TENSOR PRODUCTS OF BANACH ALGEBRAS AND HARMONIC ANALYSIS

Dedicated to Professor Gen-ichirô Sunouchi on his 60th birthday

Sadahiro SaEki

(Received Nov. 1, 1971; Revised Feb. 21, 1972)

In this paper we shall introduce the notion of the S-algebra induced from a given sequence of semi-simple (commutative, complex) Banach algebras with unit. Such an algebra will become a new semi-simple Banach algebra with a certain norm. We shall obtain some fundamental properties of S-algebras, and consider two problems; one is the problem of operating functions, and the other is that of spectral synthesis. Next we shall apply some of our results on S-algebras to the theory of restriction algebras of Fourier algebras. We shall construct, by a certain rule, compact subsets of a given locally compact abelian group G, and homomorphisms of restriction algebras of the Fourier algebra $A(G)$ on them. Such a restriction algebra will be isomorphic to an S-algebra induced from other restriction algebras of $A(G)$. Further, we shall explicitly construct a function g in $A(T)$ such that the closed ideals in $A(T)$ generated by $g^{m}(m=1,2, \cdots)$ are all distinct (see Example 6 at the end of this paper).

We begin with introducing some notations and definitions. Let $\left(A_{n}\right)_{n=1}^{\infty}$ be a sequence of semi-simple (commutative) Banach algebras with unit. We shall regard each A_{n} as a subalgebra of $C\left(E_{n}\right)$ in a trivial way, where E_{n} denotes the maximal ideal space of A_{n}, and assume that $\|1\|_{A_{n}}=1$ for all n. Let N be a natural number, and let

$$
A_{1} \otimes A_{2} \otimes \cdots \otimes A_{N} \quad \text { and } \quad A_{1} \hat{\otimes} A_{2} \hat{\otimes} \cdots \hat{\otimes} A_{N}
$$

be the algebraic tensor product of $\left(A_{n}\right)_{n=1}^{N}$ and its completion with the projective norm, respectively; and put $E^{(N)}=E_{1} \times E_{2} \times E_{N}$, the product space of $\left(E_{n}\right)_{n=1}^{N}$. Let us also denote by

$$
A^{(N)}=\bigodot_{n=1}^{N} A_{n}=A_{1} \bigcirc A_{2} \bigcirc \cdots \odot A_{N}
$$

the subalgebra of $C\left(E^{(N)}\right)$ consisting of those functions f that have an expansion of the form

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{k=1}^{\infty} f_{1 k}\left(x_{1}\right) f_{2 k}\left(x_{2}\right) \cdots f_{N k}\left(x_{N}\right) \tag{I}
\end{equation*}
$$

where the functions $f_{n k}$ are in A_{n} and

$$
\begin{equation*}
M=\sum_{k=1}^{\infty}\left\|f_{1 k}\right\|_{A_{1}} \cdot\left\|f_{2 k}\right\|_{A_{2}} \cdots\left\|f_{N k}\right\|_{A_{N}}<\infty \tag{II}
\end{equation*}
$$

When (I) and (II) hold, let us agree to say that the series in the righthand side of (I) absolutely converges to f in norm, and to write

$$
f=\sum_{k=1}^{\infty} f_{1 k} \bigcirc f_{2 k} \odot \cdots \odot f_{N k}
$$

We denote by $\|f\|_{s}=\|f\|_{S\left(A_{1}, A_{2}, \cdots, A_{N}\right)}$ the infimum of the M 's as in (II), and call it the S-norm of f. It is a routine matter to verify that, with this norm, $A^{(N)}$ is a Banach algebra whose maximal ideal space can be naturally identified with the product space $E^{(N)}$. It is also easy to prove that $A^{(N)}$ is isometrically isomorphic to the Banach algebra

$$
\left(A_{1} \hat{\otimes} A_{2} \hat{\otimes} \cdots \hat{\otimes} A_{N}\right) / R_{N}
$$

with the quotient norm, where R_{N} denotes the radical of the algebra $A_{1} \hat{\otimes} A_{2} \hat{\otimes} \cdots \hat{\otimes} A_{N}$ (cf. Tomiyama [11]). We call $A^{(N)}$ the S-algebra induced from $\left(A_{n}\right)_{n=1}^{N}$. Let now $E=E_{1} \times E_{2} \times \cdots$ be the product space of $\left(E_{n}\right)_{n=1}^{\infty}$, and consider the subalgebra $A=\bigodot_{n=1}^{\infty} A_{n}$ of $C(E)$ that consists of all functions f having an expansion of the form

$$
f(x)=\sum_{k=1}^{\infty} f_{1 k}\left(x_{1}\right) f_{2 k}\left(x_{2}\right) \cdots f_{N_{k} k}\left(x_{N_{k}}\right)
$$

for all points $x=\left(x_{n}\right)_{n=1}^{\infty}$ of E, where the functions $f_{n k}$ are in A_{n} and

$$
\begin{equation*}
M=\sum_{k=1}^{\infty}\left\|f_{1 k}\right\|_{A_{1}} \cdot\left\|f_{2 k}\right\|_{A_{2}} \cdots\left\|f_{N_{k} k}\right\|_{A_{N_{k}}}<\infty \tag{II'}
\end{equation*}
$$

When (I^{\prime}) and (II^{\prime}) hold, let us again agree to say that the series in (I^{\prime}) absolutely converges to f in norm, and to write

$$
f=\sum_{k=1}^{\infty} f_{1 k} \odot f_{2 k} \bigcirc \cdots \odot f_{N_{k} k}
$$

The infimum of the M 's as in (II') is called the S-norm of f, and is denoted by $\|f\|_{s}=\|f\|_{S\left(A_{1}, A_{2}, \cdots\right)}$. With this norm, A becomes a Banach algebra, and its maximal ideal space can be natural identified with the product space E. We call A the S-algebra induced from the sequence $\left(A_{n}\right)_{n=1}^{\infty}$. In a trivial way, we then have the sequence of isometrical and algebraical imbeddings:

$$
A^{(1)}=A_{1} \subset A^{(2)} \subset \cdots \subset A^{(N)} \subset \cdots \subset A
$$

Note that the union of all $A^{(N)}$ is a dense subalgebra of A. Of course we can also define, in a similar way, the S-algebra induced from an arbitrary family of semi-simple Banach algebra with unit.

Let now $O=\left(O_{n}\right)_{n=1}^{\infty}$ be any fixed point of E, and let

$$
\mathfrak{J}_{N}=\mathfrak{J}_{N}[O]: A \rightarrow A^{(N)} \subset A
$$

be the natural norm-decreasing homomorphism defined by

$$
\begin{equation*}
\left(\Im_{N} f\right)(x)=f\left(x_{1}, x_{2}, \cdots, x_{N}, O_{N+1}, O_{N+2}, \cdots\right) . \tag{III}
\end{equation*}
$$

It is then trivial that we have
(IV) $\quad\left\|\Im_{N}\right\|=1(N=1,2, \cdots)$, and $\lim _{N}\left\|\Im_{N} f-f\right\|_{s}=0(f \in A)$.

Finally observe that, if $\left(B_{n}\right)_{n=1}^{\infty}$ is a permutation of $\left(A_{n}\right)_{n=1}^{\infty}$ and if B is the S-algebra induced from $\left(B_{n}\right)_{n=1}^{\infty}$, then A and B are isometrically isomorphic.

Hereafter, we fix two sequences $\left(A_{n}\right)_{n=1}^{\infty}$ and $\left(B_{n}\right)_{n=1}^{\infty}$ of semi-simple Banach algebras with unit, and associate with them A and B (the S algebras induced from them), the product spaces $E=\prod_{n=1}^{\infty} E_{n}$ and $F=$ $\prod_{n=1}^{\infty} F_{n}$, etc.

