duality in the our sense.

(A)

$$L * C_{g} \xrightarrow{1*\beta_{g}} L * \Sigma L' \longleftrightarrow^{\eta} \Sigma (L * L')$$

$$\downarrow \alpha_{f} * 1 \qquad \qquad \downarrow \Sigma v$$

$$C_{f} * C_{g} \xrightarrow{h} \Sigma^{n+2} \phi$$
(B)

$$C_{f} * K' \xrightarrow{1*\alpha_{g}} C_{f} * C_{g}$$

$$\downarrow \beta_{f} * 1 \qquad \qquad \downarrow h$$

$$\Sigma K * K' \xleftarrow{\omega} \Sigma (K * K') \xrightarrow{\Sigma u} \Sigma^{n+2} \phi$$

PROOF. We define $h: C_f * C_g \rightarrow \Sigma^{n+2} \phi$ by

$$h[(x, s), (y, t), l] = \begin{cases} \langle v[f(x), y, l], \frac{st(1+tl)(1+s-sl)}{(t+l)(1+s-l)} \rangle & s \ge t \\ \\ \langle u[x, g(y), l], \frac{st(1+tl)(1+s-sl)}{(t+l)(1+s-l)} \rangle & s \le t \end{cases}$$

where $(x, s) \in C_f$ and $(y, t) \in C_g$. Now consider the diagram (A). We easily see that $h(\alpha_f * 1)[x, (y, t), l] = \langle v[x, y, l], t(1 + tl)/t + l \rangle$. On the other hand the homeomorphism $\eta: L * \Sigma L' \to \Sigma(L * L')$ may be given by the formula

$$\eta[x, < y, t>, l] = \begin{cases} < [x, y, 2tl/1 - l + 2tl], 1 - l + 2tl/2 > 0 \le t \le 1/2 \\ < [x, y, 2l(1-t)/1 + l - 2tl], 1 - l + 2tl/2 > 1/2 \le t \le 1. \end{cases}$$

This formula can be deduced from the remark in §1 and [1; p. 225]. Hence in order to prove that $h \circ (\alpha_f * 1) \simeq \Sigma v \circ \eta \circ (1 * \beta_q)$, we have only to prove that η is homotopic to the map $[x, \langle y, t \rangle, l] \rightarrow \langle [x, y, l], t(1 + tl)/t + l \rangle$. But this is given by the following homotop:

$$\varphi_{s}[x, \langle y, t \rangle, l] = \begin{cases} \langle [x, y, 2tl/s(1-l) + 2tl], L \rangle & 0 \leqslant t \leqslant s/2 \\ \langle [x, y, l], L \rangle & s/2 \leqslant t \leqslant 1 - s/2 \\ \langle [x, y, 2l(1-t)l/s(1-l) + 2(1-t)l], L \rangle & 1 - s/2 \leqslant t \leqslant 1, \end{cases}$$

where L = t(2 - s - sl + 2tl)/2st + 2(1 - s)(t + l). By the analogous argument, we can prove that the square (B) is homotopy commutative.

References

- D. E. COHEN, Products and carrier theory, Proc. London Math. Soc., 7(1957), 219-248.
 D. HUSEMOLLER, Fibre bundless, McGraw-Hill, New York, 1966.
- [3] I. M. JAMES, Bundles with special structure : 1, Ann of Math, 89(1969), 359-390.
- [4] D. PUPPE, Homotopiemengen und ihre induzierten Abbildungen 1, Math. Z., 69(1958), 199-244.
- [5] E. H. SPANIER, Algebraic Topology, McGraw-Hill, New York, 1966.

DEPARTMENT OF MATHEMATICS HIROSAKI UNIVERSITY Hirosaki, Japan