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1. Introduction. Throughout this note we set

xV / N \ l / 2

SN(x) = Σ Uk cos 2π(nkx + ak) and AN = (2"1 Σ <4) >
fc = l V fc=l /

where {%} is a sequence of positive integers and we assume that

(1.1) AN-*+°°\ a s i V - * + o o .

In [2] M. Weiss has proved the following

THEOREM. If {nk} and {ak} satisfy the conditions

(1.2) nk+1/nk > 1 + c , for some c > 0 ,

(1.3) α* = o{V A%/\og log A^) , as N-> + ™ ,

ίΛeπ tt e feai e, /or any sequence of real numbers {<xk},

ϊmi (2A2

N log log A^)-1/2 SN(x) = 1 , a.e. .
N-*oo

That is, the same law of the iterated logarithm holds for

{cos 2π(nkx + ak)}

as for the sequence of normalized, uniformly bounded independent random
variables with vanishing mean values.

The purpose of the present note is to weaken the lacunarity condition
(1.2). But we could show only the inequality "lim ^ 1". In fact we
prove the following

THEOREM. Let {nk} and {ak} satisfy the conditions

(1.4) nk+ι/nk > 1 + c k~a , for some c > 0 and 0 < a ^ 1/2 ,

and

(1.5) aN = O{VA%IN2a{\o% AN)1+ε) , for some e > 0, as i\Γ—> + oo .
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Then we have, for any sequence of real numbers {ak},

(1.6) lϊm (2A^ log log AN)~112 SN(x) ^ 1 a.e. .
N

If a = 0, then the condition (1.4) is (1.2). It seems to me that the
condition (1.5) is more restrictive than (1.3) is due to the magnitude of
|| SN(x)/AN\\p, p^2. In fact, we have noticed that for any given (c, a)
such that c > 0 and 0 < a ^ 1/2, there exists a sequence {nk} satisfying
(1.4) which is not a Λ(2)-set (cf. [1]).

2. Some Lemmas. From now on let {nk} and {ak} satisfy the con-
ditions (1.4) and (1.5), respectively.

( i ) Let us put

2>(0) = 0, p(k) = max {ra; nm ^ 2k) for k ^ 1 ,
P(fc+1)

M®) = _ Σ a . cos 2π(wmα; + αw) and Bk = Ap{k+1) .*)

If p(k) + 1 < p(k + 1), then from (1.4) we have

2 > nPik+ί)/np{k)+ί > Π (1 + cwr*)

> 1 + c{p(/b + 1) — p(k) —

Therefore, we have

(2.1) p(k + 1) - p(k) = O(pa(k)) ,

and hence

(2.2) || Δk |U ^ " Σ 1 ' I α« I ̂  max | o . | {p(A: + 1) -

= 0 (

LEMMA 1. For any given k, j , q and h satisfying

p(j) + KhS p(j + 1) < p(k) + 1 < g ^ j>(A; + 1) ,

number of solutions (nr, n{) of the equation

nq — nr = nh - ^ ,

) < i < h and p(k) < r < q, is at most C2j~kpa(k), where C is a
positive constant independent of k, j , q and h.

PROOF. Let (nr, n{) be any solution, then we have

nr = nq - (nh - n,) > nq - 2s > nq(l - %~k) ^ nq(l

*> For some fc, p(k) may be equal to p(A + l). Then we put Jfc(a ) = 0.
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If mx(or ra2) denotes the smallest (or the largest) index of nr of the solu-
tions (nr, nι), then (1.4) implies that

m 2

I _|_ 2i-^+1 ^ njnmi ^ nm2+1/nmi > J ^ (1 + cm"α)

> 1 + c (m2 - m t + 1) p-α(fc + 1) .

Since p(k + l)/p(k) —> 1, as A: —> + oo, m2 — mγ + 1 < C2j~kpa(k)y for some
constant C. Further, for any given q, r and h, there exists at most
one nι satisfying the equation. Hence we can complete the proof of the
lemma.

In the same way we can prove the following

LEMMA 2. For any given k, j , q and h satisfying

j ^ k - 2, p(j + 1) < h ̂  p(j + 2) and p(k + 1) < q ̂  p(k + 2) ,

the number of solutions (nr, n^ of the equation

nq — nr = nh — n{ ,

where p(j) < i ^ p(j + 1) and p(k) < r fg p(fc + 1), is αί mosί C 2j~kpa(k),
where C is a positive constant independent of k, j , q and h.

