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In this paper we shall introduce the notion of the S-algebra induced
from a given sequence of semi-simple (commutative, complex) Banach
algebras with unit. Such an algebra will become a new semi-simple
Banach algebra with a certain norm. We shall obtain some fundamental
properties of S-algebras, and consider two problems; one is the problem
of operating functions, and the other is that of spectral synthesis. Next
we shall apply some of our results on S-algebras to the theory of restric-
tion algebras of Fourier algebras. We shall construct, by a certain rule,
compact subsets of a given locally compact abelian group G, and homo-
morphisms of restriction algebras of the Fourier algebra A(G) on them.
Such a restriction algebra will be isomorphic to an S-algebra induced
from other restriction algebras of A(G). Further, we shall explicitly
construct a function g in A(T) such that the closed ideals in A(T)
generated by g™ (m =1, 2, ---) are all distinct (see Example 6 at the end
of this paper).

We begin with introducing some notations and definitions. Let
(A,)z-, be a sequence of semi-simple (commutative) Banach algebras with
unit. We shall regard each A, as a subalgebra of C(E,) in a trivial
way, where E, denotes the maximal ideal space of A,, and assume that
[[1l,, =1 for all n. Let N be a natural number, and let

ARAR -+ ®Ay and ARAR - ® Ay

be the algebraic tensor product of (A,)Y-, and its completion with the
projective norm, respectively; and put £’ = E, X E, X Ey, the product
space of (E,)¥.,. Let us also denote by

A" =@ A, = A@AL® - @4y

the subalgebra of C(E™) consisting of those functions f that have an
expansion of the form
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(D Flay @ ooy @) = 35 Fu@)ful@) -« Ful)
where the functions f,, are in 4, and
1y M= 50 fullay e 1 farllay oo [ ey <

When (I) and (II) hold, let us agree to say that the series in the right-
hand side of (I) absolutely converges to f in norm, and to write

F=3fu®@fu® @fm

We denote by || fIls = || f llsc4, 4p.- a4 the infimum of the M’s as in (II),
and call it the S-norm of f. It is a routine matter to verify that, with
this norm, A“’ is a Banach algebra whose maximal ideal space can be
naturally identified with the product space E®’. It is also easy to prove
that A% is isometrically isomorphic to the Banach algebra

(A ® AR -+ ® ARy
Wit}} theA quotignt norm, where R, denotes the radical of the algebra
AR AR -+ X Ay (cf. Tomiyama [11]). We call A’ the S-algebra in-
duced from (4,)Y.,. Let now E = E, X E, X --- be the product space of
(E,)z-,, and consider the subalgebra A = @®;_, A, of C(E) that consists

of all functions f having an expansion of the form
@) F@) = 3 Ful@)ful@) -+ Fuplan,)
for all points « = (x,)7., of E, where the functions f,, are in 4, and

() M= 501 Ny U For g == 1 e N, < o2 -

When (I') and (II') hold, let us again agree to say that the series in (I')
absolutely converges to f in norm, and to write

F=5h@fu®  ®fr

The infimum of the M’s as in (II') is called the S-norm of f, and is
denoted by || flls = | f sty a5--»» With this norm, A becomes a Banach
algebra, and its maximal ideal space can be natural identified with the
product space E. We call A the S-algebra induced from the sequence
(A,)z-,. In a trivial way, we then have the sequence of isometrical and
algebraical imbeddings:

AV = A cA®C .. CAVY C...CA.
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Note that the union of all A’ is a dense subalgebra of A. Of course
we can also define, in a similar way, the S-algebra induced from an
arbitrary family of semi-simple Banach algebra with unit.

Let now O = (0,)7-, be any fixed point of E, and let
Sy = l0l: A— A" A
be the natural norm-decreasing homomorphism defined by
(I1I) ([vS) (@) = F(@y By »+ 2, Ty, Oxssy Oyigy *#2)
It is then trivial that we have

V) Il =1 W=12--), and Hm|Qf — Flls=0 (Fe4).

Finally observe that, if (B,)y-, is a permutation of (4,)7-, and if B is

n=1
the S-algebra induced from (B,);-,, then A and B are isometrically iso-
morphiec.
Hereafter, we fix two sequences (4,)7-, and (B,)7-, of semi-simple
Banach algebras with unit, and associate with them A and B (the S-
algebras induced from them), the product spaces E = [[;-, E, and F =

I1%-, F., ete.
ProposITION 1. (cf. Hewitt and Ross [3: (42.7)]). (a) For every natural
number N, we have

(1) Ifi®f:® - @®Fylls = ﬁlﬂanAn (fnedyn=12 -+, N).

