DENSITY PROPERTIES OF HAUSDORFF MOMENT SEQUENCES

Dedicated to Professor Gen-ichirô Sunouchi on his 60th birthday

Rolf Trautner

(Received Aug. 6, 1971)

Let $d_{n}=\int_{0}^{1} t^{n} d \chi(t), \chi \in V[0,1]$ be a moment sequence. It is shown that $d_{n_{k}}=O\left(c^{n_{k}}\right)\left(0<c<1, n_{k}\right.$ naturals) and $\sum 1 / n_{k}=\infty$ implies $d_{n}=O\left(c^{n}\right)$ for all n, and hence $d_{n}=\int_{0}^{c} t^{n} d \chi(t)$.

1. Let $\chi \in V[0,1](V[a, b]$ denotes the space of functions of bounded variation on $[a, b])$ and assume that $\chi(t+0)=\chi(t)$ for $t \in[0,1)$. In what follows we use the notation

$$
\begin{equation*}
d_{n}=\int_{0}^{1} t^{n} d \chi(t) \quad n=0,1,2, \cdots \tag{1}
\end{equation*}
$$

We will call

$$
\begin{equation*}
\rho=\inf \{v: \chi(t)=\chi(1), v \leqq t \leqq 1\} \tag{2}
\end{equation*}
$$

the order of $\chi(t)$ and also the order of the d_{n}. The function

$$
\begin{equation*}
D(z)=\sum_{0}^{\infty} d_{n} z^{n}=\int_{0}^{1} d \chi(t) /(1-z t) \tag{3}
\end{equation*}
$$

is regular in the complex plane apart from a cut from $1 / \rho$ to ∞, and the integral representation holds in this region. Furthermore, if δ is the distance between z and the line $[1 / \rho, \infty)$, we have

$$
\begin{equation*}
D(z)=O\left(\delta^{-1}\right), \quad \delta \rightarrow 0 \tag{4}
\end{equation*}
$$

Hardy [2] p. 267 states the following theorem: If $d_{n}=O\left(c^{n}\right)$ for some $0<c<1$, then d_{n} is at most of the order c.

A sharper result follows from a theorem of Pòlya [5] p. 777, see also Bieberbach [1] p. 78 (but none of the authors gives a prove):

Let $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ be analytic in the circle $|z|<a, a>1$, apart from the line $[1, a]$ and let $f(z)=O\left(\exp \left(\delta^{-\alpha}\right)\right), \delta \rightarrow 0, \alpha>0$, where δ is the distance between z and the line [1, a]. Let $a_{n_{k}}=O\left(c^{n_{k}}\right)$ for some $c, 0<c<1$, and a subsequence n_{k}. Then either $f(z)$ is analytic at $z=1$ or n_{k} has density zero (i.e. $\lim k / n_{k}=0$). Applying this result to the function $D(z)$, we immediately find

Theorem 1. If

$$
\begin{equation*}
d_{n_{k}}=O\left(c^{n_{k}}\right), \quad 0<c<1, \tag{5}
\end{equation*}
$$

holds for a subsequence n_{k}, then either

$$
\begin{equation*}
\lim _{k \rightarrow \infty} k / n_{k}=0 \tag{6}
\end{equation*}
$$

or d_{n} is at most of order c.
In this paper we will show (Theorem 2) that (6) can be replaced by the stronger statement

$$
\begin{equation*}
\sum_{0}^{\infty} 1 / n_{k}<\infty \tag{7}
\end{equation*}
$$

which is best possible. This result can be also applied to Laplace transforms (Theorem 3).
2. Lemma. Let $n_{k}, k=1,2 \cdots$, be integers with the properties $0<$ $n_{k}<n_{k+1}$,

$$
\begin{equation*}
\sum_{1}^{\infty} 1 / n_{k}=\infty \tag{8}
\end{equation*}
$$

Then there exists a subsequence $n_{k_{j}}$ with density zero, i.e.

$$
\begin{equation*}
\lim _{j \rightarrow \infty} j / n_{k_{j}}=0, \tag{9}
\end{equation*}
$$

such that

$$
\begin{equation*}
\sum_{j=1}^{\infty} 1 / n_{k_{j}}=\infty \tag{10}
\end{equation*}
$$

Proof. We may assume that

$$
\begin{equation*}
\lim \sup k / n_{k}=a>0 \tag{11}
\end{equation*}
$$

If $\eta(m)$ is defined for $m=1,2, \cdots$, and if $\lim _{m \rightarrow \infty} \eta(m)=0$, then Toeplitz' theorem implies

$$
\begin{equation*}
\lim _{M \rightarrow \infty} 2^{-M} \sum_{1}^{M} 2^{m} \eta(m)=0 \tag{12}
\end{equation*}
$$

