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In this paper we shall introduce the notion of the S-algebra induced
from a given sequence of semi-simple (commutative, complex) Banach
algebras with unit. Such an algebra will become a new semi-simple
Banach algebra with a certain norm. We shall obtain some fundamental
properties of S-algebras, and consider two problems; one is the problem
of operating functions, and the other is that of spectral synthesis. Next
we shall apply some of our results on S-algebras to the theory of restric-
tion algebras of Fourier algebras. We shall construct, by a certain rule,
compact subsets of a given locally compact abelian group G, and homo-
morphisms of restriction algebras of the Fourier algebra A(G) on them.
Such a restriction algebra will be isomorphic to an S-algebra induced
from other restriction algebras of A(G). Further, we shall explicitly
construct a function g in A(T) such that the closed ideals in A(T)
generated by gm (m = 1, 2, •) are all distinct (see Example 6 at the end
of this paper).

We begin with introducing some notations and definitions. Let
(i4n)"=1 be a sequence of semi-simple (commutative) Banach algebras with
unit. We shall regard each An as a subalgebra of C(En) in a trivial
way, where En denotes the maximal ideal space of An, and assume that
|| 111^ = 1 for all n. Let N be a natural number, and let

A , (g) A 2 (x) (x) A N and A , (g) A 2 (g) (g) A N

be the algebraic tensor product of (An)ί=1 and its completion with the
protective norm, respectively; and put E{N) = Eι x E2 x EN, the product
space of (2£n)£=i. Let us also denote by

the subalgebra of C(E{N)) consisting of those functions / that have an
expansion of the form
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( I ) f{χ» x* , Xn)
k = l

where the functions fnk are in An and

(Π) Λ r = Σ I I / i * I L 1 IIΛ*ILI I I Λ * l k < -
k — l

When (I) and (II) hold, let us agree to say that the series in the right-
hand side of (I) absolutely converges to / in norm, and to write

/ Σ
k=i

We denote by | | / | U = II / lUu^,-,^) the infimum of the M's as in (II),
and call it the S-norm of /. It is a routine matter to verify that, with
this norm, A{N) is a Banach algebra whose maximal ideal space can be
naturally identified with the product space E{N). It is also easy to prove
that A{N) is isometrically isomorphic to the Banach algebra

{A, (g) A2 (g) (g) AN)jRN

with the quotient norm, where RN denotes the radical of the algebra
A,® A2® ••• ®AN (cf. Tomiyama [11]). We call A{N) the S-algebra in-
duced from (An)ξ=1. Let now E = Eγ x E2 x be the product space of
(En)n=1, and consider the subalgebra A = ®Z=1An of C(E) that consists
of all functions / having an expansion of the form

(Γ) f(x) = Σ/i*(»i)/.*(«0 fNkk{χNk)

for all points x = (xn)n=ι of E, where the functions fnk are in An and

(IΓ) Λ r = Σ I I / i * I L 1 IIΛ*IU l l / ^ I U ^ < - -

When (Γ) and (IΓ) hold, let us again agree to say that the series in (Γ)
absolutely converges to / in norm, and to write

/ = Σ
fc=i

The infimum of the M's as in (IΓ) is called the S-norm of /, and is
denoted by || / \\s = \\ f [|5Ul̂ 2,...) With this norm, A becomes a Banach
algebra, and its maximal ideal space can be natural identified with the
product space E. We call A the S-algebra induced from the sequence
(An)n=i In a trivial way, we then have the sequence of isometrical and
algebraical imbeddings:

Aω = A, c A{2) c c A{N) c c A .
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Note that the union of all A{N) is a dense subalgebra of A. Of course
we can also define, in a similar way, the S-algebra induced from an
arbitrary family of semi-simple Banach algebra with unit.

Let now 0 = (On)ϊ=1 be any fixed point of E, and let

be the natural norm-decreasing homomorphism defined by

(HI) (3w/)(a) = /fa, %2, , %N, ON+1, ON+2, •) .

It is then trivial that we have

(IV) II &v 11 = 1 (N= 1,2, . . . ) , and lim \\%Nf - f \\s = 0 (/ e A) .
N

Finally observe that, if (Bw)ϊ=i is a permutation of (AJ~=1 and if B is
the S-algebra induced from (JBn)»=1, then A and B are isometrically iso-
morphic.

Hereafter, we fix two sequences (An)»=1 and (JB»)u=1 of semi-simple
Banach algebras with unit, and associate with them A and B (the S-
algebras induced from them), the product spaces E = Πϊ=i En and F =
Πr=i Fnf etc.