(b) Let (H,: A,— B,)Y_, be N bounded linear operators, them there
exists a unique bounded linear operator A — B, denoted by H™ =
N_ H,, such that

(ii) HY(fi®f,® - ®fy) = H(f) ® H(f) ® -+ ® Hy(fy)

for all functions f, in A, (n=1,2, «-«, N). Further, th eoperator norm
of H™ is given by

(iii) WH™ || = ﬁlll H, .

ProorF. The first statement in part (b) is well-known and is contained
in Hewitt and Ross [3: (42.7)]. Taking as B, the field of complex numbers
(m=1,2,---, N), and applying the Hahn-Banach theorem, we obtain (i).
Finally, (iii) is an easy consequence of (i). We omit the details.

PROPOSITION 2. Let (H,: A,— B,):_, be a sequence of bounded linear
operators such that H,(1) =1 for all n and [, || H.|| converges. Then
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there exists a unique bounded linear operator A — B, denoted by H =
@y, H,, such that

(i) Hfi®f® - @fy) = H(f) ® H(f) @ -+ ® Hy(fy)

Sor all functions f, in A, (n=1,2, +++«, N; N=1,2, «.+), Further, the
operator norm of H is given by

(iid) IH| = TLIIH, -

ProoF. For each N =1, let us denote by H*: A — B the composition

of the three operators
A SN, A H(m, BW o B,

where Jy is the operator defined by (III) for any fixed point O of E,
HY = @Y., H,, aNnd by the canonical imbedding. It is a rotltine matter
to verify that || H" || = TI¥-, || H,|| and that the sequence (H”f)%., con-
verges in B for every f in Ujy-. A®’. Therefore we can immediately
prove the existence of H with the required property. The identity (ii)
follows from Proposition 1, which completes the proof.

ProposiTiON 3. Let (H,: A, — B,)s-, be a sequence of morm-decreasing
linear operators with H,(1) =1 for all n, and suppose that each H, has
an approximating inverse in the sense of Varopowlos [13]. Then H =

» H, A— B is an isometry.

ProOF. For each N =1, the restriction of H to the closed linear
subspace AY of A can be identified with the operator H": A® — B™,
It is then easy to see from Proposition 1 that each H" has an approxi-
mating inverse under our hypothesis, from which our assertion immediately

follows.

We now consider any sequence (H,: A, — B,);-, of norm-decreasing
homomorphisms that satisfies the two requirements in Proposition 3. Let
(q.: F,— E, 7., be the sequence of the continuous mappings naturally
induced by (H,);-,, and denote by

QU =@ X @ X o X @yt FY — BV,
Q=¢ X g X g X s+t F—F,
their product mappings. Observe then that we have
HYf = foq™ (feA™); Hf = foq (fed).

Using the operators (Jy)y-, defined as in (III) for a fixed point of F and
the fact that H is an isometry, we have the following, which we do not
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prove.

PROPOSITION 4. Suppose that we have

(i) Im(H™) ={geB™:g = foq"™ for some f in C(E™)}
for all N=1,2 «++, then

(ii) Im(H) ={ge B:g = feoq for some f in C(E)}

ExaMPLE 1. Suppose here that A4, = C(E,) and B, = C(F,) for all
n. Then the condition (i) of Proposition 4 is satisfied if every ¢, is a
continuous mapping of F, onto E, (see Saeki [9]). In particular, taking
as B, the Banach algebra consisting of all bounded complex-valued func-
tions on E,, we have: let f be a continuous function on E that has an
expansion of the form

F@) = 3 Ful@) ful®@) - Fuplan) @ = @7 B),

where each f,, is a bounded function on E, and

S 1l 1l 1 e 1o < o
Then f is a function in the space ®;., C(E,).

ExAMPLE 2. Suppose here that each E, is a compact abelian group
and A, = A(E,), the Fourier algebra on E,. Then we can identify the
S-algebra A with the Fourier algebra A(E) on the compact abelian group
E. Suppose that F, = E, X E, and B, = C(E,) ® C(E,), and that

@y =c+y (x,yecE,) for all n .
Then the condition (i) of Proposition 3 is satisfied (see Herz [2]).