(ii) Let {pk} be a non-decreasing sequence of positive integers such
that p1 = 2, ft —> + co and ρk = O((logBk)

εli), as fc —> + oo. Putting φ(k) =
Σm=i i°m> we can take a sequence of nonnegative integers {q(k)} satisfying
the following conditions:

(q(0) = 0 and for k ̂  1, φ(2k - 1) <
-j ^(2fe>—1

and HΛw-illl^lOΓ*1 Σ IM.IIϊ

If we put

/q(k)-2 _ \l/2

_ z/m(α;) a n d D f c = jB σ ( f e )_ 2 = ( "
n = q(k-l]

then we have, by (2.2),

q(k)-2 /q(k)-2 \ l / 2

= Σ ΔJp) a n d D» = Bg{k)_2 = Σ II 4 . Ill) ,
m = q(k—1) \ w = l /

9 ( f c ) 2

(2.3) | |Q»IU^ Σ I I 4 . 1 1 - ^ 3 ^ sup | | J . | U
m=q(k-l) m<q(k)—l

= 0 (pg{k)-2Dk(log Dk)-w*) - 0 (Dk(\og A)" ( 2 + ε ) / 4) , *}

and
q(k)—2

(2.4) Ώ\ - DU = Σ II4. llί = 0 (ί>l(log A)-1'1'2) . as k - +
m—q{k—1;— 1

*) It is seen that g(fc) > ̂ (2Λ-1) ̂  (2Λ-l)/5i = 4A-2. Hence q(k)-2 ^ 2Λ.
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Further, we have, from the definition of q(k),

(2.5) Σ II Λw-i ίίi = o(Dl) , as k -> +
m = i

(iii) LEMMA 3. We have the following ralatίons:
i. For any N > M ^ 0,

I Σ Mi - IIΛ ||»Γ ^ C Σ IIΛ 111 W < « ^ ) ~ ( 1 + ε ) ,
II fc=Λf ||2 K=M

where C is a constant idependent of N and M.

ϋ. I Σ {Λί,*,-i - || Λf*.-! 1131[ = O(DUlog DN)-^), as i V - +

iϋ. I Σ {Ql - II Q* 113Γ = O(Z)̂ (
II A = l | | 2

as

RROOF. For simplicity of writing the formula we may assume that
ak = 0, k = 1, 2, •••, that is, we prove the lemma only for cosine series.
The general case follows the same lines.

i. We write Δ\ - \\ Δk \\\ = Uk(x) + Vk(x), where

q

Σ
P( + l) q

Uk{x) = Σ α? Σ flr cos 2ττ( 7̂ + ?ιr) x ,
(Λ) ( A ) +

P ( + 1) ( 7 - 1

= Σ α? Σ «r cos 2π(nq — nr) x .
q = p(k)+2 r = p(k)+ί

Then (2.2) implies that

p(k+i)

II Uk II, ^ Σ I o , III Λ II, = 0 (Bk || Λ II, ( log B k ) ~ ^ ^ ) ,
q = ρ(k)+l

II V» ||, = O (ft || Λ ||, (log ft)-<1+'"2) , as A; -> + oo .

Since the sequence {Uk(x)} is orthogonal on (0,1), we have

I Σ ϋu If = Σ II Uk ||ϊ ^ C Σ IIΛ 111 ^ ( l o g ft)-1- .
| | k = M \\2 k=M k = M

Hence, for the proof of the first relation in the lemma it is sufficient to
show that for some constant C,

N fc-l

Σ Σ
N l

(2.6) Σ Σ
k j

\ Vk{x)V^)dx
Jθ

±Ξ C Σ

From Lemma 1 and (1.5), we obtain, for N ^ k > j ,
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[
JO

P(fc+1)

C2j-kp«(k) Σ I α J m a x | α r |
q = p(k)+ί p{k)<r<q

PU + l)

Σ max | α,
j i h

p(k+i)

£ C'2*->p-'(3)BM}og BJ-™ Σ K

Further, from (2.1) we have

Pli+l)

