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1. Introduction. In the previous papers [6], [7] we have studied
the convergence properties and inversion theory of convolution transform

(1) @ = " 6@ - tday,

for which the kernel G(t) is of the form

(2) GO = 5| [FeIeds .
TV J—ice

Here F(s) is the meromorphic function with only real zeros and poles,
and is of the form

F(s) = ¢ TT (1 — sfaer™s/(1 — sfeer™s,

where b, {a,}7, {c;} are constants such that 0 < a,/e, <1, Do a2 < o
and ¢, may be equal to =+ .

In these papers we assumed the order of [F(s)]™ as |7| — (s = 0 + i7),
however, this order should be determined originally by the correlation of
zeros a, and poles ¢, of F(s).

From this point of view, Z. Ditzian and A. Jakimovski [1], [2], [3]
showed that for all integer n < N (N = N({a)}, {ci})

|[F(s)[™ = 0(z[™)  [z]— e

uniformly in the strip 6| < R for every R and they obtained the inver-
sion formula of the transform (1) which differs from that of ours where
it was constructed by repeated integro-differential operators and our
formula consisted of integral operator and differential operator separated
from each other.

If the series >,p, (a;* — ¢;') converges then the kernel G(f) becomes
a special one called class III kernel and has the characteristic properties

(21, [7D-
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In this paper we shall suppose that
(3) 2 (@it = 6t) = oo
and for some positive number ¢

(4) Qs — @ >0 (b=1,2,-).

The condition (3) means that G(¢) is a kernel of class II, and in §4
we shall show that this condition implies N = o necessarily and the
infinite differentiability of G(f) can be obtained. However, this condition
(3) is not enough to become clear the construction of G(¢) completely.

If we assume the condition (4) we shall see that the class of kernel
G(t) can be considered as a class of Dirichlet series and that if we replace
the variable ¢ of G(¢) by the complex variable z the analyticity of G(2)
can be obtained. This class of Dirichlet series is a generalization of the
class of entire function generated by the given sequence which is studied
by J. Mikusinski ([4]). Though the assumption (4) seems to be severe,
it causes no inconvenience for practical use.

2. Function H(f) as a Dirichlet series. For brevity, we assume
hereafter that b = 0 and the constants a,, ¢, are positive and increasing.
Let us define

®) = { amet ™ (—ee <t < ai)
AR (@' < t< o),
h(®) = |”_ (1 - afedouu + ) + B4t - (@ = o),
s (3

where j(t) is the standard jump function, that is, j(¢) =1 for ¢t > 0, 1/2
for t =0, and 0 for £ < 0. By a simple calculation it is easily verified
that A,(f) is a normalized distribution function and that

hu(®) = (1 — aufe) expfadt — (' — )} (< 0 — e)
k(@i — ¢¢') = 1 — a,/2¢,
[ etam®) = (1 — sfe)ersit — sfayer=,

the bilateral Laplace transform converging absolutely for Rs < a,.
THEOREM 2.1. If we set for n =k (n = 2)
H,(t) = h, % hy % <<« % h,(1) ,

where the operation %x denotes the Stieltjes comvolution for distribution
Sumnctions, then:
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A. H,(t) is a normalized distribution function;

B. i B’Sﬂ) exp {aj[t - kzﬂ‘:1 (a;1 — C;l)]} t < kz’;l (azl _ c;l)
Hyt) =41 — %% 0n t= 3 (gt — )
2¢,c,+ 4+ C, =
1 t>k§n}=1(a;‘—c;1) ,
where
Bj(n) = ;!;Il (1 — aj/Ck)/ kl;[l’(l - aj/a,,) (] = 1, 2, oo, n)

and T’ denotes the product excluding the factor for k = j;

C. S:" e~ d H,(t) = p (1 — sfe)e’’™s[(1 — sfag)e’™ ,

=1
the bilateral Laplace transform converging absolutely for Rs < a,.

ProoF. Since the conclusion A and C are familiar results [2], [6], [7],
let us prove only conclusion B by the induction.

For the sake of simplicity we shall write s, for >};_, (a;* — ¢i').