THEOREM 1. Suppose that every E, contains at least two distinct
points, and that every A, satisfies the following two conditions:

(@) If fe A, then fe A, and || Flls, = If |l

(b) With any ¢ > 0 and any two distinct points O, and z, of E,
there corresponds a function w, in A, such that

|| G2 ”A" g 1 + &, un(on) =0 y and un(xn) =1.

Suppose also that O(t) is a function defined on the interval [—1, 1] of the
real line R, and that @(t) operates in A. Then @(t) is analytic on the
interval [—1, 1].

ProoF. We first prove our statement under the additional assump-
tion that every E, contains precisely two distinct points O, and z,. Let
3yt A— A be the operator defined by (III) for the point O = (0,);-, of
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E, let A’ be the Banach space dual of A, and take any functional P in
A’. Then it is easy to see from (III) and (IV) that every JI¥(P) is a
discrete measure in M(E), and the sequence (J%(P))5-. converges to P in
the weak-star topology of A’. Since every Jy has norm 1, it follows that

(1) 171l = sup{||_rap|: pe MuE), 12l < 1

for all functions f in A. Suppose now that @(f) is as in our Theorem,
and define for each » with 0 < r < 1

0,(t) = O(r-sin t) (—o0 <t < o).

Using (b), we can easily prove that @(t) is continuous. It also follows
from (b) and (1) that there are two positive numbers r and C such that

(2) No.(f +)lls=C (—o0 <t < o0).
for all functions f in A, = ANCx(E) with || f||s < 7 (see Rudin [7; 6.6.3]).

Therefore, in order to prove that @(¢) is analytic at ¢ = 0, it suffices to
find a positive number a such that

(3)  sup{[|[e* [ls: fedn [ flls =7}z e™ (=0, £1, £2, ).

For each m, let u, be the function in A, defined by u,(0,) =0 and
w.(¢,) = 1. Then, by (b), || %, l|l4, = 1; further, we have

“ exp(”;num—x @ un) ”S = || exp(in Uzn—1 @ u’2n) “AZn—1©A2n
= || exXP(iT Uzp1 @ Usn) |lo(Ey,_pociE, = 2%

the last inequality following from Lemma 2.1 in Saeki [10]. Therefore,
setting

fo= T 3 s © (k=12 ),

we have || f,|ls < 7, and

|| exp(ikfy) s = || exp(—1kf3) Ils
= Ik! | eXP(IT Uan_, ® Usa) |ls = 222 (K =1,2, +++)

by Proposition 1. Thus (3) holds for a = 27'log2. This completes the
proof of our statement in the case that Card(E,) = 2 for all n.

Suppose now that Card (E,) = 2 for all n. We take any two distinct
points O, and z, of E,, and put F, = {O,, x,}. Let B, be the restriction
algebra of A, on the set F, endowed with the natural quotient norm;
it is easy to see that the maximal ideal space of B, is F,, and that
the restriction algebra B of A on the set F=F, X F, X --+ can be
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identified with the S-algebra induced from the sequence (B,)T., in a
trivial way. Since A is self-adjoint by (a), every function, that is defined
on the real line and operates in A, operates in B. This fact, combined
with the result in the preceding paragraph, establishes our Theorem.

REMARK. Under the same assumption, we can prove that: if @(z)
is a function defined on the square L = {z; |Re(z)| = 1, and |Im(2)| < 1}
of the complex plane, and if @(z) operates in A, then @(z) is real-analytic
on L.

THEOREM 2. Suppose that, for each m, there exist a function wu, in
A, and two points O, and x, of E, such that

| %nlls, = Cy %a(0,) =0, and wu,(x,) =1,

where C is a constant independent of n. Then there exists a function g in
A such that the closed ideals in A which are generated by g™(m = 1,2, «++)
are all distinct.

PrOOF. By considering some restriction algebra of A, we may as-
sume that E, = {0,, x,} for all n. We regard each E, as a “compact”
abelian group, and E as the product group of (E,)s-,. We then define p
to be the Haar measure on E normalized so that ¢(F) = 1. Let u, be as
in our theorem and write

(1) f= A U @

which absolutely converges in norm by hypothesis. We then assert that,
for some real number a, the function g = f — @ has the required property.
To prove this, let m < n be two natural numbers, and s an arbitrary
real number. We then have