Proposition 1. (cf. Hewitt and Ross [3: (42.7)]). (a) For every natural number N, we have

$$
\begin{equation*}
\left\|f_{1} \odot f_{2} \odot \cdots \odot f_{N}\right\|_{S}=\prod_{n=1}^{N}\left\|f_{n}\right\|_{A_{n}}\left(f_{n} \in A_{n} ; n=1,2, \cdots, N\right) \tag{i}
\end{equation*}
$$

(b) Let $\left(H_{n}: A_{n} \rightarrow B_{n}\right)_{n=1}^{N}$ be N bounded linear operators, then there exists a unique bounded linear operator $A^{(N)} \rightarrow B^{(N)}$, denoted by $H^{(N)}=$ $\bigcirc_{n=1}^{N} H_{n}$, such that

$$
\begin{equation*}
H^{(N)}\left(f_{1} \odot f_{2} \odot \cdots \odot f_{N}\right)=H_{1}\left(f_{1}\right) \odot H_{2}\left(f_{2}\right) \odot \cdots \odot H_{N}\left(f_{N}\right) \tag{ii}
\end{equation*}
$$

for all functions f_{n} in $A_{n}(n=1,2, \cdots, N)$. Further, th eoperator norm of $H^{(N)}$ is given by

$$
\begin{equation*}
\left\|H^{(N)}\right\|=\prod_{n=1}^{N}\left\|H_{n}\right\| \tag{iii}
\end{equation*}
$$

Proof. The first statement in part (b) is well-known and is contained in Hewitt and Ross [3: (42.7)]. Taking as B_{n} the field of complex numbers ($n=1,2, \cdots, N$), and applying the Hahn-Banach theorem, we obtain (i). Finally, (iii) is an easy consequence of (i). We omit the details.

Proposition 2. Let $\left(H_{n}: A_{n} \rightarrow B_{n}\right)_{n=1}^{\infty}$ be a sequence of bounded linear operators such that $H_{n}(1)=1$ for all n and $\prod_{n=1}^{\infty}\left\|H_{n}\right\|$ converges. Then
there exists a unique bounded linear operator $A \rightarrow B$, denoted by $H=$ $\bigcirc_{n=1}^{\infty} H_{n}$, such that

$$
\begin{equation*}
H\left(f_{1} \odot f_{2} \odot \cdots \odot f_{N}\right)=H_{1}\left(f_{1}\right) \odot H_{2}\left(f_{2}\right) \odot \cdots \odot H_{N}\left(f_{N}\right) \tag{i}
\end{equation*}
$$

for all functions f_{n} in $A_{n}(n=1,2, \cdots, N ; N=1,2, \cdots)$. Further, the operator norm of H is given by

$$
\begin{equation*}
\|H\|=\prod_{n=1}^{\infty}\left\|H_{n}\right\| \tag{iii}
\end{equation*}
$$

Proof. For each $N \geqq 1$, let us denote by $\widetilde{H}^{N}: A \rightarrow B$ the composition of the three operators

$$
A \xrightarrow{\Im_{N}} A^{(N)} \xrightarrow{H^{(N)}} B^{(N)} \xrightarrow{\mathrm{\triangleright}_{N}} B,
$$

where \Im_{N} is the operator defined by (III) for any fixed point O of E, $H^{(N)}=\bigodot_{n=1}^{N} H_{n}$, and \mathfrak{D}_{N} the canonical imbedding. It is a routine matter to verify that $\left\|\widetilde{H}^{N}\right\|=\prod_{n=1}^{N}\left\|H_{n}\right\|$ and that the sequence $\left(\widetilde{H}^{N} f\right)_{N=1}^{\infty}$ converges in B for every f in $\bigcup_{N=1}^{\infty} A^{(N)}$. Therefore we can immediately prove the existence of H with the required property. The identity (ii) follows from Proposition 1, which completes the proof.

Proposition 3. Let $\left(H_{n}: A_{n} \rightarrow B_{n}\right)_{n=1}^{\infty}$ be a sequence of norm-decreasing linear operators with $H_{n}(1)=1$ for all n, and suppose that each H_{n} has an approximating inverse in the sense of Varopoulos [13]. Then $H=$ $\bigodot_{n=1}^{\infty} H_{n}: A \rightarrow B$ is an isometry.

Proof. For each $N \geqq 1$, the restriction of H to the closed linear subspace $A^{(N)}$ of A can be identified with the operator $H^{(N)}: A^{(N)} \rightarrow B^{(N)}$. It is then easy to see from Proposition 1 that each $H^{(N)}$ has an approximating inverse under our hypothesis, from which our assertion immediately follows.

We now consider any sequence $\left(H_{n}: A_{n} \rightarrow B_{n}\right)_{n=1}^{\infty}$ of norm-decreasing homomorphisms that satisfies the two requirements in Proposition 3. Let ($\left.q_{n}: F_{n} \rightarrow E_{n}\right)_{n=1}^{\infty}$ be the sequence of the continuous mappings naturally induced by $\left(H_{n}\right)_{n=1}^{\infty}$, and denote by

$$
\begin{aligned}
q^{(N)} & =q_{1} \times q_{2} \times \cdots \times q_{N}: F^{(N)} \rightarrow E^{(N)}, \\
q & =q_{1} \times q_{2} \times q_{3} \times \cdots: F \rightarrow E,
\end{aligned}
$$

their product mappings. Observe then that we have

$$
H^{(N)} f=f \circ q^{(N)}\left(f \in A^{(N)}\right) ; H f=f \circ q(f \in A) .
$$

Using the operators $\left(\Im_{N}\right)_{N=1}^{\infty}$ defined as in (III) for a fixed point of F and the fact that H is an isometry, we have the following, which we do not
prove.
Proposition 4. Suppose that we have
(i) $\operatorname{Im}\left(H^{(N)}\right)=\left\{g \in B^{(N)}: g=f \circ q^{(N)}\right.$ for some f in $\left.C\left(E^{(N)}\right)\right\}$
for all $N=1,2, \cdots$, then
(ii) $\operatorname{Im}(H)=\{g \in B: g=f \circ q$ for some f in $C(E)\}$

Example 1. Suppose here that $A_{n}=C\left(E_{n}\right)$ and $B_{n}=C\left(F_{n}\right)$ for all n. Then the condition (i) of Proposition 4 is satisfied if every q_{n} is a continuous mapping of F_{n} onto E_{n} (see Saeki [9]). In particular, taking as B_{n} the Banach algebra consisting of all bounded complex-valued functions on E_{n}, we have: let f be a continuous function on E that has an expansion of the form

$$
f(x)=\sum_{k=1}^{\infty} f_{1 k}\left(x_{1}\right) f_{2 k}\left(x_{2}\right) \cdots f_{N_{k} k}\left(x_{N_{k}}\right) \quad\left(x=\left(x_{n}\right)_{n=1}^{\infty} \in E\right)
$$

where each $f_{n k}$ is a bounded function on E_{n} and

$$
\sum_{k=1}^{\infty}\left\|f_{1 k}\right\|_{\infty} \cdot\left\|f_{2 k}\right\|_{\infty} \cdots\left\|f_{N_{k} k}\right\|_{\infty}<\infty
$$

Then f is a function in the space $\bigcirc_{n=1}^{\infty} C\left(E_{n}\right)$.
Example 2. Suppose here that each E_{n} is a compact abelian group and $A_{n}=A\left(E_{n}\right)$, the Fourier algebra on E_{n}. Then we can identify the S-algebra A with the Fourier algebra $A(E)$ on the compact abelian group E. Suppose that $F_{n}=E_{n} \times E_{n}$ and $B_{n}=C\left(E_{n}\right) \odot C\left(E_{n}\right)$, and that

$$
q_{n}(x, y)=x+y\left(x, y \in E_{n}\right) \quad \text { for all } n
$$

Then the condition (i) of Proposition 3 is satisfied (see Herz [2]).
Theorem 1. Suppose that every E_{n} contains at least two distinct points, and that every A_{n} satisfies the following two conditions:
(a) If $f \in A_{n}$, then $\bar{f} \in A_{n}$ and $\|\bar{f}\|_{A_{n}}=\|f\|_{A_{n}}$;
(b) With any $\varepsilon>0$ and any two distinct points O_{n} and x_{n} of E_{n} there corresponds a function u_{n} in A_{n} such that

$$
\left\|u_{n}\right\|_{A_{n}} \leqq 1+\varepsilon, u_{n}\left(O_{n}\right)=0, \quad \text { and } \quad u_{n}\left(x_{n}\right)=1
$$

Suppose also that $\Phi(t)$ is a function defined on the interval $[-1,1]$ of the real line R, and that $\Phi(t)$ operates in A. Then $\Phi(t)$ is analytic on the interval $[-1,1]$.