Σ | o . | < £ 2 | | 4 | | ,

( C > 0) .*>

= O

as i —• +

Thus, we have

Vk(x) Vj(x)dx ^ CBfflog BN)-™

Since p(i + ΐ)/p(j)-+l, as j — +00, W e have Σy=ϊ 2j~kp-a(j) ^ C p~a(k),
for all fc > 1. Hence we have

Σ Σ

^ Σ
k = M+ί

N 1/2

{ iV

2

^ 1/2 f N k-l \ 1/2 ΛΓ

V II A 1121 J V V 9 ί - * II // II2L < Γ' V II Λ M2

2 J I I ^ J k l l 2 f 1 2LJ 2 - ι ^ l l ^ i l k f ^ ^ 2 J II ̂ Λ II2 •

The last two relations proves the first part of the Lemma,
ii. We can prove the second part in the same way.
iii. We have

g(m)—2

= Σ Mί - IIΛ 113 + 2
fc()

fc—2

Σ
(

g(m)—2

+ 2 Σ
fc()

By the Minkowski inequality and the preceding relations, we have

N q(m)-2

Σ Σ
m=i fe=g(m—l)

q(N)-2^ I Σ K - IIΛI ID ||2 + I Σ Mi,.,-i - II 4,.,-, Ill}

= 0 (miog DΛ,)-<1+8)/2) , as + 00

*> We may assume that p(j) ^ ?>(!) > 0.
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Since {Λ3k+r Σf=+Jmf Δ5) is orthogonal for each r, we have, by (2.3),

N g(m)-2 k-2 |]2 N q(m)-2 II k-2 ||2

Σ Σ Λ Σ ^-μ3Σ Σ Λ Σ ΔΛ
m=iί;=g(m-l)+2 j = q(m—1) (|2 m = l k = q(m—l) +2 II j = q(m—1)

)^-1-^2" ΣJIΛ 111) = OφMΣ
as N

Further, we have

JV g(m)-2

Σ Σ U-
q(N)-2 q{N)-2 fe-1 I f l

^ Σ II Λ4-111 + 2 Σ Σ
k = l k = 2 j = 2 I JO

O

q(N)-2 k-ί I f 1

Σ Σ
Using Lemma 2, the last term is estimated in the same way as that of
(2.6) and we obtain

q(N)-2 fe-1 In-2 fe-i I ri

C Σ
=2 i = i | J o

x)-1-') , as N-> + oo .

Hence, we can prove the last part of the lemma.

3. Method of the proof of the Theorem. Let δ be an arbitrary positive
number and let us take a positive number Θ such that 0 < θ — 1 < 32.
For this θ, we put

Mk = maxjra; Ό\ ^ θk) and mk = max{m; Bl ^ θk) .

Then from (2.2) and (2.3) it is seen that there exists an integer K such
that fc ^ K implies that

(O 1\ Γ)2 <~ Γ>2 < ; Λfe ^ Γ>2 <- 7")2 ^ Λ^ + i

If we prove that the following two relations

(3.2) ΐίϊn(20fc log log θk)~112 Σ Qm(x) ^ 1 , a.e.
k-*oo m-i

and

(3.3) lim(20* log log Θ^-^SΔq(m)^(x) = 0 , a.e.
k-*oo m—i

hold, then we have, by (2.3),

ϊίm(20fc log log θk)~112 2 Δm(x) ^ 1 , a.e. .
fc-»oo m = i

Further, if we prove that
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(3.4) lim sup {2(θk+ί - θk) log log θk}~112 Σ ^(α?) ^ 4, a.e.,

then we have

ϊϊϊn sup (2θk log log θk)~ui Σ 4-(a>)

^ 1 + 4i/0~=~ϊ S 1 + 4 <5 , a.e. .

Since (3.1) and (2.2) imply that Blk ~θk, as k -> + oo,*) and δ is arbitrary,
we have

ϊmϊ(2ft2 log log ft)"1'2 Σ Λ.(α) ^ 1 a.e.,
fc-oo m = i

and by (2.2), the last relation implies (1.6). Therefore, for the proof of
the theorem it is sufficient to show that (3.2), (3.3) and (3.4) hold.

To this end we need the foil wing two lemmas.