(2)
sup{ || (@)« explisu. @ wdp|: fie 44 15311,y < 1 (G = m, m)}

< supf|| (£ @) - explisun @ udp|: fe CE, 1 <1 (G = m, w)
<4'sup{z+ 1|+ |2+ e°|:]|2] <1} = max{| cos(s/4)|, | sin(s/4)[} .
Let now N be any natural number, and take any function f, in A, with
([fulls, <1,m=1,2, .-, 2N. Then, setting f, =1 for all n larger than
2N, we observe that the functions
gn = (fm—x @on) * exp(i4tn_2u’2n—l @ uzn)’ (n = 1) 2) °e ')

are independent random variables on the probability space (E, ). It
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follows from (2) that
| (. @A@ - @fu) - explitf)dp

= nf_ll igEgnd,u, = i[l max{| cos(n*t) |, | sin(n~%t) [} (—eo <t < ).

Consequently we have
(3) sup{ || 1 - exp(itf)ap|: ne 4, n . = 1}

=

is

max{| cos(n%) |, | sin(n%t) |} (—e0 < t< ).

Therefore, our assertion will follow from a theorem of P. Malliavin [5]
(see also Rudin [7: 7.6.3]) as soon as we have proved that

(4) ﬂ max{| cos(n*t) |, | sin(n~*t) |} £ b - exp(—c|t]|'?) (—oo<t< o).
for some positive numbers b and ¢. For a given ¢t > 8x, let N= N, be
the smallest positive integer such that ¢ < (7/4)N*. Since

coss =1 — 47's* < exp(—47's% (—m/2 £ s <72,

we then have
1"‘:[ max{| cos(n~*¢) |, | sin(n*t)|} < f[N' cos(n?t)|

= exp(——zl“1 i n“‘tZ)
n=N
< exp(—(12)"'N~%) .

But it is clear that N*® < 8t/w, and hence (4) follows. This completes
the proof.

REMARKS. Let E,, u,, and ¢ be as in the proof of Theorem 2.
(a) We can determine the range of the values of @ with the required
property as follows. Let

f1 =4 2 (2% - 1)—2'”/471—3 @ Usn—2 »

fo=4 nZ:.l Cn) Uy @ Uy,

and let F\(t), Fyt), F(t) be the distribution functions of f,, f. f when
they are regarded as random variables on the probability space (E, ). It
is easy to see that these distribution functions are all infinitely differen-
tiable. Further, since f, and f, are independent, w(¢) is the convolution
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of w,(t) and w,(t), where w,(t), w,(t) and w(t) are the derivatives of F.(t),
Fy(t), and F(t). Since > .2n — 1) =877 and Y2, n™? = 6"'7% it is
easy to prove that

supp(w,) = [0, 27'7* — 4] U [4, 27'7%] ;
supp(w,) = [0, 67'z* — 1] U [1, 67'7*] .
But w,(t) and w,(t) are both non-negative, and so we have
L = {ac R: w(a) # 0} = (0, 37'27° — 4) U (4, 37'27°) .

Therefore, for every a in L, the closed ideals in A generated by each

f—a)" (m=1,2 --.) are all distinct. Note also that, for every b in

R\L, the set f'(b) is empty or consists of a single point. Hence the

range of the values of ¢ with the required property is precisely L.
Another example may be given by

(*) h =6 z:l‘l N (Uggg @ Uz — gy @ ) «

Then the range of the required a’s is the open interval (—z%, 7%).

(b) Let (Z,);-, be any countable family of countable disjoint subsets
of the index set {1,238, ---}, and let S, be the S-algebra induced from
the family {A,:ne Z,}. We shall identify each S, with a closed sub-
algebra of A. Let h, be the function in S, defined quite similarly as in
(*). Then the closed ideals in A generated by each

h'lllhgz...h;lnm(qj:o, 1’2y "';jzl,zy "'7m;m:1,2, “')

are all distinct. The same conclution is true for the sequence (f,):-,,
where f,, | = Ry, + thy, and fo, = Ay, — thy, (D = 1,2, ---).

Let now G be a locally compact abelian group, and G its dual. Let
also (E,)7-, be a sequence of compact subsets of G, = G, and put

E=1E.cG =]IG,.

We require the sequence (E,);-, to satisfy the following condition.
(R) For every point & = (x,)7_, of E, the series p(x) = py(®) = D1 @,
converges in G, and the mapping p: E — G so obtained is continuous.
Under this condition, we put E = p(E), which is a compact subset
of G. Observe then that, for every character v in G, the product

o

Yop(x) = [1 7(x,) (¢ = ®,)7-. € E)

n=1

uniformly converges on E. We now proceed to obtain a sufficient con-
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dition for the restriction algebra A(E) of the Fourier algebra A(G) to be
isomorphic to the S-algebra induced from the sequence (A(F,)):-,. We
begin with proving the following.

