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Let E be a locally convex Hausdorff space over the real number field
R. Let & be the set of all continuous mappings which are Fréchet-
differentiable at every point of E. If we define the product fg of two
mappings f, g: E — E by the composition:

(f9)(@) = f(9(x) for every z¢ E ,

then the set &r is a semigroup.
A one-to-one mapping ¢ of < onto itself such that

(1) #(f9) = ¢(f)s(9) for all f,9e &

is called an automorphism. An automorphism is said to be inner if there
is an invertible element %~ e & such that

(2) é(f) = hfh™ for every fe & .
The purpose of this paper is to prove the following theorem.

THEOREM. Let E be a Montel space. Then, every automorphism of
the semigroup <& 1is inner.

Preliminaries. Let E be a locally convex Hausdorff space over R and
let .&° be the set of all continuous linear mappings of E into itself with the
topology of uniform convergence on each bounded set. The real numbers
will be denoted by Greek letters. A mapping f: E— E is said to be
Fréchet-differentiable at ac E if there exists u e & such that

fla + 2) — fla) = u(x) + r(f, a, x) for every ve E,
where the “remainder” r(f, a, x) of f at a satifies the following condition:
(3) lime™r(f, a,ex) = 0

e—0
uniformly with respect to x on each bounded set. The continuous linear

mapping % is determined uniquely and is called the Fréchet-derivative of
f at a. We denote it by f'(a).
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The proof of the chain rule which implies the fact that < is a semi-
group with respect to the composition can be found in [1, p.216]. It is
known that every Fréchet-differentiable mapping is continuous if and
only if the space E is sequential, a proof of which can be found in
[2, p. 105].

The problem of the type considered here has been started by M.
Eidelheit [3] who has proved that, when E is a real Banach space, every
- ring automorphism of the ring & is inner. This was improved in [11] to
the effect that every semigroup automorphism of the semigroup & is inner.

On the other hand, K. D. Magill, Jr. has published a series of papers
in which he has shown that there are many semigroups of functions and
relations on topological spaces which have the property that every auto-
morphism is inner. Let us say that a semigroup has the Magill property
if every automorphism is inner. One of Magill’s result [5], in which we
have been especially interested, is that the semigroup < has the Magill
property if E is one-dimensional. We still do not know whether or not
<7 has the Magill property when E is an arbitrary real Banach space. In
[8], we have given a necessary and sufficient condition for an automor-
phism of the semigroup &7 to be inner, and in [9] we have shown that
<7 has the Magill property if E is finite-dimensional. In fact, in the latter
paper, we have shown that, if F is a real Banach space, every automor-
phism ¢ of the semigroup <& can be expressed in the form (2) where A
satisfies the following condition:

Wea.k-nlilm0 |7, a,x) =0 at every ac E .

z||—

Since ¢ is inner if this weak limit can be replaced by the strong limit,
for any real Banach space in which the sequential weak convergence is
equivalent to the strong convergence, the semigroup < has the Magill
property. This fact has been used in [10] to prove that the semigroup
of all Hadamard-differentiable mappings on any real Banach space has the
Magill property. A mapping f: E — FE is said to be Hadamard-differentiable
at a € E if the convergence in (3) is uniform on each sequentially compact
set. Since the weak and strong convergences for a sequence in a compact
set coincide, this result is a natural consequence of the above mentioned
result of [9].

Now, the motivation of this paper may be quite clear. A Montel
space is a locally convex Hausdorff space which is barrelled and satisfies
the condition that every bounded set is relatively compact. Therefore,
we shall at first show that the arguments in [9] can be carried over to
the case when E is a real locally convex Hausdorff space. Then, the
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Fréchet-differentiability of » will follow from the compactness of bounded
closed sets.

Since this is the first paper on the non-normed case, we shall make
it self-contained by not depending on the previous papers. Throughout,
let E be a locally convex Hausdorff space over R, E be the set of all
continuous linear functionals on E and ¢ be an automorphism of the semi-
group <.

We shall start with the following lemma. A continuous mapping is
said to be weakly Fréchet-differentiable at a point if it satisfies the con-
dition of the Fréchet-differentiability given above in which the topology
is replaced by the weak topology ¢(E, E).

LEMMA. There is a bijection h such that h and b~ are weakly Fréchet-
differentiable and satisfy the condition (2).

The proof is divided into nine steps.