Proof. We first prove our statement under the additional assumption that every E_{n} contains precisely two distinct points O_{n} and x_{n}. Let $\Im_{N}: A \rightarrow A$ be the operator defined by (III) for the point $O=\left(O_{n}\right)_{n=1}^{\infty}$ of
E, let A^{\prime} be the Banach space dual of A, and take any functional P in A^{\prime}. Then it is easy to see from (III) and (IV) that every $\mathfrak{Y}_{N}^{*}(P)$ is a discrete measure in $M(E)$, and the sequence $\left(\mathfrak{S}_{N}^{*}(P)\right)_{N=1}^{\infty}$ converges to P in the weak-star topology of A^{\prime}. Since every \Im_{N} has norm 1 , it follows that

$$
\begin{equation*}
\|f\|_{s}=\sup \left\{\left|\int_{E} f d \mu\right|: \mu \in M_{d}(E),\|\mu\|_{A^{\prime}} \leqq 1\right\} \tag{1}
\end{equation*}
$$

for all functions f in A. Suppose now that $\Phi(t)$ is as in our Theorem, and define for each r with $0<r<1$

$$
\Phi_{r}(t)=\Phi(r \cdot \sin t) \quad(-\infty<t<\infty) .
$$

Using (b), we can easily prove that $\Phi(t)$ is continuous. It also follows from (b) and (1) that there are two positive numbers r and C such that

$$
\begin{equation*}
\left\|\Phi_{r}(f+t)\right\|_{s} \leqq C \quad(-\infty<t<\infty) \tag{2}
\end{equation*}
$$

for all functions f in $A_{R}=A \cap C_{R}(E)$ with $\|f\|_{s} \leqq \pi$ (see Rudin [7; 6.6.3]). Therefore, in order to prove that $\Phi(t)$ is analytic at $t=0$, it suffices to find a positive number a such that

$$
\begin{equation*}
\sup \left\{\left\|e^{i k f}\right\|_{s}: f \in A_{R},\|f\|_{s} \leqq \pi\right\} \geqq e^{a|k|}(k=0, \pm 1, \pm 2, \cdots) . \tag{3}
\end{equation*}
$$

For each n, let u_{n} be the function in A_{n} defined by $u_{n}\left(O_{n}\right)=0$ and $u_{n}\left(x_{n}\right)=1$. Then, by (b), $\left\|u_{n}\right\|_{A_{n}}=1$; further, we have

$$
\begin{aligned}
\left\|\exp \left(i \pi u_{2 n-1} \odot u_{2 n}\right)\right\|_{S} & =\left\|\exp \left(i \pi u_{2 n-1} \odot u_{2 n}\right)\right\|_{A_{2 n-1} \odot A_{2 n}} \\
& \geqq\left\|\exp \left(i \pi u_{2 n-1} \odot u_{2 n}\right)\right\|_{C\left(E_{2 n-1}\right) \odot C\left(E_{2 n}\right)} \geqq 2^{1 / 2}
\end{aligned}
$$

the last inequality following from Lemma 2.1 in Saeki [10]. Therefore, setting

$$
f_{k}=k^{-1} \pi \sum_{n=1}^{k} u_{2 n-1} \odot u_{2 n} \quad(k=1,2, \cdots)
$$

we have $\left\|f_{k}\right\|_{s} \leqq \pi$, and

$$
\begin{aligned}
\left\|\exp \left(i k f_{k}\right)\right\|_{s} & =\left\|\exp \left(-i k f_{k}\right)\right\|_{s} \\
& =\prod_{n=1}^{k}\left\|\exp \left(i \pi u_{2 n-1} \bigcirc u_{2 n}\right)\right\|_{s} \geqq 2^{k / 2} \quad(k=1,2, \cdots)
\end{aligned}
$$

by Proposition 1. Thus (3) holds for $a=2^{-1} \log 2$. This completes the proof of our statement in the case that $\operatorname{Card}\left(E_{n}\right)=2$ for all n.

Suppose now that $\operatorname{Card}\left(E_{n}\right) \geqq 2$ for all n. We take any two distinct points O_{n} and x_{n} of E_{n}, and put $F_{n}=\left\{O_{n}, x_{n}\right\}$. Let B_{n} be the restriction algebra of A_{n} on the set F_{n} endowed with the natural quotient norm; it is easy to see that the maximal ideal space of B_{n} is F_{n}, and that the restriction algebra B of A on the set $F=F_{1} \times F_{2} \times \cdots$ can be
identified with the S-algebra induced from the sequence $\left(B_{n}\right)_{n=1}^{\infty}$ in a trivial way. Since A is self-adjoint by (a), every function, that is defined on the real line and operates in A, operates in B. This fact, combined with the result in the preceding paragraph, establishes our Theorem.

Remark. Under the same assumption, we can prove that: if $\Phi(z)$ is a function defined on the square $L=\{z ;|\operatorname{Re}(z)| \leqq 1$, and $|\operatorname{Im}(z)| \leqq 1\}$ of the complex plane, and if $\Phi(z)$ operates in A, then $\Phi(z)$ is real-analytic on L.

Theorem 2. Suppose that, for each n, there exist a function u_{n} in A_{n} and two points O_{n} and x_{n} of E_{n} such that

$$
\left\|u_{n}\right\|_{A_{n}} \leqq C, u_{n}\left(O_{n}\right)=0, \quad \text { and } \quad u_{n}\left(x_{n}\right)=1
$$

where C is a constant independent of n. Then there exists a function g in A such that the closed ideals in A which are generated by $g^{m}(m=1,2, \cdots)$ are all distinct.

Proof. By considering some restriction algebra of A, we may assume that $E_{n}=\left\{O_{n}, x_{n}\right\}$ for all n. We regard each E_{n} as a "compact" abelian group, and E as the product group of $\left(E_{n}\right)_{n=1}^{\infty}$. We then define μ to be the Haar measure on E normalized so that $\mu(E)=1$. Let u_{n} be as in our theorem and write

$$
\begin{equation*}
f=\sum_{n=1}^{\infty} 4 n^{-2} u_{2 n-1} \odot u_{2 n} \tag{1}
\end{equation*}
$$

which absolutely converges in norm by hypothesis. We then assert that, for some real number a, the function $g=f-a$ has the required property. To prove this, let $m<n$ be two natural numbers, and s an arbitrary real number. We then have

$$
\begin{align*}
& \sup \left\{\left|\int_{E}\left(f_{m} \odot f_{n}\right) \cdot \exp \left(i s u_{m} \odot u_{n}\right) d \mu\right|: f_{j} \in A_{j},\left\|f_{j}\right\|_{A_{j}} \leqq 1(j=m, n)\right\} \tag{2}\\
& \quad \leqq \sup \left\{\left|\int_{E}\left(f_{m} \odot f_{n}\right) \cdot \exp \left(i s u_{m} \odot u_{n}\right) d \mu\right|: f_{j} \in C\left(E_{j}\right),\left|f_{j}\right| \leqq 1(j=m, n)\right\} \\
& \quad \leqq 4^{-1} \sup \left\{|z+1|+\left|z+e^{i s}\right|:|z| \leqq 1\right\}=\max \{|\cos (s / 4)|,|\sin (s / 4)|\}
\end{align*}
$$