LEMMA 1 (cf. Varopoulos [12]). (a) For every real number d with
0<d<m we have
nd) =[le* — 1o < {(x + d)/(x — d)}d ,

where A(d) denotes the the restriction algebra of A(T) on the imterval
[—d, d].

(b) Let A be a simi-simple Banach algebra represented as a function
algebra on some space, and let f, and f, be two functions in A such
that

[fil=1, and [[ffll,= M; (1=12k=0, %1, %2, --.).
Then |arg(fi-fo) | < d < m implies || f, — f2ll. < 7(d) MM,

PrOOF. Let g, and g, be the characteristic functions of the intervals
[—(x + d)/2, (x + d)/2] and [—(7 — d)/2, (x — d)/2] of the real line R.
Writing w = (7 — d)™'9,*g,, observe that

fwllaim <{@+d)/(mw—-ad)}"*, w=1on[-dd,
and
supp(w) = [—7, 7] .
Let v be the odd function in B(R) with period 4d defined by the require-
ments v(s) =s (0<s=d) and v(s) =2d — s (d < s <2d). Itisclear that
v(s — d) is positive-definite, and hence || v ||z = d. Define
w(e’) = iw(s)v(s)sl e dt (—t<s<7).

It is then trivial that u(e”) = ¢** — 1 on [—d, d]. Further,

' _— i ! i i(t—k)s
) = 5 So{gﬁ”w(s)v(s)e ds}dt
=LS1@(k—t)dt (k =0, £1, £2, +-+)
21 Jo

and hence the A(T)-norm of % is smaller than the A(R)-norm of wv,
which establishes part (a).

Suppose now that f, and f, are functions in A as in part (b), and let
% be any function in A(T) such that wu(e*) =e¢** — 1 on [—d, d]. Then,
if |arg (f.+ fo)| < d, we have
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fimfi=fooulfi- F) = 5 a@rEf,

and hence

1y = Fella = 31800 MM = [ Lan MM

which, combined with part (a), establishes part (b).

Throughout the remainder part of this paper, we denote by d, the
positive solution of the equation {(# + d)/(r — d)}'*d = 1. Then note that
d, = 0.77 ---, and that 0 < d < d, implies 7(d) < 1.

LEMMA 2 (cf. Hewitt and Ross [3: (40.17)]). Let K be any compact
subset of a locally compact abelian group G, and let f be any function in
A(K). Then, for every positive real number C larger than the A(K)-norm
of f, there are a sequence (a,)z—, of complex numbers and a sequence
(Y,)7-, of characters in G such that

iianlécy and f=§°i]a,,7n on K.

Proor. It suffices to note that the set
{iaﬂvneA(K)z i}lanl <1L,7.eG n=12, )}

is norm-dense in the closed unit ball of A(K), which is an easy consequence
of the Hahn-Banach theorem.

LEMMA 3. Let (E,)7-, be a sequence of compact subsets of a locally
compact abelian group G.

(@) If G 1is compact, then the restriction algebra A(E) of A(G™) is
isometrically isomorphic to the S-algebra Ap induced from the sequence
(A(E,))7=1e

(o) If the sequence (E,)7-, satisfies Condition (R), then the operator
P = P, defined by

P(f) = fops (f e A(E))

is a norm-decreasing homomorphism of A(E) into A,.

Proor. Part (a) is a direct consequence of the definition of an S-
algebra and the fact that A(G™) is the S-algebra induced from the
sequence (A(G,))r-, if G is compact.

We now prove part (b). By Lemma 2, it suffices to verify that, for
every character v in G, the function X ="Yepy is in A; and || x]ls = 1.
Define
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@) = v@)  (@=@)r.cBN=12 ).

n=1
Then each yx is in A; and its S-norm is 1 by Proposition 1. Since
(Xx)5-:. uniformly converges to y, it follows from Lemma 1 that y is in
A, and its S-norm is 1. This completes the proof.

