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1. Introduction. Let {pn}~ be a sequence of non-negative constants,
Po> 0 and Pn = Σ ? P* A sequence {Un}T will be said to be absolutely
summable by the Norlund method defined by the sequence {pn}, or
summable \N,pn\, if tn = Σ?=o(P»-v #>)/-?» and

(1.1) Σ | ί . - « - i l ^ c < - .
n—l

Varshney [10] showed that if f(x) is a real-valued, 27Γ-periodic func-
tion and of bounded variation over [0, 2π] and if

(1.2) I f(x + h) - f{x) I ̂  A log ~ 1~ i(y)(e > 0, 0 ^ x ^ 2π, h > 0)

then S(f), the Fourier series of /, is summable | N, l/(n + 1) |. The
author [8] later proved this result under the following weaker hypothesis:

(1.3) ±lωίλ)< oo ,
i n \n/

where ω(t, f) — ω{t) denotes, as usual, the modulus of continuity of / .
Recently Izumi and Izumi [3], Lai [5] and others have studied the
conditions for \N, pn\ summability of S(f) for general {pn}. Lai has
shown that, if (i) p0 > 0, (ii) {pn} is non-negative and non-increasing,
(iii) lim^oo pn — 0, (iv) {pn — pn+ι} is non-increasing, and if

(1.4)' Σ Pr*nr~* < - ( i < r ^ 2) ,
1

and

(1.4) Σ ω{n~ι)P-ιn~ιίs < oo, ( 1 + — = l ) ,
i \ r s J

then S(f) is summable \N9pn\. In this paper we obtain conditions for
N, pn I summability of S(f) when the series in (1.4) may fail to con-

1 The research work of the author is supported by National Science Foundation Grant
GP-19533.
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verge. Thus our results supplement those of Lai.
In what follows we will suppose that 7 is a fixed constant, 0 ^ 7 <

1/2, cγ and c2 are fixed positive constants and ψ{x) is positive on [0, oo)
and slowly oscillating in the sense of Karamata (see [2], [4]). Let {pn}
satisfy conditions (i)—(iv) and suppose that for n ^ 1,

(v) c^ψin) 5g Pn <̂  c2n
rψ(n) ,

These conditions are all satisfied if, for instance, we take pn = (n + l)~1+r,
0 ^ 7 < 1/2. Some further examples are given in Section 4. We prove
the following

THEOREM 1. Let f(x) be a 2π-periodic function of bounded variation
over [0, 2π] and suppose that the modulus of continuity ω(t, f) satisfies
(1.3) and

(1.5) Σ 4 R
nP \n

Then under the assumptions (i)—(v), S(f) is summable \N,pn\.

2. Lemmas. We shall denote by A a positive constant (possibly
depending on 7, el9 c2) not necessarily the same at each occurence.

LEMMA 1 [6]. If {pn} is non-negative and non-increasing, then for
0 ^ a ^ b ^ 00, 0 ^ t rg π and any n, we have

(P(t~ι) for any a ,
(2.1) ^ ^ oi{n-k)t ^ 'Σ for a ^ [r ι] .
Here [x] denotes the integer part of x, and P(x) = PM.

LEMMA 2 [6]. If {pn} is non-negative and non-increasing and {pn — pn+1}
is non-increasing, then

P(n - 1) " P(n - 1) ~

LEMMA 3. // P(x) satisfies (v) then

(2.3) " Γ P ^ d u < A .
V } P(n- 1) J 2u2

This follows from the properties of slowly oscillating functions [2]. We

S oo

ur~2i!r(u)du~ψ(ri)(nr~ι/l-7), and ψ{n)~ψ{n — l) and (2.3) follows.
n
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LEMMA 4. Let

<oH±)dt.
I/* \ t 1t

The series in (1.3) and the series

(2.5)

are both convergent or both divergent.