LEMMA 4. We have, for a.e. x,

PROOF.

in Lemma

Hence, we

Mk

V D 2 rfV
m-i

. Since

3,

o o II

Σ 1 θ~k
Mk

have, for a.e.

On the other hand

Ik

ΣIIQ-
m=i

fc-»oo

from

II2 — T

and
mk + l

' θk, as k —* + oo

— I
ί 11

X,

* k

- 4Σ
(2.5)

112

{Qi.(«) - II

it is seen

"ΣΊIΛO-

v) ~ \u —

, we have,

)(Σ k-™

Q.II3 = 0.

that

by the

) = 0(1)

as k —* + oo .

last relation

•

a s rC ~~~* *τ" oo «

Hence, we can prove the first part of the lemma. The remaining one
can be proved in the same way.

LEMMA 5. There exists a sequence {ηk} satisfying the conditions)

i. lim ηk θ'k £ ΛΪ(«Ϊ-I(S) = 0 , a.e. ,

ii. ηk —> + oo and ηk = 0(1/ log log θk) , as A: —> + <

*) For two sequences {au} and {&&}, ak ~ bk means that linu->oo aφk = 1.
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PROOF. We can easily prove this lemma by (2.5) and the second
relation of Lemma 3.

4. Proof of the Theorem. In this paragraph we use frequently the
following formula:

(4.1) exp(# - 2-V - I x |3) ^ (1 + x) , for | x | < 1/2 .

( i ) Let η be an arbitrary positive number and let us put

Xk = (20-* log log θkγ12 and yk = (1 + η) Xζι log log θk .

Then we have, by (2.3), λfc supmiJfifc || Qm \\^ = o (1), as k —• + °°. Therefore,
for sufficiently large k we have, by (4.1)

t Mk Mk Mk Λ

exp λk Σ QM - 2-^1 Σ <&(x) ~ λ£ Σ I fflL(») I [

^ Π ίl + λ,Qm(a;)} .
w = l

From the definition of {Qm(#)}, the sequence of functions {Qm(%)} is multi-
plicatively orthogonal on (0,1), that is,

Γ Π Q8j(x)dx = 0 , for β l < s2 < < sn .
Joi=i

Hence we have I Π {1 + ^kQm(%)}dx = 1 and obtain
Jo

S I ( Mk Mk Mk Λ

exp λ, Σ Q (a) - 2-^1 Σ OK*) - λ i Σ I Q*.(*) lk» ^ 1.
0 I. m = i m=i m=i J

Putting Fk{x) = 2~ιXk Σ ϊ i i Q»(«) + λi .Σik I ̂ «(«) l> we have, by the
Tchebyschev inequality,

; x e (0,1), Σ Q-(«) > ^(ίβ) + »*} I

(), as

and hence

Σ I {*; x e (0,1),

Therefore, for a.e. a; there exists an integer K(x) such that k 2Ϊ ίΓ(a )
implies

For a measurable set E, \E\ denotes its Lebesgue measure.
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On the other hand we have, by Lemma 4 and (2.3),

Fk(x) + yk~(2 + η){2~ιθk log log θψ2 , a.e. .

Hence, we have

lim(20fc log log 0fc)-1/2 Σ QJp) ^ (1 + ηβ) a.e. .

Since η > 0 is arbitrary, we can prove (3.2).
(ii) Using the sequence {ηk} in Lemma 5, we put

λ, = (ηhθ~h log log θψ2 and yk = 2X,1 log log θk .

Then we have, by (2.2) and ii in Lemma 5, Xk supm<Λf k\\ Λ<m)-ilU = o(l),
as &—* +oo. Using the same method as above, we have, for a.e. x,

Ϊ Λ ^ - i ^ ) ^ Gk(x) + 2/4 , for fc^ίΓ(»),
m=i

where G»(«) = 2~ι Xk ^m<Mk #«•*-&) + χl Σ-<jr* I ̂ ϊ(«)-ι(») l On the other
hand from Lemma 5 and (2.2) it is seen that

Gk(x) + yk = o((θk log log θψ2) , a.e. .

Hence, we can prove (3.3).
(iii) Let us put μo,k = μ0 = mk, μk,k - μk = mk+ι and

A.>Jfe = μs = max{m; Bi ^ θ" + j(θk+ί - θk)k~1} , for i = 1, 2, , Jfe - 1 .