THEOREM 3. Let (E,);-, be a sequence of compact subsets of a locally
compact abelian group G that satisfies Condition (R). Suppose, in ad-
dition, that there exists a constant d, 0 < d < d,, such that:

(S,d) For any characters (v,)Y_, in G, we can find a character v in
G such that

larg[(vep) « (@7 ® - ®@7y)][=d on E.
Then Ehe homomorphism P = Py defined in Lemma 3, is an isomorphism
of A(E) onto Ag, and ||[P7'|| = (1 — n(d)™'. In particular, if Condition
(S, d) holds for every d > 0, then P is an isometry.
Proor. We fix any function f in A;, and take any positive number
C larger than || f||s. It is easy to see from Lemma 2 that f has an ex-
pansion of the form

f= ki;lak(%kCD“/zk@ <o+ ® Yy on K,

where the v,, are characters in G regarded as functions on FE,, and
. |a,| < C. By condition (S,d), we can choose a sequence (7v,);-, of
characters so that
larglXe « (Y @V ® <o+ @7y )] [ =d on B,
where ¥, = v,op,. Putting g, = 3., a7, we see that g, is in A(F) and
[l 9o ll4 < C. It also follows from part (b) of Lemma 1 that

1F = P@)lls = S lal- 117 @ @ = % ls

Ms

=2 a[9d) < C- ().

=
i

1

Repeating the same argument for f — P(g,) aLnd C - n(d), and so on, we
can find a sequence (g;)7-, of functions in A(%) such that

l9;llay < C - n(d)’, and |[|f— P(Xiog)lls < C-nd)*

for all j =1, 2, e Since 7(d) < 1 by hypothesis, the series g = >3, 9;
converges in A(E), and we have

lgllimm <C+ @1 —7nd)™", and f= P(g).
But, since P is a monomorphism and C was an arbitrary number larger
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than || f|ls, we have || g|l.3 <@ — n(d)™ || f|ls+ This implies that P is
an isomorphism and || P7'|| < (1 — n(d))™*. Finally, the last statement in
our theorem is now trivial since P is a norm-decreasing operator. This
completes the proof.

COROLLARY 3.1. Let G, and G, be two locally compact abelian groups,
let (E,CG)r, and (F,C Gy):-, be two sequences of compact sets, and put
E=1I7..E, and F=1T1]7., F,. Let also (H,; A(E,) — AF )5, be a
sequence of homomorphisms with H,1) = 1, and let (¢,: F,— E,);-, be the
sequence of the continuous mapping naturally induced by (H,)p-,. Suppose,
wn addition, that the product I3, || H,|| converges, and that E satisfies
Condition (R) while F satisfies both Conditions (R) and (S, d) for some
d with 0 < d <d,. If we define

G‘(Elyn) = %Z:‘qun(yn)el? Y€ Fy m=12 +-.),

and H(f) = foq (f € A(E)), then H is a homomorphism of A(E) into
AF), and || H|| = 1 — 9@) " Tz || H, |l; further, the diagram

AB)—"— 4, = © A(E,)

fll lH

AF) —""— 4, = @ A(F)

18 commutative, where H denotes the homomorphism naturally induced by
the sequence (H,)7—,.

Proor. Put
Pp(®) = Z_lx , and p.(y) = Sy (xeE,yeF),

and let ¢q: FF— E be the product mapping of (¢,)7-,. Note that p, is a
homeomorphism since P, is an isomorphism by Theorem 3. It is trivial
that § = pyoqop7', and hence H = P;'o Ho P,, which, together with
Lemma 3, Proposition 2, and Theorem 3, yields the desired conclusions.

Theorem 1 and Theorem 3 yield the following Helson-Kahane-
Katznelson-Rudin theorem [1], which is a special case of Theorem 9.3.4
of Varopoulos [13].

COROLLARY 3.2. Let (E,)7-., be a sequence of compact subsets of a
locally compact abelian group G. Suppose that Card(E,) = 2 for all n,
and that (E.)5-, satisfies both Conditions (R) and (S, d) for some d with
0<d=d,. Under these conditions, if @(t) is a function defined on the
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interval [—1, 1] of the real line, and if O(t) operates in A(E), then O(t)
18 analytic on the interval [—1, 1].

Theorem 2 and Theorem 3 yield the following Malliavin theorem [5].

COROLLARY 3.3. Let (E,);-, be as in Corollary 3.2. Then there ex-
ists a sequence (h,)=_, of real-valued functions in A(E) for which we

have:
(a) The closed ideals in A(E) generated by each function

h;llhgz...hmqm(qj:o’ 1’2, "';j=1,2, -..’m;mzl,z, ...)

are all distinct.
(b) The same conclusion is true for the sequence (f,)i-., where
Joncs = Py + ey, and  fon = fons for all n .