Let now N be any natural number, and take any function f_{n} in A_{n} with $\left\|f_{n}\right\|_{A_{n}} \leqq 1, n=1,2, \cdots, 2 N$. Then, setting $f_{n}=1$ for all n larger than $2 N$, we observe that the functions

$$
g_{n}=\left(f_{2 n-1} \odot f_{2 n}\right) \cdot \exp \left(i 4 t n^{-2} u_{2 n-1} \odot u_{2 n}\right), \quad(n=1,2, \cdots)
$$

are independent random variables on the probability space (E, μ). It
follows from (2) that

$$
\begin{aligned}
& \left|\int_{E}\left(f_{1} \odot f_{2} \odot \cdots \odot f_{2 N}\right) \cdot \exp (i t f) d \mu\right| \\
& \quad=\prod_{n=1}^{\infty}\left|\int_{E} g_{n} d \mu\right| \leqq \prod_{n=1}^{\infty} \max \left\{\left|\cos \left(n^{-2} t\right)\right|,\left|\sin \left(n^{-2} t\right)\right|\right\} \quad(-\infty<t<\infty)
\end{aligned}
$$

Consequently we have

$$
\begin{align*}
& \sup \left\{\left|\int_{E} h \cdot \exp (i t f) d \mu\right|: h \in A,\|h\|_{S} \leqq 1\right\} \tag{3}\\
& \quad \leqq \prod_{n=1}^{\infty} \max \left\{\left|\cos \left(n^{-2} t\right)\right|,\left|\sin \left(n^{-2} t\right)\right|\right\} \quad(-\infty<t<\infty)
\end{align*}
$$

Therefore, our assertion will follow from a theorem of P. Malliavin [5] (see also Rudin [7: 7.6.3]) as soon as we have proved that

$$
\begin{equation*}
\prod_{n=1}^{\infty} \max \left\{\left|\cos \left(n^{-2} t\right)\right|,\left|\sin \left(n^{-2} t\right)\right|\right\} \leqq b \cdot \exp \left(-c|t|^{1 / 2}\right) \quad(-\infty<t<\infty) \tag{4}
\end{equation*}
$$

for some positive numbers b and c. For a given $t>8 \pi$, let $N=N_{t}$ be the smallest positive integer such that $t \leqq(\pi / 4) N^{2}$. Since

$$
\cos s \leqq 1-4^{-1} s^{2} \leqq \exp \left(-4^{-1} s^{2}\right) \quad(-\pi / 2 \leqq s \leqq \pi / 2)
$$

we then have

$$
\begin{aligned}
\prod_{n=1}^{\infty} \max \left\{\left|\cos \left(n^{-2} t\right)\right|,\left|\sin \left(n^{-2} t\right)\right|\right\} & \leqq \prod_{n=N}^{\infty}\left|\cos \left(n^{-2} t\right)\right| \\
& \leqq \exp \left(-4^{-1} \sum_{n=N}^{\infty} n^{-4} t^{2}\right) \\
& \leqq \exp \left(-(12)^{-1} N^{-3} t^{2}\right)
\end{aligned}
$$

But it is clear that $N^{2} \leqq 8 t / \pi$, and hence (4) follows. This completes the proof.

Remarks. Let E_{n}, u_{n}, and μ be as in the proof of Theorem 2.
(a) We can determine the range of the values of a with the required property as follows. Let

$$
\begin{aligned}
& f_{1}=4 \sum_{n=1}^{\infty}(2 n-1)^{-2} u_{4 n-3} \odot u_{4 n-2}, \\
& f_{2}=4 \sum_{n=1}^{\infty}(2 n)^{-2} u_{4 n-1} \odot u_{4 n}
\end{aligned}
$$

and let $F_{1}(t), F_{2}(t), F(t)$ be the distribution functions of f_{1}, f_{2}, f when they are regarded as random variables on the probability space (E, μ). It is easy to see that these distribution functions are all infinitely differentiable. Further, since f_{1} and f_{2} are independent, $w(t)$ is the convolution
of $w_{1}(t)$ and $w_{2}(t)$, where $w_{1}(t), w_{2}(t)$ and $w(t)$ are the derivatives of $F_{1}(t)$, $F_{2}(t)$, and $F(t)$. Since $\sum_{n=1}^{\infty}(2 n-1)^{-2}=8^{-1} \pi^{2}$ and $\sum_{n=1}^{\infty} n^{-2}=6^{-1} \pi^{2}$, it is easy to prove that

$$
\begin{aligned}
& \operatorname{supp}\left(w_{1}\right)=\left[0,2^{-1} \pi^{2}-4\right] \cup\left[4,2^{-1} \pi^{2}\right] ; \\
& \operatorname{supp}\left(w_{2}\right)=\left[0,6^{-1} \pi^{2}-1\right] \cup\left[1,6^{-1} \pi^{2}\right] .
\end{aligned}
$$

But $w_{1}(t)$ and $w_{2}(t)$ are both non-negative, and so we have

$$
L=\{a \in R: w(a) \neq 0\}=\left(0,3^{-1} 2 \pi^{2}-4\right) \cup\left(4,3^{-1} 2 \pi^{2}\right) .
$$

Therefore, for every a in L, the closed ideals in A generated by each $(f-a)^{m}(m=1,2, \cdots)$ are all distinct. Note also that, for every b in $R \backslash L$, the set $f^{-1}(b)$ is empty or consists of a single point. Hence the range of the values of a with the required property is precisely L.

Another example may be given by

$$
\begin{equation*}
h=6 \sum_{n=1}^{\infty} n^{-2}\left(u_{4 n-3} \odot u_{4 n-2}-u_{4 n-1} \odot u_{4 n}\right) . \tag{*}
\end{equation*}
$$

Then the range of the required a 's is the open interval $\left(-\pi^{2}, \pi^{2}\right)$.
(b) Let $\left(Z_{p}\right)_{p=1}^{\infty}$ be any countable family of countable disjoint subsets of the index set $\{1,2,3, \cdots\}$, and let S_{p} be the S-algebra induced from the family $\left\{A_{n}: n \in Z_{p}\right\}$. We shall identify each S_{p} with a closed subalgebra of A. Let h_{p} be the function in S_{p} defined quite similarly as in $\left.{ }^{*}\right)$. Then the closed ideals in A generated by each

$$
h_{1}^{q_{1}} h_{2}^{q_{2}} \cdots h_{m}^{q_{m}}\left(q_{j}=0,1,2, \cdots ; j=1,2, \cdots, m ; m=1,2, \cdots\right)
$$

are all distinct. The same conclution is true for the sequence $\left(f_{p}\right)_{p=1}^{\infty}$, where $f_{2 p-1}=h_{2 p-1}+i h_{2 p}$ and $f_{2 p}=h_{2 p-1}-i h_{2 p}(p=1,2, \cdots)$.

Let now G be a locally compact abelian group, and \widehat{G} its dual. Let also $\left(E_{n}\right)_{n=1}^{\infty}$ be a sequence of compact subsets of $G_{n}=G$, and put

$$
E=\prod_{n=1}^{\infty} E_{n} \subset G^{\infty}=\prod_{n=1}^{\infty} G_{n}
$$

We require the sequence $\left(E_{n}\right)_{n=1}^{\infty}$ to satisfy the following condition.
(R) For every point $x=\left(x_{n}\right)_{n=1}^{\infty}$ of E, the series $p(x)=p_{E}(x)=\sum_{n=1}^{\infty} x_{n}$ converges in G, and the mapping $p: E \rightarrow G$ so obtained is continuous.

Under this condition, we put $\widetilde{E}=p(E)$, which is a compact subset of G. Observe then that, for every character γ in \hat{G}, the product

$$
\gamma \circ p(x)=\prod_{n=1}^{\infty} \gamma\left(x_{n}\right) \quad\left(x=\left(x_{n}\right)_{n=1}^{\infty} \in E\right)
$$

uniformly converges on E. We now proceed to obtain a sufficient con-
dition for the restriction algebra $A(\widetilde{E})$ of the Fourier algebra $A(G)$ to be isomorphic to the S-algebra induced from the sequence $\left(A\left(E_{n}\right)\right)_{n=1}^{\infty}$. We begin with proving the following.