Proof of Lemma. A mapping f: E — E is said to be constant if there
is ae E such that f(x) = a for every e E. We denote it by ¢,. Then,
it is obvious that
(4) ¢.f =c¢, and fe, = ¢

for any mapping f: EF— E. Since all constant mappings are continuous,
Fréchet-differentiable and c,(x) = 0 for any x ¢ E, they belong to =.

The following lemma is essentially due to Magill [5]. The case when
E is a Banach space was treated in [7].

1. There is a bijection h: E — E which satisfies (2).
PrOOF. For any x € E we define h(x) by

(5) ¢(cz) = ch(:v:) .

To do this, we have to show that the images of constant mappings are
again constant. Let us take an arbitray ye E. Then, since ¢ is onto,
there is fe & such that

¢(f ) =0y .
Then, since ¢,(z) = y for any ze E, by (1) and (4),

$(c.)(y) = $(c.)ey(2) = 6(c.)p(f)(2)
= ¢(c.f)(2) = ¢(¢c.)(2) ,
which means that ¢(c,) is constant and, hence, & can be defined.

To show that & is onto, let us take arbitrary ye £ and fe & such
that ¢(f) = ¢,. Then, since f = ¢7'(c,), by the same method as above we
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see that f is constant, or f = ¢, for some x ¢ E, and, hence, h(x) = y.

To show that h is one-to-one, assume that h(z) = k(y). Then, it fol-
lows from (5) that é(c,) = é(c,), which implies that ¢, = ¢,, and, hence,
x =9 .

Thus, h is a bijection. Moreover, for any fe <7, by (4) and (5),

#(f)(@) = (f)e.(y) = ¢(fer ) (¥)
= ¢ ') (¥) = ' (y) = hfR7'()
for any x€ F and ye E, which implies (2).

Needless to say, a bijection is not always continuous. However, in
our case, we can show that % is weakly continuous, which is enough for
" the following discussion. The following fact was proved by Magill [5]
for the case when E is one-dimensional. The case when E is normed was
treated in [8, p. 506].

2. For any ac E, the function {h(z), @y of E into R 1is continuous
with respect to x € E, where {h(x), @3> denotes the value of @ at h(x).

Proor. We take arbitrary ac E and positive «we R and show that
there is an open set U such that ae U and

[<h(x), @ — <h(a),8>| <a if zecU.

Let bc E be an arbitrary non-zero element and consider the mapping
g: E — E defined by

g9(x) = Kz — Ma), @P)b + h(a) ,
where G: R — R is a C=-function such that
BE) =0 if [flza;=1 if £=0.
Since g is a composition of continuous and Fréchet-differentiable mappings,

g itself belongs to &r. Therefore, there is fe & such that ¢(f) = g. As-
sume that f(a) = a. Then, by (2),
h(a) = hf(a) = gh(a) = b + R(a) ,

which contradicts the assumption that b == 0. Therefore, f(a) + a, and
there is an open set V such that f(a)e Vand a¢ V. Since f is continuous,
there is an open set U such that ac U, and f(x) € V whenever ze U.
Thus, x e U implies f(x) # @, which, since % is one-to-one, is equivalent
to gh(x) # h(a), which, by the definition of ¢, is equivalent to

[<h(x) — R(a), )| < « .
Thus, the proof is completed.
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If E is one-dimensional, the above two facts imply that % is a home-
omorphism of E onto E. Then, since it should be monotone, it is dif-
ferentiable almost everywhere. This is the fact Magill [5] has used to
prove that he &. Therefore, it may be important to observe here that
this phenomenon is exceptional. In fact, as we have shown in [9], if the
dimension of E is not less than two, there is a homeomorphism of E onto
itself which is not differentiable at any point in any direction. In other
words, if % is differentiable, it is entirely because of the relation (2).

In the following, we shall assume that 2(0) = 0. This does not restrict
the generality, because, if A(0) = 0, we only have to consider & — Cro
instead of k. As usual, (c,) stands for the set of all sequences {e.} R
such that lim,_.¢, = 0.

3. For any non-zero ac E and {e,} € (c,), the sequence {e;'h(c,a)} does
not converge weakly to zero.

PROOF. Let us assume that there exist non-zero ac E and {e.} € (ep)
such that

lim ;' {h(e,a), > = 0 for any zec E .
Then, we shall show that, for any £¢ R and any 7€ R,
(6) lim e;<h(ta + &,7a) — h(fa), T = 0 for any ze E .