PROPOSITION 1. (cf. Hewitt and Ross [3: (42.7)]). (a) For every natural
number N, we have

( i ) I I Λ ® Λ ® ••• ®f*\\s = Π IIΛIU. ( Λ e A , ; n = 1, 2, ..., iV) .

(b) Let (iJn: Aw —> Bn)%=1 be N bounded linear operators, then there
exists a unique bounded linear operator A{N) —* BiN\ denoted by H(N) =
®n=i Hn1 such that

for all functions fn in An (n = 1, 2, , JV). Further, th eoperator norm
of H{N) is given by

N

/•• \ II ττ{N) \\ TT II TJ II
n = l

PROOF. The first statement in part (δ) is well-known and is contained
in Hewitt and Ross [3: (42.7)]. Taking as Bn the field of complex numbers
(n — 1, 2, , N), and applying the Hahn-Banach theorem, we obtain (i).
Finally, (iii) is an easy consequence of (i). We omit the details.

PROPOSITION 2. Let (Hn: An —• JBW)~=1 be a sequence of bounded linear
operators such that Hn(l) = 1 for all n and Π?=i II Hn\\ converges. Then
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there exists a unique bounded linear operator A—>B, denoted by H =
®?=1 Hn, such that

( i ) W i ® / , ® ••• ® Λ ) = W i ) ® H2{f2)® . . . ® HN{fN)

for all functions fn in An (n = 1, 2, , JV; N = 1, 2, - •). Further, the
operator norm of H is given by

PROOF. For each N^l, let us denote by HN: A—>B the composition
of the three operators

where f$N is the operator defined by (III) for any fixed point 0 of E,
Hm = ®ί=i Hn, and bN the canonical imbedding. It is a routine matter
to verify that || βN \\ = ΠίU \\Hn\\ and that the sequence (SNf)%=l con-
verges in j? for every / in \JN^=IA{N). Therefore we can immediately
prove the existence of H with the required property. The identity (ii)
follows from Proposition 1, which completes the proof.

PROPOSITION 3. Let (Hn: An —> Sn)?al be a sequence of norm-decreasing
linear operators with Hn(l) = 1 for all n, and suppose that each Hn has
an approximating inverse in the sense of Varopoulos [13]. Then H =
®"=i Hn: A-^ B is an isometry.

PROOF. For each N ^ 1, the restriction of H to the closed linear
subspace A[N) of A can be identified with the operator H{N): Am —>B{N).
It is then easy to see from Proposition 1 that each H{N) has an approxi-
mating inverse under our hypothesis, from which our assertion immediately
follows.

We now consider any sequence (Hn: An —> jBn)?=1 of norm-decreasing
homomorphisms that satisfies the two requirements in Proposition 3. Let
(qn: Fn —> En)~=ί be the sequence of the continuous mappings naturally
induced by (Hn)n=1, and denote by

Q{N) - 9i x Qz x X QN- F{N) — E{N) ,

Q = ffi x Q2 x Qs x •••: F-+E ,

their product mappings. Observe then that we have

HlN)f = foqw ( / e i w ) ; Hf = foq (feA).

Using the operators (3W£=i defined as in (III) for a fixed point of F and
the fact that H is an isometry, we have the following, which we do not



TENSOR PRODUCTS OF BANACH ALGEBRAS 285

prove.

PROPOSITION 4. Suppose that we have
( i ) Im(H{N)) = {g e B{N): g = foQw for some f in C(E{N))}

for all N = 1, 2, , then
(ii) Im(H) = {geBig = foq for some f in C(E)}

EXAMPLE 1. Suppose here that An = C(En) and Bn = C(Fn) for all
n. Then the condition (i) of Proposition 4 is satisfied if every qn is a
continuous mapping of Fn onto En (see Saeki [9]). In particular, taking
as Bn the Banach algebra consisting of all bounded complex-valued func-
tions on En, we have: let / be a continuous function on E that has an
expansion of the form

f(x) = Σ/i*(*i)/*(&«) fNkk{xNk) (x = (& )ϊ=i e E) ,

where each fnk is a bounded function on En and

f;ii/i*ii--ii/*iu---ii/^iu< -
fc=i

Then / is a function in the space ®?= 1 C(En).

EXAMPLE 2. Suppose here that each 2?n is a compact abelian group
and An = A(J^W), the Fourier algebra on JÊ  Then we can identify the
S-algebra A with the Fourier algebra A(E) on the compact abelian group
E. Suppose that Fn = En x En and β n = C(En) ® C(J?n), and that

?»(», 2/) = ^ + V (%,yε En) for all n .