In the case n = 2, if ¢t > s,, then h,(t — u) =1 for w < a;* — ¢;* and

—1

we have h, % hy(t) = Saz o dhy(u) + a,/c, = 1, and if t < s, then

—1_,—1

P h(t — wdha(w) + hy(t — (a5t — c;*»%

—o0

a

ho h(®) = |

1

= S:"hx(t — w)dhy(u) + SZ— ‘;‘hl(t — wydhy(w) + hy(t — (a5 — ¢;Y)) %z_

81

— (1 _ az/cz)euzlaz—leaz(t—al)

(L= afe)(l — aedaerinmentgni L [gersrig
ay — a,

1) — e("'Z_“l) (t—sl)]

+ ayfe,(1 — a,/e)e™ 1 lem b0

= {a2/02 + Qs (1 _ a2/cz)}(1 _ al/cl)e“l’““le“l“‘sx’

2 1

+ {1 - = (1- al/cl)}(l - az/c2)eazlcz_lea2(t—w

2 1

— ax(c, — a)(c, — al)eal(t—sz) + a,(c, — ay)(c, — az)ea2(t—s2)
(@, — ay) cc(a — a)

— Bl(z)eal(t—-sg) + Bz(z)eaz(t—-xz)

and it is clear that h, % hy(s;) = 1 — a,a,/(2c,c;). Thus we have proved the
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conclusion C for n = 2.
Now, we assume that the conclusion B is valid for n = m.
t < Spi, t— 8, < any, — cny, and we have

Hyoo®) = |*_Hut = )i ()

- S Ho(t — w)dh,, (u) + S ST ¢ )R ()

00

+ Ha(t — (ahy — ) dmtt
c'm.+l.
= (L = @pys/Cpy)eomsiomss
-1

—1
Cmt1 " m+1 [ X —1 —
+ @1 - am+1/cm+1)am+1g >, Bjmerittmrom gom+1v =~ Iy
t =

—Sm

m
+ (Umi1/Cmts) Z Bjmeit=my)
'm+1B_;'M)

= (1 — @pss/Cpi)em 147 m 40 + (1 — Qpio/Ct) Z eitom+y)

FE M
a B( ) m
— (1 = apsi/Cny)) E —mtiy  etm i mil) 4 @ [Cryy >y BiM e o)
=t Ay — @4 j=t
Ot B™ -
= 3{ - aurfonn) 2Bl 0 Bpje,ferstrn
= m+1 T Uj

(m)
{1 = tnsifend = (1 = Guifone) 3 LBl Ngemimimin

3=l Qi — A

It is easily seen that
B(m)

(1 - am+1/cm+1)—gﬂ‘i— + am+1BJgM)/cm+1 = B:r(m+1) (j = 1) 2’ % m) ’

Uy — @

1- am+1/cm+l){1 - i _aﬂt‘l—B-;r‘)—} = Bin,

= Gy — 05
and hence for t < s,.,
m-+1
Hys(®) = 35, Birroerstme
i=1

On the other hand, it is also clear that

For

Hpi(Sms) =1 — @485 ¢+ + @nii/(26:65 +++ Cnys) and Hpi(8)) =1 for &> s,y
Thus the conclusion B is valid for » = m + 1 and this completes the

proof.

COROLLARY 2.1. If H,(t) is defined as in Theorem 2.1, then for

n (n=2)
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(1) > Aperit t<s,
-H'Ib(t) = 1 —_— a1a2 eo e an/(zclcz s C,n) t = 8,
1 t > sn ’
where
(2) AP = T = afe)erisfe [T (1 — ajja)ess=s .

This is an immediate rewriting of the conclusion B of the preceding
theorem.

THEOREM 2.2. Let
A5 =TT (1= agleersife [I' (1 — ajfa)ers

G=1,2 ---). Then the series H(t) = 3.7, A;e®i* converges absolutely and
uniformly in any interval (— oo, t] (—oo < t, < o0).