Let

$$
\begin{equation*}
I_{m}=\left(2^{m}+1,2^{m+1}\right), \quad m=1,2, \cdots \tag{13}
\end{equation*}
$$

It follows from (8) that infinitely many $I_{m_{l}}$ exist such that the number of terms $n_{k} \in I_{m_{l}}$ is at least $\varepsilon \cdot 2^{m_{l}}$ for some $\varepsilon>0$. Otherwise, the number of terms would be $\eta(m) \cdot 2^{m}$ with $\eta(m) \rightarrow 0$, and (12) shows that the density of n_{k} is zero in violation of (11).

We now take from each interval $I_{m_{l}}$ the first $\left[\varepsilon \cdot 2^{m_{l}} / l\right]$ terms and define the subsequence $n_{k_{j}}$ as the union of these terms. It follows that

$$
\sum_{j=1}^{\infty} 1 / n_{k_{j}} \geqq \sum_{l=1}^{\infty}\left(\varepsilon \cdot 2^{m_{l}} / l\right) \cdot\left(1 / 2^{m_{l}+1}\right)=\infty
$$

which is (10). Using (12) we finally get

$$
\lim _{j \rightarrow \infty} j / n_{k_{j}} \leqq \lim _{L \rightarrow \infty} 2^{-m_{L}} \sum_{l=1}^{L} \varepsilon \cdot 2^{m_{l}} / l=0,
$$

i.e. $n_{k_{j}}$ has density zero.

Theorem 2. Let d_{n} be Hausdorff moments. If

$$
\begin{equation*}
d_{n_{k}}=O\left(c^{n_{k}}\right), \quad 0<c<1 \tag{5}
\end{equation*}
$$

holds for a subsequence n_{k}, then either d_{n} is at most of order c or

$$
\begin{equation*}
\sum_{k=1}^{\infty} 1 / n_{k}<\infty \tag{7}
\end{equation*}
$$

Proof. Assume that

$$
\begin{equation*}
\sum_{k=1}^{\infty} 1 / n_{k}=\infty \tag{14}
\end{equation*}
$$

Without loss of generality we may assume that
a) n_{k} has density zero (by the preceding lemma)
b) $n_{0}=0, n_{1}=1$ (otherwise add these terms to the sequence n_{k})
c) $d \chi(t)=\phi(t) d t$ with $\phi(t)$ continuous on [0,1] (otherwise take the moment sequence $\left.d_{n}^{\prime}=d_{n+2} /((n+2)(n+1))\right)$
d) the order of $\chi(t)$ is $\rho=1$ (otherwise take $d_{n}^{\prime \prime}=d_{n} / \rho^{n}$).

We define the functions

$$
\phi_{b}(t)=\left\{\begin{array}{ll}
0 & 0 \leqq t<b \tag{15}\\
\phi(t) & b \leqq t \leqq 1
\end{array} .\right.
$$

Next we construct the generalized Bernstein polynomials (Lorentz [4] p. 44, Gelfand [3] p. 71) associated to the sequence n_{k}

$$
\begin{equation*}
p_{k \nu}(t)=(-1)^{k-\nu} \sum_{\mu=\nu}^{k} t^{n_{\mu}}\left(n_{\mu} / n_{\nu}\right) \prod_{\substack{j=\nu \\ j \neq \mu}}^{k} n_{j} /\left(n_{\mu}-n_{j}\right) \tag{16}
\end{equation*}
$$

The condition (14) guarantees that for any function $f(t)$ continuous on $(a, b) \subset[0,1]$ and bounded on $[0,1]$ we have

$$
\begin{equation*}
\sum_{\nu=0}^{k} p_{k \nu}(t) f\left(\tau_{k \nu}\right) \longrightarrow f(t) \text { for } k \longrightarrow \infty \tag{17}
\end{equation*}
$$

uniformly on every compact subset of (a, b), where

$$
\left\{\begin{array}{l}
\tau_{k \nu}=\prod_{j=\nu+1}^{k}\left(1-1 / n_{j}\right) \quad 0 \leqq \nu<k \tag{18}\\
\tau_{k k}=1
\end{array}\right.
$$