Then the condition (i) of Proposition 3 is satisfied (see Herz [2]).

THEOREM 1. Suppose that every En contains at least two distinct
points, and that every An satisfies the following two conditions:

(a) IffeAn, then feAn and \\f\\An = \\f\\An;
(b) With any e > 0 and any two distinct points On and xn of En

there corresponds a function un in An such that

|| un \\An rg 1 + ε, un(On) = 0 , and un(xn) = 1 .

Suppose also that Φ(t) is a function defined on the interval [ — 1, 1] of the
real line R, and that Φ(t) operates in A. Then Φ(t) is analytic on the
interval [ — 1, 1].

PROOF. We first prove our statement under the additional assump-
tion that every En contains precisely two distinct points On and xn. Let
ί$N: A —• A be the operator defined by (III) for the point 0 = (Ow)~=1 of
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E, let A! be the Banach space dual of A, and take any functional P in
A\ Then it is easy to see from (III) and (IV) that every $*(P) is a
discrete measure in M(E), and the sequence (3$0P))~=i converges to P in
the weak-star topology of A'. Since every !$N has norm 1, it follows that

( 1 ) \\f\\s

for all functions / in A. Suppose now that Φ{t) is as in our Theorem,
and define for each r with 0 < r < 1

φr(t) = φ(r sin ί) ( - oo < t < oo) .

Using (b), we can easily prove that Φ(t) is continuous. It also follows
from (b) and (1) that there are two positive numbers r and C such that

( 2 ) | | Φ r ( / + ί ) | U ^ C (-co <t< oo).

for all functions / in AR = Af)CR(E) with || f\\s^π (see Rudin [7; 6.6.3]).
Therefore., in order to prove that Φ(t) is analytic at t = 0, it suffices to
find a positive number a such that

( 3 ) sup{|| eik' \\8: f e AR, \\ f \\s £ π) ^ eaW (k = 0, ± 1 , ± 2 , . . . ) .

For each n, let un be the function in An defined by un(On) = 0 and
un(xn) = 1. Then, by (b), || un \\Λ% = 1; further, we have

1 ® u2n) \\s = || exp(iττ u2n^ ® uj IL 2 ._ l Θ ^

^ \\exp(iπu2n^( )u2n) l U ^ . ^ ^ ) ^ 21/2

the last inequality following from Lemma 2.1 in Saeki [10] Therefore,
setting

k

fk = k~lπ Σ ^2—1 ® ^2n (fc = 1, 2, •) ,

we have || fk \\s ^ π, and

|| exv(ikfk) \\s = \\ exp(-ΐfcΛ) |U

= Π II exp(ΐτr u2n_γ ® wίn) |U ^ 2^2 (& = 1, 2, . . . )

by Proposition 1. Thus (3) holds for α = 2~1log2. This completes the
proof of our statement in the case that C a r d ^ ) = 2 for all n.

Suppose now that Card (En) ^ 2 for all n. We take any two distinct
points On and xn of En, and put Fn = {On, xn}. Let Bn be the restriction
algebra of An on the set Fn endowed with the natural quotient norm;
it is easy to see that the maximal ideal space of Bn is Fn9 and that
the restriction algebra B of A on the set F = F1 x F2 x can be
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identified with the S-algebra induced from the sequence (J5W)J=1 in a
trivial way. Since A is self-ad joint by (a), every function, that is defined
on the real line and operates in A, operates in B. This fact, combined
with the result in the preceding paragraph, establishes our Theorem.

REMARK. Under the same assumption, we can prove that: if Φ(z)
is a function defined on the square L = {z; | Re(z) | ^ 1, and | Im(z) | <Z 1}
of the complex plane, and if Φ(z) operates in A, then Φ{z) is real-analytic
on L.

THEOREM 2. Suppose that, for each n, there exist a function un in
An and two points On and xn of En such that

\\un\\An^ C, un(On) = 0 , and un(xn) = 1 ,

where C is a constant independent of n. Then there exists a function g in
A such that the closed ideals in A which are generated by gm(m = 1, 2, •)
are all distinct.

PROOF. By considering some restriction algebra of A, we may as-
sume that En = {On, xn} for all n. We regard each En as a "compact"
abelian group, and E as the product group of (En)n=ι We then define μ
to be the Haar measure on E normalized so that μ(E) — 1. Let un be as
in our theorem and write

oo

( 1 ) / = Σ 4w~%2n_1 ® u2n ,

which absolutely converges in norm by hypothesis. We then assert that,
for some real number a, the function g = / — a has the required property.
To prove this, let m < n be two natural numbers, and s an arbitrary
real number. We then have

(2)

supj 1 (fm ® fn) expθ'mm ® un)dμ : /,- e Ah \\fj \\Aj ^ 1 (j = m,

[fm ® fn) exp(ΐsum ® un)dμ

^ 4"1 sup{| z + 11 + I z + eis |: | z \ ̂  1} = max{| cos(s/4) |, | sin(s/4) |} .