ProOF. Since Y7, a;?< oo and D)5, ¢;2 < oo the infinite products
1;[ (1 — s/a,)e’’** and IkI (1 — s/e,)e!’*s converge absolutely and uniformly
in any closed bounded set of the s-plane that contains none of the points
a, and ¢,. Thus A; are well-defined for every j. If all ¢, equal + o,
then H(t) is a slight modification of entire fuction which treated by
Mikusinski [4, p. 388] and the most part of the proof of this theorem due
to him.

Now, for any fixed 7 we denote by k(j) the largest k such that ¢.< a;.
Evidently, k(j) < j and k(j) | « as j 1 oo.

We have

log | 4,1 = 5, (og 11— ayfes] + asfes) — S Qoglafa, — 1) + asa)

— 3 (log(l — asla) + asla) — 1

k=j+1
k(4) oo
p—i = (log(aj/ck - 1) + a]-/ck - aj/ak) + k=kz(j‘)+1 (log(l —_ aj/ck) + aj/ck)
— S aifa, — S log(asa, — 1) — 3 (log(l — asfay) + aslay) .
k=k(j)+1 k=1 k=j3+1

It is clear that

S, (log(l — ajle) + a;fe) < 0,

k=k(5)+1

and, using the fact that the function log(a;/x — 1) is decreasing for
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0< x < ay it is also clear that
k(5) k()
2 log(as/e, — 1) < 3 log(a;/a;, — 1) .

Then we have

k(7) i—1
Liogia< ~S @ty —L S log(aia, — 1)
a; k=1 QAj k=k()+1
~ 1 3 (logt — ajfa) + ajfay)
A; k=j+1

o
S,

(

@t —c)+ 8, +8S,, say.

)
=1

>

If =1 or k(j) =j — 1, then the second term vanishes. We have by (4)
of §1, using Mikusinski’s method,
Sl :4 _1_. ]E—f log o2 < 1 § log&.:_(j_;k_)é

Q; k=k@+1 a; — a Qj k=k(G)+1 (9 — k)o

_ 1 F—k(i)—1 a; — ka 1 Sj—k(j)—i a; — 3(17
= k% log——-—-ka <a-;_- . log 5o dx

$(i—k(H—D]aj
- 1/5S log(1/t — 1)dt < log 2/6 ,
0
and

S, <1/d.

Thus we have
k(4)
o log | 4;] < (1+log2)/5 — 3 (@i — i) ,

so that limk(j) = « and (3) of §1 implies that

J—oo
lim | ;"% = 0 .

jooo

Now, let ¢, be an arbitrary fixed real number, then, when ¢ < ¢,
| Ajemit| < | Ajlesit = (| A;["%e) .

Therefore, for sufficiently large j, we have
| Ajerst| < (1/2) = (§) w5 o5

But, by the assumption (4) it follows that lim% = oo, 80 we have
i~ log J
[Azent| < g~

for sufficiently large j. This implies that the Dirichlet series H(?) =
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e, Ajeit converges absolutely and uniformly in — e <t < ¢, and com-
pletes the proof.

REMARK. In Theorem 2.2, it should be noted that real number ¢ can
be replaced by complex number z and the Dirichlet series H(z) = 3.7, A"
converges absolutely and uniformly in any half plane Rz < ¢,.

If all ¢, equal to + oo, this class of Dirichlet series reduces to a slight
modification that is called the class of entire function generated by the
given sequence {a,} of exponents. Thus, our class of Dirichlet series is
a generalization of it.

THEOREM 2.3. If H(t) is defined as in Theorem 2.2, them H(t) s
infinitely differentiable term by term in (— oo, o), that is, for any posi-
tive integer n, H™(t) = D7, A;aje*" converges absolutely for every t and
uniformly in any interval —o <t <, (—eo <, < +00).

PrOOF. In the preceding Theorem 2.2 we had
|Ajetit| < (1/2)%

for sufficiently large j. From this fact, for sufficiently large j, we have
| Ajagerst] < aj(1[2) s = 2o

< 2ol < 25T = (2%
Thus we obtain our desired results.