Let now G be a locally compact, metric, abelian group with a trans-
lation-invariant metric d(z, y), and let (¢,)7—, be a sequence of positive
real numbes such that >3 ne, < . Let also (E,);-, be a sequence of
compact subsets of G such that

(A) S supld(s, 0): we B,) < o .

Then it is easy to see that (E,);., satisfies Condition (R). We assume
that there exists a sequence (I",);_, of subsets of G such that:

(B) For every natural number n, we have

yel,—|1-71[<eyon 3 B, (N=n+1n+2 - );
=N

A

(C) For every natural number n and every character v in G, we can
find a character ¥ in I", such that |v — x| < ¢, on E,.

Under these conditions we assert that the sequence ()., satisfies
Condition (S, d) for some 0 < d < d,, provided that the sum >, ne, is
smaller than a certain constant. In fact, let (v,)Y-, be given N characters
in G. By (C), there exists a yy in I'y such that |vy — xx| < &y On E,.
Again by (C), there exists a character X,_, in I'y_, such that

[ Vs — Awv—r * Aw | < €y—y O Ey_,; .

Repeating this process, we obtain N characters (x, € I",)}-, such that
N
7n(xn)_ ]:[X.’l(x'n) <e, (xneEn; n:l, 2, R N)'
j=n

Pat y =y« %ave An e G; then, for any points (z, € E,)¥_,, we have by (B)
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1 7@ — 11 (s

1

< 3 (@) — 1)

= 3 { @) = I 2| + |1 - T |}
gi}{enJr (n—l)en}:énen.

Therefore, for any point = (x,)7-, of E = [[7., E,, we have
(1 ®@7:® -+ ®7y) (%) — (Xopr) (@)

n=1 =N+1 j=1

N o
< Sy me, + Neyyy < D) me, o
n=1 n=1

Consequently we conclude from Theorem 3 that A(E) is isomorphic to the
S-algebra induced from the sequence (A(E,))7-, if the sum >7., ne, is
smaller than a certain constant, say, 2 sin(d,/2). Thus we can now
prove the following.

THEOREM 4. Let G be any non-discrete locally compact abelian group.

(a) Suppose that G contains a closed subgroup which is an I-group.
Then, for every & > 0, there exists a Cantor subset K of G such that the
restriction algebra A(K) ts isomorphic to the S-algebra S(K) induced
from countable replicas of C(K) and such that

I fllsw S Fllaw = A+ &) fllsm (f e A(K))

when we identify A(K) and S(K) in a natural way.

(b) Suppose that G does mot contain any I-subgroup, them G contains
a compact subgroup K isomorphic to D, for some q = 2. In this case,
A(K) 1is isometrically isomorphic to the S-algebra induced from countable
replicas of A(D,).

ProoF. The first statement in part (b) is well-known (see Rudin
[7; 2.5.5]), and the second one is trivial.

In order to prove part (a), we may assume that G is itself an I-group
having a translation-invariant metric compatible with its topology. Thus,
for any given sequence (7,);-, of natural numbers and any given sequence
(e.)y-, of positive real numbers, it is easy to construct a sequence (E,);-,
of subsets of G so that: every E, consists of », independent elements
and (E,)7-, satisfies all the Conditions (A), (B) and (C) (cf [7: 5.2.4]). In
particular, it follows from the above observations that, for any ¢ > 0, G
contains a compact subset E such that A(E) can be identified with
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S(E) = @3-, C(E,), where each E, is a compact space consisting of two
distinet points, and such that

I fllswm S U llae = A+ ) S lsw -

But it is easy to see that E = [[;-, E, contains a Cantor set K such
that the restriction algebra of S(E) on K is isometrically isomorphic to
C(K). Further, S(E) may be regarded as the S-algebra induced from
countable replicas of itself. These facts establish part (a), and the proof
is complete.

REMARK. For every sequence (E,);_, of compact spaces, the S-algebra
induced from (C(E,));-, is isometrically isomorphic to a restriction alge-
bra of the Fourier algebra of some compact abelian group. This follows
from the fact that every compact space is homeomorphic to a Kronecker
subset of a compact abelian group (see Saeki [8: Theorem 2]).

ExamMpPLE 3. Let X, and X, be two perfect compact spaces, and
V(X) = C(X) ® C(X) = C(X) ®C(X,) .