Let now JV be any natural number, and take any function fn in An with
\\fn \\An ̂  1, n = 1, 2, - , 2N. Then, setting fn = 1 for all n larger than
2JV, we observe that the functions

gn = (/2w_1 ® f2n) ex^iAtn^Uzn^ ® u 2 n), (% = 1, 2, •)

are independent random variables on the probability space (E, μ). It
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follows from (2) that

(/i ® Λ ® ®f*N) ' exp(itf)dμ

^ Π max{\ cos(n~H) |, | sm(n~2t) |} ( - co < t <

Consequently we have

= π i t ,

(3) supj ( h exp(itf)dμ :heA,\\h\\s^

^ Π max{| cos(^"2ί) I, I sin(>-2£) |} ( - co < t < oo) .

Therefore, our assertion will follow from a theorem of P. Malliavin [5]
(see also Rudin [7: 7.6.3]) as soon as we have proved that

( 4 ) Π max{| cos(w~2 ί) |, | sm(n~2t) |} ^ ft exp(-c \t\1'2) ( - o o < ί < o o ) .

for some positive numbers 6 and c. For a given t > 8ττ, let N = Nt be
the smallest positive integer such that t ^ (τr/4)JV2. Since

cos s ^ 1 - 4~V ^ exp(-4"V) (-ττ/2 ^ s ^ τr/2) ,

we then have

Π max{| cos(n~2t) |, | sin(n"2ί)|} ^ Π I cos(n~2t) \

But it is clear that N2 ^ St/π, and hence (4) follows. This completes
the proof.

REMARKS. Let En, unf and μ be as in the proof of Theorem 2.
(a ) We can determine the range of the values of a with the required

property as follows. Let

fχ = 4

/, = 4

and let F^ί), F2(ί), ^( ί) be the distribution functions of fly /2, / when
they are regarded as random variables on the probability space (E, μ). It
is easy to see that these distribution functions are all infinitely differen-
tiable. Further, since /x and f2 are independent, w(t) is the convolution
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of Wί(t) and w2(t), where w^t), w2(t) and w(t) are the derivatives of
F2(t), and F(t). Since Σ ? = I ( 2 Λ - I)" 2 = S~ιπ2 and Σ?=i n~2 = 6"V, it is
easy to prove that

) = [0, 2-1τr2 - 4] U [4, 2-^]

supp(i<;2) = [0, 6-V - 1] U [1, 6"V] .

But wL(t) and w2(ί) are both non-negative, and so we have

L = {aeR: w(a) Φ 0} = (0, ?>-ι2π2 - 4) U (4, β-̂ TΓ2) .

Therefore, for every a in L, the closed ideals in A generated by each
(/— α)m (m = 1, 2, •••) are all distinct. Note also that, for every b in
R\L, the set /-1(i>) is empty or consists of a single point. Hence the
range of the values of a with the required property is precisely L.

Another example may be given by

Then the range of the required α's is the open interval ( — π\ π2).

(b) Let (Zp)~=1 be any countable family of countable disjoint subsets
of the index set {1, 2, 3, •••}, and let Sp be the S-algebra induced from
the family {An: ne Zp}. We shall identify each Sp with a closed sub-
algebra of A. Let hp be the function in Sp defined quite similarly as in
(*). Then the closed ideals in A generated by each

/̂ fe£2 ΛίKϊi = 0, 1,2, . . . i = 1,2, . . . , m ; m = 1,2, .-•)

are all distinct. The same conclution is true for the sequence (/p)"=1,
where f2p_x = h2p^ + ih2p and f2p = Λ2P_1 - ίΛ2p (p = 1, 2, •).

Let now G be a locally compact abelian group, and G its dual. Let
also (En)n=ι be a sequence of compact subsets of Gn = (?, and put

We require the sequence (En)n=1 to satisfy the following condition.
(R) For every point x = (xn)~=1 of E, the series p(x) = pE(x) = Σ?=i ̂ ^

converges in G, and the mapping p: E—+G so obtained is continuous.
Under this condition, we put E = p(E)9 which is a compact subset

of G. Observe then that, for every character 7 in G, the product

Ί°p{x) = Π 7(»«) (a? = W ^ i e E)
w = l

uniformly converges on U7. We now proceed to obtain a sufficient con-
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dition for the restriction algebra A{E) of the Fourier algebra A(G) to be
isomorphic to the S-algebra induced from the sequence (A(En))n=1. We
begin with proving the following.