THEOREM 2.4. If H,(t) and H(t) are defined as in Theorem 2.1 and
Theorem 2.2, respectively, then for any t (—o <t < )

lim H,(t) = H() -

PROOF. By the estimations similar to that of Theorem 2.2, we have
for n >j

k(5) ji—1
Lioglap|< - 3 (@t —e) — = 50 log(afa, — 1)
7 =1

Aj k=k()+1

~ 1 3 flog — aja) + ajay)

QAj k=j+1

k(j)
< - kZ‘l (@ — o) + 1 +610g2 ,

and for arbitrary fixed ¢t we have
lA}n)eaJ’tl < j—-Z

for sufficiently large j. Thus, this estimation together with the same of
A; implies that, given ¢ > 0, we can find j, such that
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S At <ef2.

J=jo+1

<¢/2 and ._Z”, Aetdt
Then, we have
|Hy(t) — HO)| < 3 AP — Ale" + ¢
i=1

However, it is clear that
limA" =4; (=12 ---,7),

n—o0

and consequently

Tim | H,(¢) — Ht) ¢,

which is the required result.

THEOREM 2.5. If H(t) is defined as in Theorem 2.2, then H(t) is a
distribution function.

Proor. By Theorem 2.1, H,(t) is the normalized distribution function
and

S” e dH,(t) = ij (1 + itfe;)e™!*i[(1 + it/as)e™!ei .
For any 7(— o0 < 7 < o0), it is clear that
T (1 + itfe))eI"s|(1 + it/a)e!* — 1/F(it) as n—» oo,

and that 1/F(i7) is continuous at 7 = 0 and 1/F(0) = 1 = H,() — H,(— ).
By the theory of distribution function [9, vol. Il p. 262], there exists a
non-decreasing function H*(¢) such that

H*(e0) = 1, H*(—e0) = 0, lim H,(t) = H*(?)

at all points of continuity of H*(¢) and 1/F(it) = r e'dH*(t). Using
Theorem 2.4, it is clear that this function equal to H(t). This completes
the proof.

3. Construction of the kernel. Now, we may construct the kernel
G(t) and can be established its analyticity in the whole plane of z.

THEOREM 3.1. If H(t) is defined as in Theorem 2.2, thenm H(t) has
its derivative G(t) = H'(t) and

(1) G(t) is a frequency function and G(t) e C°(— oo, =),
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(2) Sle‘”G(t)dt — 1F(s) ,

the bilateral Laplace transform converging absolutely for Rs < a,, and
(3) G(t) = 1/(2ni)si°f [F(s)]e"ds .

Proor. It follows from Theorem 2.3 that H(t) has its derivative
G(t) = H'(t) and (1) follows from Theorem 2.3 and Theorem 2.5.

Let s be an arbitrary real number <a,. Then, by (3) and (4) of §1,
it is clear that

& 1 1 — - o .
4 Sl md @a-9-@—-9>0>0
(kzlyza"°)°

Therefore, putting

e a; — 8\ X%, = a; — s\ ¢
B; =11 <1 e . )eck—s/e [ (1 — 2 )eak_.,
c k=1 a S

ka1 e — S . —

G=1,2 +---), we can define an infinitely differentiable function Kt)
such as

K(t) _— i Bje(aj—-s)z ,
=1
where the infinite product defining B; are convergent for all s, because
i‘,(ak —8)7*F< o forall s (s<a).
k=1

It is trivial that K(t) has the same properties analogous to H(?).
By the definition A; in Theorem 2.2, we have

B & i 0 -sayexn| -+ (@l - o - 9}/

A; a;—si= a

(1 = sfe exp {—2— + (@fo, — aif(c, — )} -

Ck_s

Then, putting

ngl(l—s/ak)exp( $ )/(1—s/ck)exp( : )

a, — 8 c, — 8

and

Q=i{ 5 5 }

k=t Lay(a, — 8) cu(ce — 8)
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we have

— a/j —qaj
(5) Bj/A; = P S Qe ’

J

where the convergence of the infinite product @ and the series q are
easily verified by (4).

By Theorem 2.3, H'(t) converges absolutely for any ¢ and uniformly
in any interval — oo < t £ u(— oo < % < o). Thus, observing H'(t) = O(e™?)
as t — —c and integrating by parts we have

oo
(aj—s)(u+q)
Z_‘;Bjea]suq

[ et = " e = 5 Al oe - £

=1

= %K(u +q)

by (5). However, the properties of K(t) same as in Theorem 2.5 for H(t)
shows that K(u + ¢) —1 as 4 — .
Consequently, the integral S e*'G(t)dt exists for any real number

o0

s(< a,) and is equal to ¢*/Q, i.e.