PROOF. Since

the convergence of (2.5) implies the convergence of ΣϊU ω(l/2%) and
hence that of the series in (1.3). Suppose now that the series in (1.3) is
convergent. Then

In < ω2(ττ) + ω\l) + 2

Σ 2~nl2H12 < O)(π) Σ 2~%/2 + Σ 2"%/2 Σ 2Pl2ω(—
n = l 1 n=ί 3>=l \ 2 P

±) Σ 2-*'2

3. Proof of Theorem 1. Let

•1 oo

f{t) ~ —α 0 + Σ (α» cos ̂ ί + bn sin
2 i

- Σ P*β'« ,
A;=0

Φ(t)a(t) cos ̂ ί dί , /3% = I Φ(t)β(t) sin
0 JO

We have (cf: [6], [8])
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\ Γπ n-l / p P \

π \tn — ί Λ - 1 1 = \ Φ(t)Σ — - — — — 1 ) cos(w — k)t dt
I Jo * = o \ p n pnj

^ _JL I Vφ(t) Σ Pk cos(n - k)t dt
P^-JJo fc=o

i j Γl/w oo

-f \ φ(t) Σ PA; COS(W — k)t dt

v I Γ1/π VI+ — ^ — \ ^(ί) Σ PA; COS(^ — k)t dt
PnPn-i I Jo ^=0

1 IΓ7" ί °° w - 1
 -D Ί

+ — — Φ{t){ 2u Vk c o s ( ^ — k)t + Σ -^^-Pfc cos (^ — Λ)ί >dί
Pw-ilJl/w U = w A=0 P Λ J

= Γ^n) + T2(n) + T3(n) + Γ4(n) say .

We have to prove that Σ I <n — *n-i I < °° By Lemmas 1 and 3
9 f i/w / 1 \ 9ntfΛ lw\ Γ°° PiiAr/n 1 / 1

T' //vA - ^ I / ί//\ P i ir7/ ^^" *i**'\<i.\ lit) \ JL\IΛ/)U/(A/ ^ A JL / x
•Ln—l J° ^ ί / ±n—l Jn W, %

and by (1.3), ΣΓ=2 !Γ2(w) < oo.
Further, since pTC j ,

n

and so Σ " = 2 T*{n) < oo.
Further

Un) =

2sin(ί/2)

-X I Ji/» 2 sm(ί/2) V*="

By Lemma 1
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T { n ) < A(pn - pn+ι) Γ' \φ{t)\ ίd

~ P _ t Ji/ sin(ί/2)
< A(pn - pn+i)

- y n + 1 )

Lemma 2 now shows that

Σ Γ41(n) ̂ 4 Σ - f ( A + Σ ω(-ί)) < A + A± ω ( l ) Σ ^

Further Γ | ̂ (ί) | dt < A and so
JI/Λ

2

By Lemma 1

and

D- <

k) k P(k- 1)

We now consider T^n) ^ (| α» | + | /β. |
Let f(ί) = ?5(ί + h)a(t + h) - φ(t - Λ)α(ί - h). Then IΓ(ί) is even and

a(t) e V, for by Lemma 1,

a*(t)dt£ \P\±)dt<A\ n±-)t-
o Jo \ t ' Jo V t
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By BesseΓs inequality we have for 0 < h ^ π/4,

Σ | ^ s i n 2 n / * | < A \*\ Ψ\t) \ dt
i Jo

^ί + h) I {φ(t + h) - Φ(t - h)} \2dt

Φ\t) I a\t + 2h)dt

Uh) + I4(λ)] .

By (v) and Lemma 1,

Uh) <

Aω2 fXj) d t

and

It(h) = \h I ίί2(ί) I a\t)dt < Aω\h) Γ a\t)dt
J —Λ J — h

< Aω\h) [ V 2 (—

Since [6]

2Λ) - α(ί) | ^

h' ih t
Ah2P2(±-)\llhω2(±-)dt.