LEMMA 1 (cf. Varopoulos [12]). (a) For every real number d with
0 < d < π, we have

r]{d) = || eis - 1 \\Md) < {(7Γ + d)/(π -

where A(d) denotes the the restriction algebra of A(T) on the interval
[-d,d].

(b) Let A be a simi-simple Banach algebra represented as a function
algebra on some space, and let fγ and f2 be two functions in A such
that

|/y| = l , and WfϊlL^Mj (j = 1, 2; k = 0, ±1, ±2, ...) .

Then I arg{f^f2) | ^ d < π implies | |/ i — f2 \\A ̂  η{d)MJdz.

PROOF. Let gι and g2 be the characteristic functions of the intervals
[-(π + d)/2,(π + d)/2] and [-(π - d)/2, (π - d)/2] of the real line R.
Writing w = (π — d)~1g1 * g2, observe that

II w \\MB) < {(π + d)/(π - d)Y» , w = 1 on [-d, d] ,

and

supp('w ) = [ — 7Γ, TΓ] .

Let v be the odd function in B(R) with period 4td defined by the require-
ments v(s) = 8 (0 ^ s ^ d) and v(s) = 2d — s (d ̂  s ^ 2d). It is clear that
v(s — d) is positive-definite, and hence | |v | | s ( Λ) = d. Define

u(eίs) = iw(s)v(s)[ eistdt (-π ^ s ^ π) .
Jo

It is then trivial that u(eis) = eίs - 1 on [ — d, d]. Further,

u(k) = — [IV w(s)v(s)ei{t-k)sds\dt
2π JoU-^r J

= J- [£^o(k - t)dt (k = 0, ±1, ±2, •)
2π Jo

and hence the A(Γ)-norm of u is smaller than the A(R)-norm of wv,
which establishes part (a).

Suppose now that fι and f2 are functions in A as in part (b), and let
u be any function in A{T) such that u{eis) = eίs — 1 on [ — d, d]. Then,
if I arg (f, f2) \ ̂  d, we have
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and hence

IIΛ - /. IL ύ Σ I n(k) \MM = \\u \\MT)MM,,
k=—oo

which, combined with part (a), establishes part (b).
Throughout the remainder part of this paper, we denote by d0 the

positive solution of the equation {(π + d)/(π — d)}ίl2d = 1. Then note that
d0 = 0.77 , and that 0 < d ^ d0 implies η{d) < 1.

LEMMA 2 (cf. Hewitt and Ross [3: (40.17)]). Let K be any compact
subset of a locally compact abelian group G, and let f be any function in
A(K). Then, for every positive real number C larger than the A{K)-norm
of /, there are a sequence (αn)~=i of complex numbers and a sequence
(7»)?=i of characters in G such that

Σ I a J ^ C , and / = Σ <*Λ on K .

PROOF. It suffices to note that the set

{f*an7neA(K):±\an\^l,yneG (n = 1, 2, ...)}

is norm-dense in the closed unit ball of A(K), which is an easy consequence
of the Hahn-Banach theorem.

LEMMA 3. Let (En)n=ί be a sequence of compact subsets of a locally
compact abelian group G.

(a) If G is compact, then the restriction algebra A(E) of A(G°°) is
isometrically isomorphic to the S-algebra AE induced from the sequence

(b) If the sequence (En)"=1 satisfies Condition (R), then the operator
p = PE defined by

P(f) = f°PE (f e A{E))

is a norm-decreasing homomorphism of A(E) into AE.

PROOF. Part (a) is a direct consequence of the definition of an S-
algebra and the fact that A(G°°) is the S-algebra induced from the
sequence (A(Gn))~=1 if G is compact.

We now prove part (b). By Lemma 2, it suffices to verify that, for
every character 7 in G, the function χ = jopE is in AE and || χ \\s — 1.
Define
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XN(X) = Π 7 ( O (a; = {xχ_, e E; N = 1, 2, •) .

Then each χN is in AE and its S-norm is 1 by Proposition 1. Since
(XN)N=I uniformly converges to χ, it follows from Lemma 1 that χ is in
AE and its S-norm is 1. This completes the proof.