We apply the approximation (17) to the function $\phi_{b}(t)$. The sequence of functions

$$
\begin{equation*}
\phi_{b}^{k}(t)=\sum_{\nu=0}^{k} p_{k \nu}(t) \phi_{b}\left(\tau_{k \nu}\right) \tag{19}
\end{equation*}
$$

converges to $\phi_{b}(t)$ uniformly for t outside of an arbitrary small neighbourhood of b. Furthermore, since the $\phi_{b}^{k}(t)$ are uniformly bounded on $[0,1]$ we have

$$
\begin{equation*}
\sigma_{k}=\left|\int_{0}^{1} \phi_{b}^{k}(t) \phi(t) d t\right| \rightarrow \int_{0}^{1} \phi_{b}(t) \phi(t) d t=\int_{b}^{1} \phi^{2}(t) d t \tag{20}
\end{equation*}
$$

In what follows we will show that

$$
\begin{equation*}
\sigma_{k}=o(1) \tag{21}
\end{equation*}
$$

holds, if b is sufficiently close to 1 , which implies $\phi(t)=0$ on [b, 1]. This is a contradiction to the defition of the order ρ of $\chi(t)$.

Let $\nu_{0}=\nu_{0}(k)$ be the minimum of the numbers ν with $\tau_{k \nu} \geqq b$. Then we have

$$
\begin{aligned}
\sigma_{k} & =\left|\sum_{\nu=\nu_{0}}^{k} \int_{0}^{1} \phi_{b}\left(\tau_{k \nu}\right) p_{k \nu}(t) \phi(t) d t\right| \\
& \leqq C \sum_{\nu=\nu_{0}}^{k} \sum_{\mu=\nu}^{k}\left|d_{n_{\mu}}\right|\left(n_{\mu} / n_{\nu}\right) \prod_{\substack{j=\nu \\
j \neq \mu}}^{k} n_{j}| | n_{j}-n_{\mu} \mid \\
& \leqq C \sum_{\nu=\nu_{0}}^{k} \sum_{\mu=\nu}^{k} c^{n \mu}\left(n_{\mu} / n_{\nu}\right) \prod_{\substack{j=\nu \\
j \neq \mu}}^{k} n_{j}| | n_{j}-n_{\mu} \mid .
\end{aligned}
$$

Let $j_{1}=j_{1}(\mu)$ be the maximum of numbers j with $n_{j} \leqq 2 n_{\mu}$ and $j_{0}=$ $j_{0}(\mu)$ be the minimum of numbers $j \geqq \nu$ with $n_{j} \geqq n_{\mu} / 2$, then

$$
\begin{aligned}
\prod_{\substack{j==\\
j \neq \mu}}^{k} n_{j}| | n_{j}-n_{\mu} \mid & \leqq \prod_{\substack{j=j_{0} \\
j \neq \mu}}^{j_{1}} n_{j} /\left|n_{j}-n_{\mu}\right| \cdot \prod_{j=j_{1}}^{k} n_{j} /\left|n_{j}-n_{\mu}\right|=\Pi_{1} \cdot \Pi_{2} \\
\Pi_{1} & \leqq\left(2 n_{\mu}\right)^{j_{1}-j_{0}} /\left(\Gamma\left(j_{1}-j_{0}\right) / 2+1\right)^{2} \\
& \leqq\left[2 n_{\mu} \cdot 4 e /\left(j_{1}-j_{0}\right)\right]^{\left(j_{1}-j_{0}\right)}
\end{aligned}
$$

Since the sequence n_{k} has density zero, we have for large k

$$
\begin{equation*}
\Pi_{1}^{1 / n_{\mu}} \leqq\left[8 e \cdot n_{\mu} /\left(j_{1}-j_{0}\right)\right]^{\left(j_{1}-j_{\nu}\right) / n_{\mu}} \leqq 1+\varepsilon . \tag{22}
\end{equation*}
$$

Furthermore we have

$$
\begin{gathered}
\Pi_{2}=\prod_{j=j_{1}}^{k}\left|1-n_{\mu} / n_{j}\right|^{-1} \\
\left|\log \Pi_{2}\right|=-\sum_{j=j_{1}}^{k} \log \left|1-n_{\mu} / n_{j}\right| \leqq 2 n_{\mu} \sum_{j_{1}}^{k} n_{j}^{-1}
\end{gathered}
$$