For simplicity, suppose that both X, and X, are totally disconected. Then
there exists a continuous “onto” mapping ¢;: X;— D, for 7 =1,2. We
consider the diagram

AD) 2 V(D) = €(D) & C(D) - V(X),

where M is the isometric homomorphism defined by Herz [2], and @ is
the isometric homomorphism naturally induced by the mappings ¢, and g,.
The operator @ has an approximating inverse consisting of norm-decreas-
ing homomorphisms [9]. This property of @, together with the well-
known property of M [2] and Theorem 2, yields the following: there ex-
ists a sequence of real-valued functions in V(X) that satisfies the con-
clusions (a) and (b) in Corollary 3.3.

ExaMPLE 4. Let (E,)3-, be a sequence of finite subsets of R¥. Then
we have isometrically A(E,) = A(tE,) for every real positive number ¢,
where tE, = {tx: xc E,}. Thus, the observations preceding Theorem 4
assure that R" contains a compact subset K such that A(K) is isomorphic
to @3-, A(E,).

ExampLE 5. Let (p,)7-, and (¢,)5-, be two sequence of positive inte-
gers and positive real numbers, respectively. Suppose that

oo

Z e tn+1/tn < oo ’ and tn > Z pktk (n = 17 27 °* ') ’
n=1

k=n+1
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and put
ﬁ:{i Pobiy =0,1,2 o+, p, (n=1,2, ---)}CR.
n=1

Then, it is not difficult to prove that A(F) is isomorphic to the S-algebra
@5, A(F,), where F, = {rt,:r=0,1, -+, p,} for all n (cf. the arguments
preceding Theorem 4). Let now (s,)7-, be any sequence of real numbers
such that 37, 9,.]s,]| < o, and put

E:{i s e = 0,12, co0, p (n=1,2, ---)}cR.

If we define §: F'— E by setting

q(i’rntn>:irnsn (’r',,=0,1,2,---,pn;nzl,z,---),

it follows from Corollary 8.1 that § induces a homomorphism of A(E)

into A(F). In particular, taking p, =1 for all n, we obtain a theorem
of Y. Meyer [6].

ExAMPLE 6. Here we shall explicitly construct a function g in A(T)
such that the closed ideals in A(T) which are generated by each g™
(m=1,2, ..-) are all distinct. To do this, we shall identify T with the
interval (—x, 7] mod 27. Let us fix any positive integer » = 3, and let
w = w, be any function in A(T) such that: w(f) = 0 on the three inter-
vals of length 27/p*(p — 1) and with the left-end points 0, 27/p*, 27/p;
and w(t) = 1 on the interval [27/p + 27/p% 2r/(p — 1)]. We put

Ft) = 3 nw(@)
and assert that, for every real number a in the open set
M= (0, 7*)/6 — 1) U (1, 7*¥/6) ,
the function ¢ = f — a has the required property. We consider the sub-
sets of T
E,={0,2x/p"}, and E = {i e,2m/p™ €, = 0 or 1 for all n} ,

and define p;: E = [[=, E, — E in a natural way. Then, by lemma 3, p,
induces a norm-decreasing homomorphism P of A(E) into A, = @2, A(E,).
Let u, be the function in A(E,) defined by w,(0) =0 and w,(27/p") = 1.
It is easy to see from the definition of f that we have

P(fl3) = fope = 2 N Uy @ U = S
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The Remarks following the proof of Theorem 2 shows that the closed
ideals in A, which are generated by each (f' — a)™ (m =1,2, +-+) are all
distinct for each fixed ¢ in M. But P is a norm-decreasing homomorphism,
and so our assertion follows.

Another interesting example may be given by

ht) = 3 n () — wEn Y} + i 5 nH ™) — wpnn) .

Then, for every complex number z with |Re(z)| < 7*/6 and |Im(z)| < n*/6,
the closed ideals in A(T) which are generated by each function

(k - z)m(ﬁ - z)n (m’ n = 0! 17 27 “')
are all distinct.

REMARKS. (a) An idea very like the one used in the proof of our
Theorem 2 is due to Y. Katznelson [4: Chap. VIII].

(b) We can directly prove what was shown in Example 6 by apply-
ing the methods in the proof of Theorem 2.

(¢) Professor O. C. McGehee kindly let me know that

nd)=d+ O as d—0.
My original estimate was n(d) < 2'*d.
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