THEOREM 3. Let (En)n=1 be a sequence of compact subsets of a locally
compact abelίan group G that satisfies Condition (R). Suppose, in ad-
dition, that there exists a constant d, 0 < d ^ d0, such that:

(S, d) For any characters (τw)ί=i in G, we can find a character 7 in
G such that

I arg[(jop) fo ® 72 ® ® 7^)] I ̂  d on E .

Then the homomorphism P = PE defined in Lemma 3, is an isomorphism
of A{E) onto AE, and \\P~~11| ^ (1 — η{d))~ι. In particular, if Condition
(S, d) holds for every d > 0, then P is an isometry.

PROOF. We fix any function / in AE, and take any positive number
C larger than | | / | | s . It is easy to see from Lemma 2 that / has an ex-
pansion of the form

oo

/ = Σ α*(7ift ® 72* ® ® 7^*) on E ,
k—i

where the 7nk are characters in G regarded as functions on En, and
Σ~=i I ak I < C. By condition (S, d), we can choose a sequence (7*)?=i of
characters so that

I arg[χk ( y l k ® y 2 k ® ® 7 ^ * ) ] \ ^ d o n E ,

where χk = Ίk°pE. Putting g0 = Σ?=I«A;7A:, we see that g0 is in A{E) and

Hί7olL(£) < C. It also follows from part (6) of Lemma 1 that

11/ - -P(ffo) IU ^ Σ I «* I II 7 l t ® ® ΊNkh - χk \\s

^ Σ I ak I η{d) < C η{d) .
k=ί

Repeating the same argument for / — P(g0) and C η{d), and so on, we
can find a sequence (flrJ )7=0 of functions in A(i?) such that

II Qi IU(i) < C 37(d) ,̂ and | | / - P(Σί=o Λ ) lU < C )?(d)i+1

for all j = 1, 2, . Since ^(d) < 1 by hypothesis, the series g = ΣΓ=o ί/i
converges in A(E), and we have

II » IL(2, < C (1 - ^(d))-1 , and f=P(g).

But, since P is a monomorphism and C was an arbitrary number larger
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than || / \\s, we have || g |U ( i ) ̂  (1 - ^(d))"11| / \\s. This implies that P is
an isomorphism and || P " 1 1 | ̂  (1 - η{d))~\ Finally, the last statement in
our theorem is now trivial since P is a norm-decreasing operator. This
completes the proof.

COROLLARY 3.1. Let Gι and G2 be two locally compact abelian groups,
let (En c Gi)~=1 and (Fn c Cr2)~=i be two sequences of compact sets, and put
E = Π?=i En and F = ΠϊW *V Let also (Hn; A(En) — A(Fn)):=ί be a
sequence of homomorphisms with Hn{l) = 1, and let (qn\ Fn—>2£n)~=1 be the
sequence of the continuous mapping naturally induced by (iϊw)«=1. Suppose,
in addition, that the product Π~=i \\ Hn\\ converges, and that E satisfies
Condition (R) while F satisfies both Conditions (R) and (S, d) for some
d with 0 < d ^ d0. If we define

ΈQn(Vn)eE (yneFn; n = 1,2, . . . ) ,

and H(f) = f°q (f e A(E)), then H is a homomorphism of A(E) into
A(F), and || H\\ ^ (1 - η{d))~ι Π»=i II -Hi* II; further, the diagram

A{E) —-E—+ AE = ® A(En)

H\ \H

A(F) F—>AF = ®A{Fn)

is commutative, where H denotes the homomorphism naturally induced by
the sequence (Hn)n=1

PROOF. Put

oo oo

VE{X) = Σ &» J and pF(y) = Y,yn (xeE,yeF),

and let q: F—>E be the product mapping of (?Λ)J=1. Note that pF is a
homeomorphism since PF is an isomorphism by Theorem 3. It is trivial
that q = pEo q o pj\ and hence H — PΫ O HO PE, which, together with
Lemma 3, Proposition 2, and Theorem 3, yields the desired conclusions.

Theorem 1 and Theorem 3 yield the following Helson-Kahane-
Katznelson-Rudin theorem [1], which is a special case of Theorem 9.3.4
of Varopoulos [13].

COROLLARY 3.2. Let (En)n=ι be a sequence of compact subsets of a
locally compact abelian group G. Suppose that Card(En) ^ 2 for all n,
and that (En)™=1 satisfies both Conditions (R) and (S, d) for some d with
0 < d ^ d0. Under these conditions, if Φ(t) is a function defined on the
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interval [ — 1, 1] of the real line, and if Φ(t) operates in A(E), then Φ(t)
is analytic on the interval [ —1, 1],

Theorem 2 and Theorem 3 yield the following Malliavin theorem [5].