(6) S Gt = T1(L — sfe)e™/(L — sla)e™ = 1/F(s) .

If we take any complex number s whose real part less than a, instead
of real number s such as s < a,, it follows that the integral on the left
side of (6) converges in any half-plane Rs < g, < a, and it represents an
analytic function in the half-plane Rs < a,.

On the other hand, it is familiar that the right side of (6) is analytic
in the half-plane Rs < a,. Since the both sides of (6) coincides on the
interval (— oo, a;) of real axis, by the identity theorem, (6) is valid in
the half-plane Rs < a,. Since that the bilateral Laplace transform con-
verges absolutely for Rs < a, is easily verified and (3) is an immediate
consequence of familiar theorem of Laplace transform [8, p. 241], the proof

is complete.

REMARK. As in Remark of §2, the real variable ¢ of G(f) can be
replaced by the complex variable z and, on that occasion, the series G(z) =
<_,a;A;e"* converges absolutely for every complex z and uniformly in
any half-plane Rz < ¢, (—~ < t, < ). Thus G(2) is an entire function.

4. Differentiability of G(f). In this section, we shall show that if
we take no notice of construction of G(¢) then its infinite differentiability
can be obtained by the only condition (3) without the condition (4),
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provided that the sequences {a,} and {c,} satisfy the other conditions in §1.

We shall need some preliminary results.

Let n,(t) = n({a;}, t) be the number of a, lying in the interval (0, t),
which is called the counting function of sequence {a;} ([1], [5]).

LEMMA [5, p. 25]. For any )\ such that 0 < N < oo, we have
i a;c—l — Sm dna(t) = )\,S» na(t) dt
k=1 0

tl 0 t1+1

in the semse that all three expressions are infinite, or all are finite and
equal.

THEOREM 4.1. If the sequences {a,} and {c,} are defined as in §2, then

i (a? _ c;l) — S: na(t) - nc(t) dt

k=1 t2
in the semse that both sides are imfinite, or both are finite and equal.

ProOF. For any R > 0, we have easily
nq(R)

S o= S 0t = n(R)R + Sf"ﬂT(f)dt.

ap<R

Hence we have

’ﬂa§) (a;1 _ C;l) -+ n%{:) c;l — na(R) —_ nc(R) + SR ’H,a(t) — Inc(t) dt .

k=ng(R)+1 R 0 7

However, for all & such that n(R) + 1<k < n,(R) it is trivial that
¢;' < R™'. Therefore,

(R)
o < Ma(R) — n(R)
k=ng(R)+1 - R

and then we have
ng(R)
(1) Z (a? _ 021) > Snﬁ(t);—nc(t)dt .
k=1 0
On the other hand, we have also easily

ng) (a;1 _ 0;1) + "g) a;1 — %a(R) - nc(R) - SR na(t) — ’n,,(t) dt

k=ng(R)+1 R 0 t?
and

ng) a;l Z na(R) _ nc(R)

since a;' = R for k < n,R).
k=ng(R)+1

Hence we have
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(2) S - o) < SRMM .
k=1 0 P
Combining (1) and (2) and appealing the fact that n,(R) — « and n,(R) — -
as R — -, we obtain our desired result.
The following two results are the immediate consequences of this
theorem.

COROLLARY 4.1. If {a,} and {c.} are defined as in Theorem 4.1 and
N, (t) — m(t) = O('*) as t— o for some a >0, then the series >3, (az*—czY)
converges, in particular, lim,_., {n,(t) — n.(t)} < o implies that the series

. (apt — ex') converges.

COROLLARY 4.2. If {a,} and {c,} are defined as in Theorem 4.1, then

S (apt — ¢it) = oo imoplies that Tim,.. {n.(t) — n,(t)} = .

THEOREM 4.2. If {a;} and {c.} are defined as in §1 and G(t) is defined
by (2) of §1, then the kernel function G(t) is infinitely differentiable.