To show this, we consider the mapping fe <7 defined by
f = Eca + n,

where we denoted by 7 the mapping x — 7w, which obviously belongs to
<. Then,

Sfle.a) =éa + epa and f(0) = éa,
and, hence, by (3),
&:'[h(Ga + ena) — h(éa)]
= &'[hf(e.2) — hf(0)]
= &' [#(F)h(e.a) — ¢(F)R(0)]
= &.'[6(f) (0)(R(e.a)) + 7(8(f), 0, h(e,a))]
= ¢(f) (0)(ex'(e,a)) + €3'7(8(), 0, h(c,0)) ,
where, since ¢(f)’(0) e &, we have
11_’13 <{B(f)(0)(e7 h(e,2)), > = 0 for every zc E .

Moreover, since the set {e;'h(c,a)} is bounded, if we write the remainder
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in the following form
r($(f), 0, €x(&3h(€.2))
the condition (3) of the Fréchet-differentiability of #(f) at 0 implies that

lim &;'r(g(f), 0, h(e,0)) = 0 .

Thus, the proof of (6) is completed.
Now, let us consider the function A\;: R — R defined by

A:(8) = <h(ga), > for £eR and Tek.
Then, this function satisfies the following three conditions:
(i) it is continuous;
(ii) 2z(0) = 0;
(iii) there is {e,} € (¢,) such that
lim ;' [Nz(& + €.0) — 2z(9)] =0

n—o0

for any £e R and any 7€ R.

From these three conditions, by a simple calculation similar to the
proof of the Rolle’s theorem, it follows that the function A; is identically
zero. Since Te K is arbitrary, this implies A(éa) = 0 for any &£ € R, which
is impossible because % is one-to-one, as was shown in the step 1.

4. For any ac E and {&,} € (c,), the set {e;*h7'(e,a)} s bounded.

ProoF. Let us assume that there is {¢,}e(c,) such that the set
{e;*h'(e,@)} is not bounded. Then,

(7) lim {e;'h7 (e ), G) = + oo
for some @c E. We put
B'n = <h~1(8na’)r d> : (n = 1) 2’ °° ') .

By the weak continuity proved in the step 2, lim,.. 0, = 0. (If we start
with ¢! instead of ¢, then, by exactly the same arguments, we have the
corresponding properties of A™'. We shall make free use of this fact.)
We can assume that all 6, are non-zeros.

Now, we consider the mapping a®a e & C &7 which is defined by

(e®a)(z) =<z, Gra for every e E .
Since ¢(a®a)e =, the following limit exists:
$(@®a)'(0)(a) = lim&;'4(a @ @) (e,a)
= lim (67°C7(c,0), )(3:*(3,3)) -
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Then, it follows from (7) that
lim 6;'h(6,a) = 0,

n—o0

which contradicts the conclusion of the step 3.

5. For any ac E and {€,} € (c,), there is a subsequence {¢,,} such that
{enih(e,, @)} 18 comvergent.

Proor. We can take @€ E such that

(8) s(a®a)’(0)(a) # 0 .
To see this, let us assume that
#(a®7%)(0)(a) = 0 for any zc E .

We take a sequence {6,} € (¢,) such that 8, = 0 for every n. Let M be the
set of all Ze E such that the sequence {(A7'(d,a), Z)} contains infinite non-
zero members.

If ¢ M, then, obviously, the sequence {9;'<h7'(d,a), Z)} converges to
Zero.

If e M, we have, by the assumption,

(9) 0 = lim 6;*¢(a ®%)(0.2)
= lim (8;'<h™(0,9), Z))(7a"M(T,0)) ,

where 7, = <h7'(8,a), £y. If the sequence {9;'<h™(0,a), Z)} does not con-
verge to zero, then there is a subsequence {n; such that

|07Kh7(0,,0), T)| 2 7 > 0

for some vye R. Then, from (9), the sequence {z;!k(z,a)} has to converge
to zero. This contradicts the conclusion of the step 3.

Therefore, for any Z ¢ E, the sequence {;<h'(d,a), Ty} converges to
zero. This, again, contradicts the conclusion of the step 3.