COROLLARY 3.3. Let (En)~=1 be as in Corollary 3.2. Then there ex-
ists a sequence (An)«=1 of real-valued functions in A{E) for which we
have:

(a) The closed ideals in A(E) generated by each function

AW λj-foy = 0, 1, 2, •; i = 1, 2, , m; m = 1, 2, •)

are all distinct.
(b) The same conclusion is true for the sequence (/Λ)~=i, where

fϊn-i = Kn-ι + ih2n , and f2n = f2n_, for all n .

Let now G be a locally compact, metric, abelian group with a trans-
lation-invariant metric d(x, y), and let (ew)?=1 be a sequence of positive
real numbes such that Σ?=i nen < oo. Let also (EH)n=i be a sequence of
compact subsets of G such that

(A) Σ sup{d(a;, 0): x e En) < oo .
w = l

Then it is easy to see that (2£n)?=1 satisfies Condition (R). We assume
that there exists a sequence (/\)~=1 of subsets of G such that:

(B) For every natural number n, we have

χ e Γ n = - 11 - χ | < ε* on Σ Eh (N = n + 1, n + 2, . . . )

(C) For every natural number n and every character 7 in G, we can
find a character χ in / \ such that \y - χ\ < εn on En.

Under these conditions we assert that the sequence (En)~=1 satisfies
Condition (S, d) for some 0 < d <Ξ dOf provided that the sum Σ?=i nεn is
smaller than a certain constant. In fact, let (7»)ί=i be given i\Γ characters
in G. By (C), there exists a χ^ in ΓN such that | 7^ — XN I < ε# on ^ .
Again by (C), there exists a character XN^ in .Γ^^! such that

I 7tf-i - χ^,! χ^ | < e ^ ! on ^ ^ .

Repeating this process, we obtain N characters (χn e Γn)ξ=1 such that

N

Π:
j = n

<εn (xneEn; n = 1, 2,

χ = χx χ2 χN e G; then, for any points (xn e En)*=1, we have by (B)
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Π 'TnM ~ Π

N

^ Σ

N

^ Σ - χ(xΛ) I

+

^ Σ K + (w - l)e.} = Σ «e»

Therefore, for any point x — (αn)~=1 of E = Π*=i w e

7,

Π 7.(as»)
N

π Π

Σ NeN

Consequently we conclude from Theorem 3 that A{E) is isomorphic to the
S-algebra induced from the sequence (A(En))n=1 if the sum Σ̂ Γ=i nen is
smaller than a certain constant, say, 2 sin (do/2). Thus we can now
prove the following.

THEOREM 4, Let G be any non-discrete locally compact abelian group.
(a) Suppose that G contains a closed subgroup which is an I-group.

Then, for every e > 0, there exists a Cantor subset K of G such that the
restriction algebra A(K) is isomorphic to the S-algebra S(K) induced
from countable replicas of C{K) and such that

when we identify A(K) and S(K) in a natural way.
(b) Suppose that G does not contain any I-subgroup, then G contains

a compact subgroup K isomorphic to Dq for some q ^ 2. In this case,
A(K) is isometrically isomorphic to the S-algebra induced from countable
replicas of A(Dq).

PROOF. The first statement in part (b) is well-known (see Rudin
[7; 2.5.5]), and the second one is trivial.

In order to prove part (a), we may assume that G is itself an I-group
having a translation-invariant metric compatible with its topology. Thus,
for any given sequence (rn)£=1 of natural numbers and any given sequence
(εw)?=1 of positive real numbers, it is easy to construct a sequence (En)~=i
of subsets of G so that: every En consists of rn independent elements
and (EX=ι satisfies all the Conditions (A), (B) and (C) (cf [7: 5.2.4]). In
particular, it follows from the above observations that, for any ε > 0, G
contains a compact subset E such that A{E) can be identified with
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S(E) = ®?=1 C(En), where each En is a compact space consisting of two
distinct points, and such that

But it is easy to see that E — Π~=i En contains a Cantor set K such
that the restriction algebra of S(E) on K is isometrically isomorphic to
C(K). Further, S(E) may be regarded as the S-algebra induced from
countable replicas of itself. These facts establish part (a), and the proof
is complete.

REMARK. For every sequence (En)n=i of compact spaces, the S-algebra
induced from (C(En))n=1 is isometrically isomorphic to a restriction alge-
bra of the Fourier algebra of some compact abelian group. This follows
from the fact that every compact space is homeomorphic to a Kronecker
subset of a compact abelian group (see Saeki [8: Theorem 2]).