Proor. By Corollary 4.2, using Theorem 2.2 of [1] and Corollary 3.2
and Theorem 3.5 of [2], we obtain our theorem.

5. Another class of Dirichlet series. In this section we suppose
that the sequences {a,} and {c,} satisfy the following conditions :

(1) ak>0y Ck<0 (k:1,2,°°-);
(2) Sait=c, Sear<oe;

and for some positive number o
(3) ak+1“"ak>3 (k=1,2,-“).
The following is an analogous result to Theorem 2.2.

THEOREM 5.1. Let
A; =T (L — asfe)essle TI' (1 — ajfaers™ (5 =1,2,---),

then the series H(z) = >.7-, A;e%* converges absolutely and wuniformly in
any half plane Rz < &, (—c0 < t, < ).
PrOOF. By the similar arguments to the proof of Theorem 2.2, we
have from (1) and (3)
a;* log [ A;] = a7 3, {log(l — ajfe)) + ajfer} — 35 ai

— a7 S log(asje, — 1) — ap' 3. {log(L — ayfa,) + ayfa)

k=j+1
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< - 30t —a* 3 loglasla, — 1)

k=1

7 3 (log(t — aifw) + asla)

< - kz ait + (1 + log 2)/5
using the fact that
log{(1 — a;/c;) + aj/e,} < 0 for every k.
Then, appealing the first condition of (2) we have
[A]*i—0 as j— oo,

and we obtain our theorem by the similar arguments to the one in §2.
From this theorem it follows that H(z) is analytic in the whole plane

of z and H(z) is an entire function. This is also a generalization of the

entire function generated by the sequence {a,} introduced by Mikusifski.

For example, the Fourier sine transform
F(X) = ]/—2—rsin XT-o(T)dT
TJo
becomes, after exponential change of variables, the convolution transform

(1) of §1 with the kernel G(t) =1V 2/r sine’ whose bilateral Laplace
transform is

Sle‘”G(t)dt = @sin( — %ns)[‘(-—s)

— ot T S —sIZk( _ s s/ (2k—1)
e H<1+2k>e /11 ———-—-)e

k=1 2]C - 1
=1/F(s), 0<Rs<1.
The meromorphic function F'(s) has zeros a, = 2k — 1 and poles ¢, = —2k

(k=1,2,---) and the sequences {a;} and {c,} satisfy the conditions (1),
(2) and (3) with 6 (<2). In this case, A; is defined as

A;= ﬁ (1 + 2j2k ) 5 fgi-ei0r ].;I ( 2.30: 11>e:7;-3

= l/— sm( — —7r(2y - 1)) lim <

8—25—1
_ /2 (-1
23 —1(25 - 1!

using the familiar formula

)r( —3)
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lim (=5 + YI'(—s) = (1[Il -

The entire function generated by the sequences {a,} and {c;} is

had . _2— ke 1 (—1)].—-1 25—1
H = A *j2 — —_— 3( j—1)z ,
®) = 240 ‘/n A2 1@ - 1!

and
’ — 2 < (—l)j_l 2j—-1z __ 2 : z
H(z)—v_nagf———@j—l)!ej —]/—ﬂ_sme .

This function H'(z) is equal to the kernel G(¢) in which the real variable
t replaced by the complex variable z.

Moreover, it is well known that the Laplace transform can be reduced
to the convolution transform (1) with the kernel G(t) = ¢~*‘¢’ and the
meromorphic function

F(s) = I'A — 8) = e [ (L — s/k)e’l

k=1

whose zeros are a, =k (k=1,2, ---) and all ¢, can be regarded as +
or —co. In this case, A; is defined as

s = Ve I’ (L — ke’
= lim (1 — s/))I (1 — s)

_ 1 (=~ _ (=1
J @@= J!
The entire function generated by the sequence {a,} is

H(Z) — i Ajedjz — i“ _(;;-T)j___l_eiz

and

o) — (=1 o —er,e
H(z)—jzl(j_l)!e = e¢%¢" .

This function H'(z) coincides also with the kernel G(f) whose variable
replaced by the complex variable z.

=3
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