Lemma 1 (cf. Varopoulos [12]). (a) For every real number d with $0<d<\pi$, we have

$$
\eta(d)=\left\|e^{i s}-1\right\|_{A(d)}<\{(\pi+d) /(\pi-d)\}^{1 / 2} d,
$$

where $A(d)$ denotes the the restriction algebra of $A(T)$ on the interval $[-d, d]$.
(b) Let A be a simi-simple Banach algebra represented as a function algebra on some space, and let f_{1} and f_{2} be two functions in A such that

$$
\left|f_{j}\right| \equiv 1, \quad \text { and } \quad\left\|f_{j}^{k}\right\|_{A} \leqq M_{j} \quad(j=1,2 ; k=0, \pm 1, \pm 2, \cdots)
$$

Then $\left|\arg \left(f_{1} \cdot \bar{f}_{2}\right)\right| \leqq d<\pi$ implies $\left\|f_{1}-f_{2}\right\|_{A} \leqq \eta(d) M_{1} M_{2}$.
Proof. Let g_{1} and g_{2} be the characteristic functions of the intervals $[-(\pi+d) / 2,(\pi+d) / 2]$ and $[-(\pi-d) / 2,(\pi-d) / 2]$ of the real line R. Writing $w=(\pi-d)^{-1} g_{1} * g_{2}$, observe that

$$
\|w\|_{A(R)}<\{(\pi+d) /(\pi-d)\}^{1 / 2}, \quad w=1 \text { on }[-d, d]
$$

and

$$
\operatorname{supp}(w)=[-\pi, \pi]
$$

Let v be the odd function in $B(R)$ with period $4 d$ defined by the requirements $v(s)=s(0 \leqq s \leqq d)$ and $v(s)=2 d-s(d \leqq s \leqq 2 d)$. It is clear that $v(s-d)$ is positive-definite, and hence $\|v\|_{B(R)}=d$. Define

$$
u\left(e^{i s}\right)=i w(s) v(s) \int_{0}^{1} e^{i s t} d t \quad(-\pi \leqq s \leqq \pi)
$$

It is then trivial that $u\left(e^{i s}\right)=e^{i s}-1$ on $[-d, d]$. Further,

$$
\begin{aligned}
\widehat{u}(k) & =\frac{\mathrm{i}}{2 \pi} \int_{0}^{1}\left\{\int_{-\pi}^{\pi} w(s) v(s) e^{i(t-k) s} d s\right\} d t \\
& =\frac{\mathrm{i}}{2 \pi} \int_{0}^{1} \widehat{w \cdot v}(k-t) d t \quad(k=0, \pm 1, \pm 2, \cdots)
\end{aligned}
$$

and hence the $A(T)$-norm of u is smaller than the $A(R)$-norm of $w v$, which establishes part (a).

Suppose now that f_{1} and f_{2} are functions in A as in part (b), and let u be any function in $A(T)$ such that $u\left(e^{i s}\right)=e^{i s}-1$ on $[-d, d]$. Then, if $\left|\arg \left(f_{1} \cdot \bar{f}_{2}\right)\right| \leqq d$, we have

$$
f_{1}-f_{2}=f_{2} \cdot u\left(f_{1} \cdot \bar{f}_{2}\right)=\sum_{k=-\infty}^{\infty} \hat{u}(k) f_{1}^{k} f_{2}^{1-k},
$$

and hence

$$
\left\|f_{1}-f_{2}\right\|_{A} \leqq \sum_{k=-\infty}^{\infty}|\hat{u}(k)| M_{1} M_{2}=\|u\|_{A(T)} M_{1} M_{2}
$$

which, combined with part (a), establishes part (b).
Throughout the remainder part of this paper, we denote by d_{0} the positive solution of the equation $\{(\pi+d) /(\pi-d)\}^{1 / 2} d=1$. Then note that $d_{0}=0.77 \cdots$, and that $0<d \leqq d_{0}$ implies $\eta(d)<1$.

Lemma 2 (cf. Hewitt and Ross [3: (40.17)]). Let K be any compact subset of a locally compact abelian group G, and let f be any function in $A(K)$. Then, for every positive real number C larger than the $A(K)$-norm of f, there are a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ of complex numbers and a sequence $\left(\gamma_{n}\right)_{n=1}^{\infty}$ of characters in \hat{G} such that

$$
\sum_{n=1}^{\infty}\left|a_{n}\right| \leqq C, \quad \text { and } \quad f=\sum_{n=1}^{\infty} a_{n} \gamma_{n} \text { on } K
$$

Proof. It suffices to note that the set

$$
\left\{\sum_{n=1}^{\infty} a_{n} \gamma_{n} \in A(K): \sum_{n=1}^{\infty}\left|a_{n}\right| \leqq 1, \gamma_{n} \in \widehat{G} \quad(n=1,2, \cdots)\right\}
$$

is norm-dense in the closed unit ball of $A(K)$, which is an easy consequence of the Hahn-Banach theorem.

Lemma 3. Let $\left(E_{n}\right)_{n=1}^{\infty}$ be a sequence of compact subsets of a locally compact abelian group G.
(a) If G is compact, then the restriction algebra $A(E)$ of $A\left(G^{\infty}\right)$ is isometrically isomorphic to the S-algebra A_{E} induced from the sequence $\left(A\left(E_{n}\right)\right)_{n=1}^{\infty}$.
(b) If the sequence $\left(E_{n}\right)_{n=1}^{\infty}$ satisfies Condition (R), then the operator $P=P_{E}$ defined by

$$
P(f)=f \circ p_{E} \quad(f \in A(\widetilde{E}))
$$

is a norm-decreasing homomorphism of $A(\bar{E})$ into A_{E}.
Proof. Part (a) is a direct consequence of the definition of an S algebra and the fact that $A\left(G^{\infty}\right)$ is the S-algebra induced from the sequence $\left(A\left(G_{n}\right)\right)_{n=1}^{\infty}$ if G is compact.

We now prove part (b). By Lemma 2, it suffices to verify that, for every character γ in \hat{G}, the function $\chi=\gamma \circ p_{E}$ is in A_{E} and $\|\chi\|_{S}=1$. Define

$$
\chi_{N}(x)=\prod_{n=1}^{N} \gamma\left(x_{n}\right) \quad\left(x=\left(x_{n}\right)_{n-1}^{\infty} \in E ; N=1,2, \cdots\right)
$$

Then each χ_{N} is in A_{E} and its S-norm is 1 by Proposition 1. Since $\left(\chi_{N}\right)_{N=1}^{\infty}$ uniformly converges to χ, it follows from Lemma 1 that χ is in A_{E} and its S-norm is 1 . This completes the proof.

THEOREM 3. Let $\left(E_{n}\right)_{n=1}^{\infty}$ be a sequence of compact subsets of a locally compact abelian group G that satisfies Condition (R). Suppose, in addition, that there exists a constant $d, 0<d \leqq d_{0}$, such that:
(S, d) For any characters $\left(\gamma_{n}\right)_{n=1}^{N}$ in \hat{G}, we can find a character γ in \hat{G} such that

$$
\left|\arg \left[\overline{(\gamma \circ p)} \cdot\left(\gamma_{1} \odot \gamma_{2} \odot \cdots \odot \gamma_{N}\right)\right]\right| \leqq d \text { on } E .
$$

Then the homomorphism $P=P_{E}$ defined in Lemma 3, is an isomorphism of $A(\widetilde{E})$ onto A_{E}, and $\left\|P^{-1}\right\| \leqq(1-\eta(d))^{-1}$. In particular, if Condition (S, d) holds for every $d>0$, then P is an isometry.