EXAMPLE 3. Let Xλ and X2 be two perfect compact spaces, and

V(X) = C(Xd ® C(X2) = C(Xd ® C(X2) .

For simplicity, suppose that both Xι and X2 are totally disconected. Then
there exists a continuous "onto" mapping q3 : X3 —• D2 for j = 1, 2. We
consider the diagram

A{D2) i V(D2) = C(A) <§> C{Dύ — V(X) ,

where M is the isometric homomorphism defined by Herz [2], and Q is
the isometric homomorphism naturally induced by the mappings q1 and g2.
The operator Q has an approximating inverse consisting of norm-decreas-
ing homomorphisms [9]. This property of Q, together with the well-
known property of M [2] and Theorem 2, yields the following: there ex-
ists a sequence of real-valued functions in V(X) that satisfies the con-
clusions (a) and (b) in Corollary 3.3.

EXAMPLE 4. Let {En)^ be a sequence of finite subsets of RN. Then
we have isometrically A(En) = A(tEn) for every real positive number t,
where tEn = {tx: xeEn}. Thus, the observations preceding Theorem 4
assure that RN contains a compact subset K such that A{K) is isomorphic
to ®?=1A(En).

EXAMPLE 5. Let (pw)Γ=1 and (ί»)J=1 be two sequence of positive inte-
gers and positive real numbers, respectively. Suppose that

CO OO

Σ Pn+i tn+Jtn < oo , and tn > Σ Pktk (n = 1, 2, .) ,
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and put

F = JΣ rntn: rn = 0, 1, 2, ..., pn (n = 1, 2, ...)} c R .

Then, it is not difficult to prove that A{F) is isomorphic to the S-algebra
®?=i A(Fn), where Fn = {rtn: r = 0, 1, , pn} for all n (cf. the arguments
preceding Theorem 4). Let now (sn);=1 be any sequence of real numbers
such that Σ~=i pn I s» I < °° » and put

If we define if: F-+E by setting

= Σ ^A (rw = 0, 1, 2, , pn; n = 1, 2,

it follows from Corollary 3.1 that q induces a homomorphism of A(E)
into A(-F). In particular, taking pn = 1 for all π, we obtain a theorem
of Y. Meyer [6].

EXAMPLE 6. Here we shall explicitly construct a function g in A(T)
such that the closed ideals in A(T) which are generated by each gm

(m = 1, 2, •••) are all distinct. To do this, we shall identify T with the
interval ( — π, π] mod 2π. Let us fix any positive integer p ^ 3, and let
w = wp be any function in A(T) such that: w(t) = 0 on the three inter-
vals of length 2π/p2(p — 1) and with the left-end points 0, 2π/p2, 2π/p;
and w(t) = 1 on the interval [2π/p + 2π/p2, 2π/(p — 1)]. We put

f(t) = Σ n
Λ = l

and assert that, for every real number a in the open set

M = (0, τr2/6 - 1) U (1, π2/6) ,

the function g —f — a has the required property. We consider the sub-
sets of Γ

En = {0, 2π/pn) , and E = { Σ ^2π/pn: εn = 0 or 1 for all
l

and define p£: £/ = ΠΓ=i £»-•£ in a natural way. Then, by lemma 3, pE

induces a norm-decreasing homomorphism P of A(E) into AE = ®"=1 A(£?n).
Let wn be the function in A(En) defined by un(0) = 0 and ^%(2π/pw) = 1.
It is easy to see from the definition of / that we have

P(/\E) = fopE = Σ n-2u2n^ ® u2n = f .
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The Remarks following the proof of Theorem 2 shows that the closed
ideals in AE which are generated by each (/' — a)m (m = 1, 2, •) are all
distinct for each fixed a in M. But P is a norm-decreasing homomorphism,
and so our assertion follows.

Another interesting example may be given by

h(t) = Σ n-2{w(p8n~8t) - w(p8n~6t)} + i Σ n-2{w(pSn~H) - w(p8n~2t)} .
71 = 1 W = l

Then, for every complex number z with |Jfίe(z)|< π2/6 and \Im{z)\< π2/6,
the closed ideals in A(T) which are generated by each function

(h - z)m(h - z)n (m, n = 0, 1, 2, •)

are all distinct.

REMARKS, (a) An idea very like the one used in the proof of our
Theorem 2 is due to Y. Katznelson [4: Chap. VIII].

(b) We can directly prove what was shown in Example 6 by apply-
ing the methods in the proof of Theorem 2.

(c) Professor 0. C. McGehee kindly let me know that

η(d) = d + O(d2) as d -> 0 .

My original estimate was η{d) < 2U2d.
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