Thus, the existence of @e E which satisfies (8) has been proved.
We note here that, if @ satisfies (8), then —& also satisfies the same
condition. This can be proved as follows. Since a®(—a) = —(a®a),

@@ (—a))'(0) = ¢((—1)(e®a))'(0) = $(—1)'(0)p(a R a)'(0) .
However, ¢(—1)'(0) is a bijection; because
$(—1)'(0)¢(—1)'(0) = ¢(1)'(0) = 1.

Therefore, ¢(a®a)(0)(a) = 0 if and only if ¢(a® (—a))'(0)(a) # 0.
Now, (8) means that
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0 # Lim(@™<h™"(6a), @))Kh~"(0a), @)~h({h~"(6a), B)a) .

It is clear from this relation that the continuous function <h7'(da), @y of
de R takes non-zero values in any small neighbourhood of zero in R,
because, if this is not the case, ¢(a® @)’ (0)(¢) has to be zero. Therefore,
there is a sequence {0,) € (¢,) and 7, such that

<h—1(3na)’ E> =¢g, or -—¢, if n = Ny

By taking a subsequence of {¢,} and replacing @ by —a if necessary, we
can assume that

<hY(0,a), @) = ¢, for all n .
Then, we have
0 = lim(0;<h™(9,a), @>)(c; h(¢,0a)) .

Since the sequence {0;'¢h7'(d,a), @} is bounded by the step 4, there is a
subsequence {0,,} of {0,} such that the limit
lim Omkh™(0,,@), @) =

k

exists. Since {e;!h(¢,,a)} is bounded, a is not zero. Therefore, the fol-
lowing limit exists:

1im e h(e,,0) = a”'¢(a @ @)’ (0)(a) .
6. The limit lim, ., e 'h(ca) exists for any ac E.
Proor. We can assume that a = 0. At first, we shall show that,
for any @ E, the function \: R — R defined by
M8) = <h(éa), @)

is differentiable almost everywhere. We need to show that none of the
Dini derivatives of A can not be infinite ([6, p.270]). Now, assume that,
for instance, the upper right-hand derivative is not finite at a € R, which
implies that

Iime™ |Ma + &) — Ma)| = + « .
e=—+0
That this is impossible can been shown as follows. For any {c,} € (c,),
&l h(aa + €,a) — h(aa)]
= &' [h(ac, + 1)(e,a) — M(ac, + 1)(0)]

= &'[g(ac. + Dh(e,a) — d(ac, + 1)i(0)]
= g(ac, + 1)'(0)(ex'h(e,0)) + €3'r(d(ac, + 1), 0, h(e,a)) -
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By the step 4, the set {¢;'i(c,a)} is bounded, and, hence, by the condition
(3), the second member of the last formula converges to zero as % — co.
Since ¢(aec, + 1)'(0) is a continuous linear mapping, the first member is
contained in a bounded set. Therefore, the set

{ex'[Maa + €,0) — h(aa)] [n=1,2, ---}
is bounded, and, hence, the set
{e'IMa + &) = Ma)| Im=1,2, .-}
is also bounded. Thus, this Dini derivative can not be infinite.

Now, we return to the proof of the statement of this step. In view
of the conclusion of the step 5, what we have to show is the following:
if there are {¢,} € (c,) and {3,} € (¢,) such that
lim e;'h(e,0) = @, and lim 6;'h(d,a) = a, ,

then a, = a,.

At first, we see from the step 8 that A(fa) is continuous with respect
to & at the point ¢ = 0. By the same technique as that we have used
above, this point of continuity can be moved to any other point. Hence,
this is a continuous mapping of a separable space R into E. Therefore,
the smallest closed linear subspace containing the set {i(¢a)|&e R} is also
separable. Since the following argument is carried out entirely in this
subspace, we may assume that E itself is separable.

Let M be any equicontinuous subset of E. Then, by [4, p.259], M is
weakly sequentially separable, which means that every element of M is
the limit of a subsequence of a fixed sequence {Z;} of elements of M. We
consider the functions:

xt(E) = <h($a), Ez> (i = 1’ 2’ M .) .

Since each \; are differentiable almost everywhere, there exists @ ¢ R such
that all \; are differentiable at «, i.e., the limits

lilon e il + €) — M(a)]

exist for all <. On the other hand, we have
lim e;'[h(aa + €,0) — h(aa)] = ¢(ac, + 1)'(0)(a,)

and
1121 0% [Maa + 0,a) — h(aa)] = ¢(ac, + 1)'(0)(a,) .