Proof. We fix any function f in A_{E}, and take any positive number C larger than $\|f\|_{s}$. It is easy to see from Lemma 2 that f has an expansion of the form

$$
f=\sum_{k=1}^{\infty} a_{k}\left(\gamma_{1 k} \odot \gamma_{2 k} \odot \cdots \odot \gamma_{N_{k} k}\right) \text { on } E
$$

where the $\gamma_{n k}$ are characters in \hat{G} regarded as functions on E_{n}, and $\sum_{k=1}^{\infty}\left|a_{k}\right|<C$. By condition (S, d), we can choose a sequence $\left(\gamma_{k}\right)_{k=1}^{\infty}$ of characters so that

$$
\left|\arg \left[\bar{\chi}_{k} \cdot\left(\gamma_{1 k} \odot \gamma_{2 k} \odot \cdots \odot \gamma_{N_{k} k}\right)\right]\right| \leqq d \quad \text { on } E,
$$

where $\chi_{k}=\gamma_{k} \circ p_{E}$. Putting $g_{0}=\sum_{k=1}^{\infty} a_{k} \gamma_{k}$, we see that g_{0} is in $A(\widetilde{E})$ and $\left\|g_{0}\right\|_{A(\widetilde{E})}<C$. It also follows from part (b) of Lemma 1 that

$$
\begin{aligned}
\left\|f-P\left(g_{0}\right)\right\|_{s} & \leqq \sum_{k=1}^{\infty}\left|a_{k}\right| \cdot\left\|\gamma_{1 k} \odot \cdots \odot \gamma_{N_{k} k}-\chi_{k}\right\|_{s} \\
& \leqq \sum_{k=1}^{\infty}\left|a_{k}\right| \eta(d)<C \cdot \eta(d)
\end{aligned}
$$

Repeating the same argument for $f-P\left(g_{0}\right)$ and $C \cdot \eta(d)$, and so on, we can find a sequence $\left(g_{j}\right)_{j=0}^{\infty}$ of functions in $A(\widetilde{E})$ such that

$$
\left\|g_{j}\right\|_{A(\tilde{E})}<C \cdot \eta(d)^{j}, \quad \text { and } \quad\left\|f-P\left(\sum_{k=0}^{j} g_{k}\right)\right\|_{S}<C \cdot \eta(d)^{j+1}
$$

for all $j=1,2, \cdots$. Since $\eta(d)<1$ by hypothesis, the series $g=\sum_{j=0}^{\infty} g_{j}$ converges in $A(\widetilde{E})$, and we have

$$
\|g\|_{A(\tilde{E})}<C \cdot(1-\eta(d))^{-1}, \quad \text { and } \quad f=P(g)
$$

But, since P is a monomorphism and C was an arbitrary number larger
than $\|f\|_{s}$, we have $\|g\|_{A(\widetilde{E})} \leqq(1-\eta(d))^{-1}\|f\|_{s}$. This implies that P is an isomorphism and $\left\|P^{-1}\right\| \leqq(1-\eta(d))^{-1}$. Finally, the last statement in our theorem is now trivial since P is a norm-decreasing operator. This completes the proof.

Corollary 3.1. Let G_{1} and G_{2} be two locally compact abelian groups, let $\left(E_{n} \subset G_{1}\right)_{n=1}^{\infty}$ and $\left(F_{n} \subset G_{2}\right)_{n=1}^{\infty}$ be two sequences of compact sets, and put $E=\prod_{n=1}^{\infty} E_{n}$ and $F=\prod_{n=1}^{\infty} F_{n}$. Let also $\left(H_{n} ; A\left(E_{n}\right) \rightarrow A\left(F_{n}\right)\right)_{n=1}^{\infty}$ be a sequence of homomorphisms with $H_{n}(1)=1$, and let $\left(q_{n}: F_{n} \rightarrow E_{n}\right)_{n=1}^{\infty}$ be the sequence of the continuous mapping naturally induced by $\left(H_{n}\right)_{n=1}^{\infty}$. Suppose, in addition, that the product $\Pi_{n=1}^{\infty}\left\|H_{n}\right\|$ converges, and that E satisfies Condition (R) while F satisfies both Conditions (R) and (S, d) for some d with $0<d \leqq d_{0}$. If we define

$$
\widetilde{q}\left(\sum_{n=1}^{\infty} y_{n}\right)=\sum_{n=1}^{\infty} q_{n}\left(y_{n}\right) \in \widetilde{E} \quad\left(y_{n} \in F_{n} ; n=1,2, \cdots\right),
$$

and $\widetilde{H}(f)=f \circ \widetilde{q}(f \in A(\tilde{E}))$, then \widetilde{H} is a homomorphism of $A(\widetilde{E})$ into $A(\widetilde{F})$, and $\|\widetilde{H}\| \leqq(1-\eta(d))^{-1} \prod_{n=1}^{\infty}\left\|H_{n}\right\|$; further, the diagram

is commutative, where H denotes the homomorphism naturally induced by the sequence $\left(H_{n}\right)_{n=1}^{\infty}$.

Proof. Put

$$
p_{E}(x)=\sum_{n=1}^{\infty} x_{n}, \quad \text { and } \quad p_{F}(y)=\sum_{n=1}^{\infty} y_{n} \quad(x \in E, y \in F),
$$

and let $q: F \rightarrow E$ be the product mapping of $\left(q_{n}\right)_{n=1}^{\infty}$. Note that p_{F} is a homeomorphism since P_{F} is an isomorphism by Theorem 3. It is trivial that $\widetilde{q}=p_{E} \circ q \circ p_{F}^{-1}$, and hence $\widetilde{H}=P_{F}^{-1} \circ H \circ P_{E}$, which, together with Lemma 3, Proposition 2, and Theorem 3, yields the desired conclusions.

Theorem 1 and Theorem 3 yield the following Helson-Kahane-Katznelson-Rudin theorem [1], which is a special case of Theorem 9.3.4 of Varopoulos [13].

Corollary 3.2. Let $\left(E_{n}\right)_{n=1}^{\infty}$ be a sequence of compact subsets of a locally compact abelian group G. Suppose that $\operatorname{Card}\left(E_{n}\right) \geqq 2$ for all n, and that $\left(E_{n}\right)_{n=1}^{\infty}$ satisfies both Conditions (R) and (S,d) for some d with $0<d \leqq d_{0}$. Under these conditions, if $\Phi(t)$ is a function defined on the
interval $[-1,1]$ of the real line, and if $\Phi(t)$ operates in $A(\widetilde{E})$, then $\Phi(t)$ is analytic on the interval $[-1,1]$.

Theorem 2 and Theorem 3 yield the following Malliavin theorem [5].
Corollary 3.3. Let $\left(E_{n}\right)_{n=1}^{\infty}$ be as in Corollary 3.2. Then there exists a sequence $\left(h_{n}\right)_{n=1}^{\infty}$ of real-valued functions in $A(\widetilde{E})$ for which we have:
(a) The closed ideals in $A(\widetilde{E})$ generated by each function
are all distinct.
(b) The same conclusion is true for the sequence $\left(f_{n}\right)_{n=1}^{\infty}$, where

$$
f_{2 n-1}=h_{2 n-1}+i h_{2 n}, \quad \text { and } \quad f_{2 n}=\bar{f}_{2 n-1} \quad \text { for all } n
$$

Let now G be a locally compact, metric, abelian group with a trans-lation-invariant metric $d(x, y)$, and let $\left(\varepsilon_{n}\right)_{n=1}^{\infty}$ be a sequence of positive real numbes such that $\sum_{n=1}^{\infty} n \varepsilon_{n}<\infty$. Let also $\left(E_{n}\right)_{n=1}^{\infty}$ be a sequence of compact subsets of G such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sup \left\{d(x, 0): x \in E_{n}\right\}<\infty . \tag{A}
\end{equation*}
$$

Then it is easy to see that $\left(E_{n}\right)_{n=1}^{\infty}$ satisfies Condition (R). We assume that there exists a sequence $\left(\Gamma_{n}\right)_{n=1}^{\infty}$ of subsets of \hat{G} such that:
(B) For every natural number n, we have

$$
\chi \in \Gamma_{n} \Longrightarrow|1-\chi|<\varepsilon_{N} \text { on } \sum_{k=N}^{\infty} E_{k} \quad(N=n+1, n+2, \cdots) ;
$$

(C) For every natural number n and every character γ in \hat{G}, we can find a character χ in Γ_{n} such that $|\gamma-\chi|<\varepsilon_{n}$ on E_{n}.