Since (2.2) implies that supM < m,+ 11| Δn | | | = 0{θk - fc-(1+e)), as /c->+oo,
we have ί* + (j - l)(^ i + 1 - tf^Ar1 < B^ ^ ^ + j(θk+1 - θk)k~\ for j =
1, 2, •••,&, and k ^ ίΓo Hence, we have, for j = 0, 1, •••, A; — 1, and

(4.3) Σ \\Jn\\l£2(θk+1-θk)k-ί .

On the other hand if Λ3{x) Φ 0, then the frequencies of terms of Aj(x) lie
in the interval [2j + 1, 2 i + 1]. Therefore, by the theorems on trigonometric
series (cf. (4.4) p. 231 and (4.24) p. 233 in [3]), we have, for some con-
stants Ci and C2 independent of j and k,

μj+ί 114 ||

sup Σ Λ ^ σ Ί Σ AA ^ CΛ Σ
|[ [[ μ^ + ί |J4 II

I A'i + l ||2 / A'i+l \2

Σ μ i - i μ . i i i } + 2 C 2 ( Σ IIΛIII)
By Lemma 3 and (4.3), we have, for some C3,
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I sup Σ Λ Γ ̂  Cs θ2k Λr2 .

Hence we have

Σ Σ I {(θw ~ θk) log log θk}-φ sup Σ Λ IΓ < +
fc II ^ + ||

and this proves that for a.e. a?,

(4.4) lim{(0fc+1 - θk) log log θk}~112 sup sup Σ Λ(«) = 0 .

(iv) If we put λfc = i/(^& + 1 - θk)~ι log log ̂ fc and yk = 3K1 log log θ\
then we have Xk supm^mA;+11| z/m !!«, = o(l), as & -> + ©o. Therefore, for
sufficiently large fc we have, by (4.1),

{ Vj mk+i

λ* Σ Λ(aO-2λJ Σ ^i(

Σ ( ) 2 Σ

Σ Al{x)-A\\ Σ

Γ ^i ηi/2

^ Π {l + 2λ»Λ(a;)}

Since the both sequences {A2n(x)} and {A2n+ι(x)} are multiplicatively or-
thogonal on (0, 1), we have

S i r fi ™>k+i Λ

tJXp-j Λjk 2LΛ ^n\"') — AΓ^k 2-k Άn\Jϋ) ΪUJϋ

^ (T Π {1 + 2XkJn(x)}Tdx

Γ f l fl "11/2

^ [ ] o Πi {1 + 2XkA2n{x))dx^ Πs {1 + 2XkJ2n+ί(x)}dxj = 1 ,

where Π i ( o r Π2) is the product over all n such that mk < 2n ^ ft (or
m& < 2^ + 1 ^ ft). Hence, we have

|{α;; x e (0, 1); _Σ+ i ̂ ί»(») > 2λ4 j Σ ^ i ί * ) + 1/*}

^ e-̂ ΛVfc = O(&~3), for i = 1, , k, a s & —> + 00 ,

and hence, we have

Σ Σ I {x;x e (0» 1 ) ; J Σ + i ΔJfr) > 2xk j Σ ^ Ai{x) + τ/fcJ I < + co .
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This shows that for a.e. x, there exists an integer K(x) such that

sup Σ 4,(») ^ 2λ* Σ ^.(*) + yk , if A; > Z(») .

On the other hand by Lemma 4 we have, for a.e. x,

1 - 0fe) log log ί* , as A; -» + co .

Therefore, we have

(4.5) lim{(0fc+1 - θk)\og log ^fc}~1/2 sup Σ Λ(») ^ 5 , a.e. .
k-*oo j^k n=m]c+i

By (4.4) and (4.5), we can prove (3.4).

REFERENCES

[1] S. TAKAHASHI, On trigonometric Fourier coefficients. Tόhoku Math. Jour., 21 (1969),
405-418.

[ 2 ] M. WEISS, The law of the interated logarithm for lacunary trigonometric series, Trans.
Amer. Math. Soc, 91 (1959), 444-469.

[3] A. ZYGMUND, Trigonometric Series, Vol. II, Cambridge University Press, 1959.

DEPARTMENT OF MATHEMATICS

KANAZAWA UNIVERSITY

KANAZAWA, JAPAN