Therefore,
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{plac, + 1) (0)(a), &) = {p(ac. + 1)'(0)(ar), T:p
for all ¢, from which it follows that

{g(ac. + 1)'(0)(a), T) = <glae, + 1)'(0)(ar), &)

for all Ze M. Since the class of all equicontinuous subsets is total
([4, p- 258]), we have

g(ac, + 1)'(0)(@) = g(ac, + 1)'(0)(a,) -
On the other hand, since (1 — ac,)(ac, + 1) = 1, we have
#(1 — ac,) (M(aa))g(ac, + 1)'(0) =1,
which means that ¢(ac, + 1)’(0) is one-to-one. Therefore, a, = a,.
We denote this limit by h*(0)(a).
7. For any a®a, Ma®a)e =.
PrOOF. Since
e [Ma® @)(ew) — Ma®a)(0)] = ek, ara) ,
it follows from the step 6 that the limit, as ¢ — 0, exists and it is
{z, @yR*(0)(a) ,
which is obviously linear and continuous with respect to x. In order to
prove the Fréchet-differentiability at 0, we have to show that the condi-
tion (8) is satisfied. Let B be a bounded set. For xze B such that

{z, @ = 0, the remainder is zero. Therefore, we have only to consider
xze B such that <(x, @) # 0. If the remainder divided by e:

e r((a®a), 0, ex) = e h(a @ a)(ex) — <z, Ah*(0)(a)
= (w, ay[(e<x, @)~ h(elw, aya) — h*(0)(a)]

is not uniformly convergent to zero on B, there are an open set U con-
taining 0, a sequence {x,} C B and a sequence {e,} € (¢,) such that

@y B[(€a0y @Y) (LT, @Ya) — ¥ (O)@)] € U .

However, since the sequence {{z,, @)} is bounded, it follows from the step

6 that the left-hand side is convergent to zero, which is a contradiction.
Now that A(a®a) is Fréchet-differentiable at 0, the mapping

é(c, + 1)h(a®a) is also Fréchet-differentiable at 0 for any z€ E, and

(8(c, + Dh(a® @) (0)(y) = ¢(c. + 1)'(0)[<y, apr*(0)(@)] -
This means that the convergence
lim e7'[A(x + <y, @ya) — h(x) — &y, @yg(c. + 1)'(0)h*(0)(@)] =0

=0
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is uniform with respect to y on any bounded set. If we replace  in this
formula by {®, @)a, this means that h(a®a) is Fréchet-differentiable at
x, which is an arbitrary element of E. Therefore, h(a®a)ec <.

8. h*(0) is linear and continuous in the weak topology.
ProoF. Since
@@a)h = ¢ (Me@a) e & ,
the convergence:
lgn0 er((a@a)h, 0, ex) = 0

is uniform with respect to « in any bounded set. Therefore,
(10) (@ a@)h)' (0)(x) = <h*(0)(x), @ya for any xzec E .

Since a and @ are arbitrary, the linearity of A*(0) is obvious, and, since
any net convergent weakly to zero is mapped by ((¢® @)’(0) to a net which
is also weakly convergent to zero, the relation (10) implies that A*(0) is
continuous in the weak topology.

We put
r(h, 0, x) = h(z) — h*(0)(x) .
9. For any Tc E and any bounded set B,
lim sup [{e~'r(h, 0, ex), Z)| = 0 .

e—0 z€eB

ProOF. Since
r((l@@a)h, 0, x) = (a@a)r(h, 0, x) ,
it follows from (10) that
13—{r01 e a®a)rh, 0, ex) = 0

is uniform with respect to  in any bounded set, and this is exactly what
we needed.

Thus, we have proved that % is Fréchet-differentiable at 0 with respect
to the weak topology. Then, by the same method as that we have used
before, we can show that this point of differentiablility can be moved to
any other point, and the proof of this lemma is completed.

PrRoOF OF THEOREM Let E be a Montel space over R. We need to
show that, if ¢ — 0, {e7'r(h, 0, ex)} converges to zero uniformly with respect
to # on each bounded set. Let us assume that this is not the case. Then,
we have a neighbourhood U of 0, a bounded set B, a sequence {¢,} € (c,)
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and a sequence {x,} C B such that
&'r(h, 0, 6,2,)¢ U .

However, since every weakly convergent sequence in a Montel space is
strongly convergent to the same limit ([4, p.870]), this contradicts the
conclusion of the above lemma.
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