Under these conditions we assert that the sequence $\left(E_{n}\right)_{n=1}^{\infty}$ satisfies Condition (S, d) for some $0<d \leqq d_{0}$, provided that the sum $\sum_{n=1}^{\infty} n \varepsilon_{n}$ is smaller than a certain constant. In fact, let $\left(\gamma_{n}\right)_{n=1}^{N}$ be given N characters in \hat{G}. By (C), there exists a χ_{N} in Γ_{N} such that $\left|\gamma_{N}-\chi_{N}\right|<\varepsilon_{N}$ on E_{N}. Again by (C), there exists a character χ_{N-1} in Γ_{N-1} such that

$$
\left|\gamma_{N-1}-\chi_{N-1} \cdot \chi_{N}\right|<\varepsilon_{N-1} \text { on } E_{N-1}
$$

Repeating this process, we obtain N characters $\left(\chi_{n} \in \Gamma_{n}\right)_{n=1}^{N}$ such that

$$
\left|\gamma_{n}\left(x_{n}\right)-\prod_{j=n}^{N} \chi_{j}\left(x_{n}\right)\right|<\varepsilon_{n} \quad\left(x_{n} \in E_{n} ; n=1,2, \cdots, N\right)
$$

Put $\chi=\chi_{1} \cdot \chi_{2} \cdots \chi_{N} \in \hat{G}$; then, for any points $\left(x_{n} \in E_{n}\right)_{n=1}^{N}$, we have by (B)

$$
\begin{aligned}
& \left|\prod_{n=1}^{N} \gamma_{n}\left(x_{n}\right)-\prod_{n=1}^{N} \chi\left(x_{n}\right)\right| \leqq \sum_{n=1}^{N}\left|\gamma_{n}\left(x_{n}\right)-\chi\left(x_{n}\right)\right| \\
& \quad \leqq \sum_{n=1}^{N}\left\{\left|\gamma_{n}\left(x_{n}\right)-\prod_{j=n}^{N} \chi_{j}\left(x_{n}\right)\right|+\left|1-\prod_{j=1}^{n-1} \chi_{j}\left(x_{n}\right)\right|\right\} \\
& \quad \leqq \sum_{n=1}^{N}\left\{\varepsilon_{n}+(n-1) \varepsilon_{n}\right\}=\sum_{n=1}^{N} n \varepsilon_{n} .
\end{aligned}
$$

Therefore, for any point $x=\left(x_{n}\right)_{n=1}^{\infty}$ of $E=\prod_{n=1}^{\infty} E_{n}$, we have

$$
\begin{aligned}
& \left|\left(\gamma_{1} \odot \gamma_{2} \odot \cdots \odot \gamma_{N}\right)(x)-\left(\chi \circ p_{E}\right)(x)\right| \\
& \quad \leqq\left|\prod_{n=1}^{N} \gamma_{n}\left(x_{n}\right)-\prod_{n=1}^{N} \chi\left(x_{n}\right)\right|+\left|\prod_{n=N+1}^{\infty} \prod_{j=1}^{N} \chi_{j}\left(x_{n}\right)-1\right| \\
& \quad<\sum_{n=1}^{N} n \varepsilon_{n}+N \varepsilon_{N+1}<\sum_{n=1}^{\infty} n \varepsilon_{n} .
\end{aligned}
$$

Consequently we conclude from Theorem 3 that $A(\widetilde{E})$ is isomorphic to the S-algebra induced from the sequence $\left(A\left(E_{n}\right)\right)_{n=1}^{\infty}$ if the sum $\sum_{n=1}^{\infty} n \varepsilon_{n}$ is smaller than a certain constant, say, $2 \sin \left(d_{0} / 2\right)$. Thus we can now prove the following.

Theorem 4. Let G be any non-discrete locally compact abelian group.
(a) Suppose that G contains a closed subgroup which is an I-group. Then, for every $\varepsilon>0$, there exists a Cantor subset K of G such that the restriction algebra $A(K)$ is isomorphic to the S-algebra $S(K)$ induced from countable replicas of $C(K)$ and such that

$$
\|f\|_{S(K)} \leqq\|f\|_{A(K)} \leqq(1+\varepsilon)\|f\|_{S(K)} \quad(f \in A(K))
$$

when we identify $A(K)$ and $S(K)$ in a natural way.
(b) Suppose that G does not contain any I-subgroup, then G contains a compact subgroup K isomorphic to D_{q} for some $q \geqq 2$. In this case, $A(K)$ is isometrically isomorphic to the S-algebra induced from countable replicas of $A\left(D_{q}\right)$.

Proof. The first statement in part (b) is well-known (see Rudin [7; 2.5.5]), and the second one is trivial.

In order to prove part (a), we may assume that G is itself an I-group having a translation-invariant metric compatible with its topology. Thus, for any given sequence $\left(r_{n}\right)_{n=1}^{\infty}$ of natural numbers and any given sequence $\left(\varepsilon_{n}\right)_{n=1}^{\infty}$ of positive real numbers, it is easy to construct a sequence $\left(E_{n}\right)_{n=1}^{\infty}$ of subsets of G so that: every E_{n} consists of r_{n} independent elements and $\left(E_{n}\right)_{n=1}^{\infty}$ satisfies all the Conditions (A), (B) and (C) (cf [7: 5.2.4]). In particular, it follows from the above observations that, for any $\varepsilon>0, G$ contains a compact subset \widetilde{E} such that $A(\widetilde{E})$ can be identified with
$S(E)=\bigodot_{n=1}^{\infty} C\left(E_{n}\right)$, where each E_{n} is a compact space consisting of two distinct points, and such that

$$
\|f\|_{S(E)} \leqq\|f\|_{A(\tilde{E})} \leqq(1+\varepsilon)\|f\|_{S(E)}
$$

But it is easy to see that $E=\prod_{n=1}^{\infty} E_{n}$ contains a Cantor set K such that the restriction algebra of $S(E)$ on K is isometrically isomorphic to $C(K)$. Further, $S(E)$ may be regarded as the S-algebra induced from countable replicas of itself. These facts establish part (a), and the proof is complete.

Remark. For every sequence $\left(E_{n}\right)_{n=1}^{\infty}$ of compact spaces, the S-algebra induced from $\left(C\left(E_{n}\right)\right)_{n=1}^{\infty}$ is isometrically isomorphic to a restriction algebra of the Fourier algebra of some compact abelian group. This follows from the fact that every compact space is homeomorphic to a Kronecker subset of a compact abelian group (see Saeki [8: Theorem 2]).

Example 3. Let X_{1} and X_{2} be two perfect compact spaces, and

$$
V(X)=C\left(X_{1}\right) \hat{\otimes} C\left(X_{2}\right)=C\left(X_{1}\right) \odot C\left(X_{2}\right)
$$

For simplicity, suppose that both X_{1} and X_{2} are totally disconected. Then there exists a continuous "onto" mapping $q_{j}: X_{j} \rightarrow D_{2}$ for $j=1,2$. We consider the diagram

$$
A\left(D_{2}\right) \xrightarrow{M} V\left(D_{2}\right)=C\left(D_{2}\right) \hat{\otimes} C\left(D_{2}\right) \xrightarrow{Q} V(X),
$$

where M is the isometric homomorphism defined by Herz [2], and Q is the isometric homomorphism naturally induced by the mappings q_{1} and q_{2}. The operator Q has an approximating inverse consisting of norm-decreasing homomorphisms [9]. This property of Q, together with the wellknown property of M [2] and Theorem 2, yields the following: there exists a sequence of real-valued functions in $V(X)$ that satisfies the conclusions (a) and (b) in Corollary 3.3.