We now estimate 7lβ Since / is of bounded variation over [0, 2π] we
have

Σ

Integrating from 0 to π (cf. [8; p. 241-2]) we get

< H§>ίϋ •

Taking h = π/(2N) we get
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π

Letting JV = 2V we have

_ΣJ<rtl}

2W2" \2»j + 2^ \ π

By (v) we have

2"
< A-

P2(2")

and an application of Schwarz inequality gives

By (1.5),

and by Lemma 4,

* + l/Jr\ 1 /f2>' + l/f / I \ \ l / 2

?=il^J/Pn-i<-. Similarly Σ?=i 1/3J/Pn-i<- and so Σ Π * » - * - i l <
A < co and the proof is complete.

4. Remarks and Examples.
(a) If (1.3) holds and Σ V(nP2(ri)) < co, then an application of

Schwarz inequality shows that (1.5) holds.

(b) The condition (1.5) implies that

t

Consequently
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Hence if (1.5) holds and

(4.1) Σ (P2(2«))/n2 < co ,

then the series in (1.3) is convergent.
If we take, for instance, pn = (n + ay'ilog (n + α))"1, a ^ 3, then by

considering y(x) = (x + α)":(log (x + α))"1 we see that pn satisfies the con-
ditions (i)-(iv). Further P%~loglogw and so (4.1) and (v) are satisfied
(with 7 = 0).

(c) Zygmund [11; 241-2] proved that if f(x) is of bounded variation
and

(4.2) Σ n'ιωll2{n~ι) < co ,

then S(f) is absolutely convergent. Our theorem gives the following
analogue of Zygmund's result:

If f(x) is of bounded variation and if (4.1) holds, the then convergence
of the series in (1.5) implies the absolute summability \N,pn\ of S(f).

Note that if we take p0 = 1 and pn = 0 (n > 0) then (1.5) is the
same as (4.2) and the summability | N, pn | is the same as the absolute
convergence.

Example. Let

p = clog(n + c)
(n + c) log c

Then pn > 0, {pn} | , {pn - pn+ι} j (cf: [6]). Pn - A(log n)\ Hence condi-
tion (v) is satisfied (with 7 = 0) and Tjl/(nP%) < oo, (This implies that
(1.5) is satisfied if (1.3) is.) By considering y'(x) where

y(χ) = (X + C) 1°%(X + 1 + C) 9

(x + 1 + c) log(x + c)

we see that pn+Jpn t and so by a known inclusion theorem [6], | N, pn \ c
| C , 1 | .

5. Weighted Arithmetic Means. We now consider the weighted
arithmetic mean ([7; pp. 16-17], [9; p. 32]) of the series Σo°°̂ n. Let
Sk = Σ ί un. Let pn ^ 0 , Pn> 0 and σn = 1/Pn Σ"=o pkSk. To avoid
trivial cases we shall suppose that pn > 0 for an infinity of n. The
sequence {&} is said to be absolutely summable by the weighted arithmetic
mean method, defined by the sequence {pn}, or briefly summable | M, pn |, if
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Σ I σ. - σ^ I ^ A < - .

Let feC2π (continuous and 27r-periodic) and let

ω2(δ, f) = sup I f(x + h) + /(α? - Λ) - 2/(α?) | (α e [0, 2π])

denote the modulus of smoothness of /.

THEOREM 2. Let pn ^ 0, Pn = Σ ? Pi > 0, Pn-*°° cmώ / e C2JC. If

then S(f) is summable \M, pn\.

PROOF. We have [1; p. 300, p. 533]

I Sn(t) - fit) I < Cω2((n + I)"1) max(l, log n)

where C is an absolute constant. Hence for n ^ 1,

1 %-1

I σn(t) - σn^(t) I = 4- Σ P>(Sk(t) - f(t)) - -J- Σ p*(S4(ί) - f(t))

τ F ) ? Pk{Sk{t) " /(ί)) + (^-
Thus for 0 ^ ί ^ 2τr,

(! ) ( ) m a x ( 1 ' l o g fc)Σ

S 2 C ί l . f - ( ^
and our hypothesis shows that the last series is convergent. The proof
is complete.

COROLLARY. If fe C2π and ΣΓ (log n/(n + ΐ))ω2(l/n) < oo, then S(f) is
summable \C, 11.
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