From the definition of ν_{0} follows that b is roughly

$$
\prod_{j=\nu_{0}}^{k}\left(1-1 / n_{j}\right) \leqq \exp \left(-\sum_{j=\nu_{0}}^{k} 1 / n_{j}\right)
$$

and a lower bound for b is obtained from

$$
\sum_{j=\nu_{0}}^{k} 1 / n_{j} \leqq 2 \cdot|\log b| \text { for large } k
$$

and therefore

$$
1 / n_{\mu} \log \Pi_{2} \leqq 4 \cdot|\log b|
$$

If b is chosen sufficiently close to 1 we have

$$
\begin{equation*}
\Pi_{2}^{1 / n} \mu \leqq 1+\varepsilon . \tag{23}
\end{equation*}
$$

Combining (22) and (23) we find

$$
\begin{aligned}
\sigma_{k} & \leqq C \sum_{\nu=\nu_{0}}^{k} \sum_{\mu=\nu}^{k} c^{n_{\mu}} n_{\mu} / n_{\nu} \Pi_{1} \Pi_{2} \\
& \leqq C \sum_{\nu=\nu_{0}}^{k} \sum_{\mu=\nu}^{k}\left[c\left(n_{\mu} / n_{\nu}\right)^{1 / n_{\mu}}(1+\varepsilon)^{2}\right]^{n_{\mu}}
\end{aligned}
$$

The expression in the brackets is for large k less than 1 , which yields

$$
\begin{array}{rlr}
\sigma_{k} & \leqq C \sum_{\nu=\nu_{0}}^{k} \sum_{\mu=\nu}^{k} A^{n_{\mu}} & (0<A<1) \\
& \leqq \sum_{\nu=\nu_{0}}^{k} O\left(A^{n_{\nu}}\right)=O\left(A^{n_{\nu}}\right)=o(1)
\end{array}
$$

The result of theorem 2 is best possible. For let n_{k} be a sequence of positive integers satisfying $\sum_{1}^{\infty} 1 / n_{k}<\infty, n_{0}=0$, and let C^{\prime} be the space of polynomials f^{\prime} spanned by the $t^{n_{k}}$. Define a bounded linear functional d^{\prime} on C^{\prime} by $d^{\prime}\left(f^{\prime}\right)=f^{\prime}(0)$, which can be continuated to a functional d on the space C of continuous functions f on [0,1$]$ by $d(f)=f(0)$. By Müntz' approximation theorem C^{\prime} is not dense in C and hence there exists another continuation $d_{1} \neq d$ onto C,

$$
d_{1}(f)=\int_{0}^{1} f(t) d \chi(t)
$$

where $\chi(t) \in V[0,1]$ has positive order ρ, and $d_{1}\left(t^{n_{k}}\right)=0, k \geqq 1$.
In terms of Laplace transforms the preceding theorem reads as follows:

Theorem 3. Let $d(z)=\int_{0}^{\infty} \exp (-t z) d \phi(t), \phi(t) \in V[0, \infty) \phi$ real and left continuous on $(0, \infty)$.

If for a sequence n_{k} of integers, $0<n_{k}<n_{k+1}$, and a $c, 0<c<1$, $d\left(n_{k}\right)=O\left(c^{n_{k}}\right)$ holds, then either $\sum_{1}^{\infty} 1 / n_{k}<\infty$, or $\phi(t)$ is constant on $[0,|\log c|)$ and so $d(z)=O\left(c^{x}\right), z=x+i y, x \rightarrow \infty$.

We finitely remark that our result contains a well known theorem of Titchmarsh [6] p. 166 stating that $h(x)=\int_{0}^{x} f(x-t) g(t) d t, x \geqq 0, f, g$ continuous, vanishes identically if and only if $f(x)$ or $g(x)$ vanishes identically. For let $d_{n}^{(1)}, d_{n}^{(2)}$ be Hausdorff moments with orders ρ_{1} and ρ_{2} then by theorem 2 the order of the product sequence $d_{n}=d_{n}^{(1)} d_{n}^{(2)}$ is $\rho=\rho_{1} \rho_{2}$, which gives a generalized form of Titchmarsh's theorem. Clearly this can also be derived from Pòlya's theorem.

I am much indepted to Professor Peyerimhoff who encouraged me to write this paper and who gave helpfull suggestions.

References

[1] Bieberbach, Analytische Fortsetzung, Springer 1953.
[2] Hardy, Divergent Series, Oxford 1956.
[3] Gelfand, Differenzenrechnung, Berlin 1958.
[4] Lorentz, Bernstein Polynomials, Toronto 1953.
[5] Pòlya, Untersuchungen über Lücken und Singularitäten von Potenzreihen, II. Mitteilung, Ann. Math. II, 34, 731-777, (1953).
[6] Yosida, Functional Analysis, Springer 1968.
Abteilung für Mathematik der Universität
79 Ulm
Blaubeurer Strabe 30