Example 4. Let $\left(E_{n}\right)_{n=1}^{\infty}$ be a sequence of finite subsets of R^{N}. Then we have isometrically $A\left(E_{n}\right)=A\left(t E_{n}\right)$ for every real positive number t, where $t E_{n}=\left\{t x: x \in E_{n}\right\}$. Thus, the observations preceding Theorem 4 assure that R^{N} contains a compact subset K such that $A(K)$ is isomorphic to $\bigodot_{n=1}^{\infty} A\left(E_{n}\right)$.

Example 5. Let $\left(p_{n}\right)_{n=1}^{\infty}$ and $\left(t_{n}\right)_{n=1}^{\infty}$ be two sequence of positive integers and positive real numbers, respectively. Suppose that

$$
\sum_{n=1}^{\infty} p_{n+1} t_{n+1} / t_{n}<\infty, \quad \text { and } \quad t_{n}>\sum_{k=n+1}^{\infty} p_{k} t_{k} \quad(n=1,2, \cdots),
$$

and put

$$
\widetilde{F}=\left\{\sum_{n=1}^{\infty} r_{n} t_{n}: r_{n}=0,1,2, \cdots, p_{n}(n=1,2, \cdots)\right\} \subset R
$$

Then, it is not difficult to prove that $A(\widetilde{F})$ is isomorphic to the S-algebra $\bigcirc_{n=1}^{\infty} A\left(F_{n}\right)$, where $F_{n}=\left\{r t_{n}: r=0,1, \cdots, p_{n}\right\}$ for all n (cf. the arguments preceding Theorem 4). Let now $\left(s_{n}\right)_{n=1}^{\infty}$ be any sequence of real numbers such that $\sum_{n=1}^{\infty} p_{n}\left|s_{n}\right|<\infty$, and put

$$
\widetilde{E}=\left\{\sum_{n=1}^{\infty} r_{n} s_{n}: r_{n}=0,1,2, \cdots, p_{n}(n=1,2, \cdots)\right\} \subset R .
$$

If we define $\widetilde{q}: \widetilde{F} \rightarrow \widetilde{E}$ by setting

$$
\widetilde{q}\left(\sum_{n=1}^{\infty} r_{n} t_{n}\right)=\sum_{n=1}^{\infty} r_{n} s_{n} \quad\left(r_{n}=0,1,2, \cdots, p_{n} ; n=1,2, \cdots\right),
$$

it follows from Corollary 3.1 that \widetilde{q} induces a homomorphism of $A(\widetilde{E})$ into $A(\widetilde{F})$. In particular, taking $p_{n}=1$ for all n, we obtain a theorem of Y. Meyer [6].

Example 6. Here we shall explicitly construct a function g in $A(T)$ such that the closed ideals in $A(T)$ which are generated by each g^{m} ($m=1,2, \cdots$) are all distinct. To do this, we shall identify T with the interval $(-\pi, \pi] \bmod 2 \pi$. Let us fix any positive integer $p \geqq 3$, and let $w=w_{p}$ be any function in $A(T)$ such that: $w(t)=0$ on the three intervals of length $2 \pi / p^{2}(p-1)$ and with the left-end points $0,2 \pi / p^{2}, 2 \pi / p$; and $w(t)=1$ on the interval $\left[2 \pi / p+2 \pi / p^{2}, 2 \pi /(p-1)\right]$. We put

$$
f(t)=\sum_{n=1}^{\infty} n^{-2} w\left(p^{2 n-2} t\right)
$$

and assert that, for every real number a in the open set

$$
M=\left(0, \pi^{2} / 6-1\right) \cup\left(1, \pi^{2} / 6\right),
$$

the function $g=f-a$ has the required property. We consider the subsets of T

$$
E_{n}=\left\{0,2 \pi / p^{n}\right\}, \quad \text { and } \tilde{E}=\left\{\sum_{n=1}^{\infty} \varepsilon_{n} 2 \pi / p^{n}: \varepsilon_{n}=0 \text { or } 1 \text { for all } n\right\},
$$

and define $p_{E}: E=\prod_{n=1}^{\infty} E_{n} \rightarrow \widetilde{E}$ in a natural way. Then, by lemma $3, p_{E}$ induces a norm-decreasing homomorphism P of $A(\widetilde{E})$ into $A_{E}=\bigcirc_{n=1}^{\infty} A\left(E_{n}\right)$. Let u_{n} be the function in $A\left(E_{n}\right)$ defined by $u_{n}(0)=0$ and $u_{n}\left(2 \pi / p^{n}\right)=1$. It is easy to see from the definition of f that we have

$$
P\left(\left.f\right|_{\widetilde{E}}\right)=f \circ p_{E}=\sum_{n=1}^{\infty} n^{-2} u_{2 n-1} \odot u_{2 n}=f^{\prime}
$$

The Remarks following the proof of Theorem 2 shows that the closed ideals in A_{E} which are generated by each $\left(f^{\prime}-a\right)^{m}(m=1,2, \cdots)$ are all distinct for each fixed a in M. But P is a norm-decreasing homomorphism, and so our assertion follows.

Another interesting example may be given by

$$
h(t)=\sum_{n=1}^{\infty} n^{-2}\left\{w\left(p^{8 n-8} t\right)-w\left(p^{8 n-6} t\right)\right\}+i \sum_{n=1}^{\infty} n^{-2}\left\{w\left(p^{8 n-4} t\right)-w\left(p^{8 n-2} t\right)\right\}
$$

Then, for every complex number z with $|\operatorname{Re}(z)|<\pi^{2} / 6$ and $|\operatorname{Im}(z)|<\pi^{2} / 6$, the closed ideals in $A(T)$ which are generated by each function

$$
(h-z)^{m}(\bar{h}-\bar{z})^{n}(m, n=0,1,2, \cdots)
$$

are all distinct.
Remarks. (a) An idea very like the one used in the proof of our Theorem 2 is due to Y. Katznelson [4: Chap. VIII].
(b) We can directly prove what was shown in Example 6 by applying the methods in the proof of Theorem 2.
(c) Professor O. C. McGehee kindly let me know that

$$
\eta(d)=d+O\left(d^{2}\right) \quad \text { as } \quad d \rightarrow 0 .
$$

My original estimate was $\eta(d)<2^{1 / 2} d$.

References

[1] H. Helson, J.-P. Kahane, Y. Katznelson and W. Rudin, The functions which operate on Fourier transforms, Acta Math. 102 (1959), 135-157.
[2] C. S. Herz, Sur la note précedente de M. Varopoulos, C. R. Acad. Sci. Paris, 260 (1965), 6001-6004.
[3] E. Hewitt and K. A. Ross, Abstract harmonic analysis II, Springer-Verlag, Band 152, 1969.
[4] Y. Katznelson, An introduction to harmonic analysis, N. Y., John Wiley and Sons, 1968.
[5] P. Malliavin, Impossibilité de la synthese spectrale sur les groupes abéliens non compacts, Inst. Hautes Études Sci. Publ., 1959, 85-92.
[6] M. Y. Meyer, Isomorphisms entre certaines algèbres de restrictions, C. R. Acad. Paris, 265 (1967), A. 18-20.
[7] W. Rudin, Fourier analysis on groups, Intersci., N. Y., 1962.
[8] S. Saeki, Spectral synthesis for the Kronecker sets, Jour. Math. Soc. Japan, 21 (1969), 549-563.
[9] S. Saeki, The ranges of certain isometries of tensor products of Banach spaces, Jour. Math. Soc. Japan, 23 (1971), 27-39.
[10] S. Saeki, Homomorphisms of tensor algebras, Tôhoku Math. Jour., 23 (1971), 173-199.
[11] J. Tomiyama, Tensor products of commutative Banach algebras, Tôhoku Math. Jour., 12 (1960), 147-154.
[12] N. TH. Varopoulos, Sur les ensembles parfaits et les séries trigonométriques, C. R. Acad. Sci. Paris, 260 (1965), 3831-3834.
[13] N. TH. Varopoulos, Tensor algebras and harmonic analysis, Acta Math., 119 (1967), 51-112.

Department of Mathematics
Tokyo Metropolitan University
Tokyo, Japan

