ON THE DIVERGENCE OF REARRANGED WALSH SERIES

Dedicated to Professor Gen-ichirô Sunouchi on his 60 th birthday

Saburô Nakata

(Received April 7, 1971)
K. Tandori [4] proved the following

Theorem A. If $\{\rho(n)\}$ is a sequence of positive numbers with

$$
\begin{equation*}
\rho(n)=o(\sqrt{\log \log n}), \tag{1}
\end{equation*}
$$

then there exists a sequence of real numbers $\left\{a_{n}\right\}$ with

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n}^{2} \rho^{2}(n)<\infty \tag{2}
\end{equation*}
$$

such that the Walsh series

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} w_{n}(x) \tag{3}
\end{equation*}
$$

can be rearranged into an almost everywhere divergent series.
F. Móricz [1] proved a trigonometric series analogue of Theorem A, and later he sharpened it in [2]. The author proved in [3] the following theorem which includes F. Móricz's results.

Theorem B. If $\{\rho(n)\}$ is a sequence of positive numbers with

$$
\begin{equation*}
\rho(n)=o(\sqrt[4]{\log n}), \tag{4}
\end{equation*}
$$

then there exists a sequence of real numbers $\left\{a_{n}, b_{n}\right\}$ with

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \rho^{2}(n)<\infty \tag{5}
\end{equation*}
$$

such that the trigonometric series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{6}
\end{equation*}
$$

can be rearranged into an everywhere divergent series.
The aim of the present paper is to sharpen Theorem A or to prove a Walsh series analogue of Theorem B.

Theorem. If $\{\rho(n)\}$ is a sequence of positive numbers with (4), then
there exists a sequence of real numbers $\left\{a_{n}\right\}$ with (2) such that the Walsh series (3) can be rearranged into an almost everywhere divergent series.

Corollary. Suppose (4), then there exists a sequence of real numbers $\left\{a_{n}\right\} \in l_{2}$ such that the Walsh series (3) can be rearranged to satisfy the condition

$$
\limsup _{N \rightarrow \infty} \frac{\left|\sum_{j=1}^{N} a_{n(j)} w_{n(j)}(x)\right|}{\rho(N)}>0
$$

almost everywhere.

1. Lemmas. First of all let us introduce a function $n=n(k, j)$ $\left(j=1, \cdots, 2^{k} ; k=0,1, \cdots\right)$. For each k, consider all integers

$$
\begin{equation*}
2^{\nu_{0}}+2^{\nu_{1}}+\cdots+2^{\nu_{i}} \tag{7}
\end{equation*}
$$

satisfying $(1 / 2) k(k+1)+1 \leqq \nu_{0}<\nu_{1}<\cdots<\nu_{i}=(1 / 2)(k+1)(k+2)$. On account of $(1 / 2)(k+1)(k+2)-\{(1 / 2) k(k+1)+1\}=k$, the number of the integers (7) is $\sum_{i=0}^{k}\binom{k}{i}=2^{k}$. And we label (7) as $n(k, j)\left(j=1, \cdots, 2^{k}\right)$. Thus we obtain

$$
\begin{align*}
2^{(1 / 2)(k+1)(k+2)} & =n(k, 1)<n(k, 2)<\cdots<n\left(k, 2^{k}\right) \tag{8}\\
& =2^{(1 / 2)(k+1)(k+2)+1}-2^{(1 / 2) k(k+1)+1}
\end{align*}
$$

Lemma 1. Set $\psi_{1}(0 ; x)=w_{0}(x)=1$ and

$$
\psi_{2 j-1}(k+1 ; x)=\frac{1}{2} \psi_{j}(k ; x)\left(1+w_{n(k, j)}(x)\right),
$$

$$
\begin{equation*}
\psi_{2 j}(k+1 ; x)=\frac{1}{2} \psi_{j}(k ; x)\left(1-w_{n(k, j)}(x)\right) \tag{9}
\end{equation*}
$$

($j=1, \cdots, 2^{k} ; k=0,1, \cdots$); then the following (i) - (iii) hold.
(i) Each $\psi_{j}(k ; x)\left(j=1, \cdots, 2^{k}\right)$ is a linear combination of Walsh functions with even indices $2 p\left(<2^{(1 / 2) k(k+1)+1}\right)$.
(ii) $\psi_{j}(k ; x)=0$ or $1(x \in E)$
where E denotes the set of all dyadic irrational numbers.
(iii) $S e t$

$$
E_{j}^{(k)}=\left\{x \in E(0,1 / 2) ; \psi_{j}(k ; x)=1\right\}\left(j=1, \cdots, 2^{k} ; k=0,1, \cdots\right),^{1)}
$$

then

$$
\begin{aligned}
E_{2 j-1}^{(k+1)} \cup E_{2 j}^{(k+1)} & =E_{j}^{(k)}\left(j=1, \cdots, 2^{k} ; k=0,1, \cdots\right) \\
E_{j}^{(k)} \cap E_{j^{\prime}}^{(k)} & =\phi\left(1 \leqq j<j^{\prime} \leqq 2^{k}\right), \bigcup_{j=1}^{2^{k}} E_{j}^{(k)}=E(0,1 / 2) \\
\operatorname{mes} E_{j}^{(k)} & =1 / 2^{k+1}\left(j=1, \cdots, 2^{k} ; k=0,1, \cdots\right)
\end{aligned}
$$

[^0]Proof. (i): The statement for $k=0$ holds trivially. Supposing the case $k=k$, we see by (8) and (9) that each $\psi_{j}(k+1 ; x)\left(j=1, \cdots, 2^{k+1}\right)$ is a linear combination of Walsh functions with even indices $2 p$ such that

$$
2 p<2^{(1 / 2) k(k+1)+1}+n\left(k, 2^{k}\right)=2^{(1 / 2)(k+1)(k+2)+1} .
$$

(ii) is obvious by the definition of $\psi_{j}(k ; x)$.
(iii): (9) and (ii) yield

$$
E_{2 j-1}^{(k+1)}=\left\{x \in E(0,1 / 2) ; \psi_{j}(k ; x)=1, w_{n(k, j)}(x)=1\right\}
$$

and

$$
E_{2 j}^{(k+1)}=\left\{x \in E(0,1 / 2) ; \psi_{j}(k ; x)=1, w_{n(k, j)}(x)=-1\right\} .
$$

Hence we get

$$
\begin{gathered}
E_{2 j-1}^{(k+1)} \cup E_{2 j}^{(k+1)}=E_{j}^{(k)}, E_{2 j-1}^{(k+1)} \cap E_{2 j}^{(k+1)}=\phi ; \\
\bigcup_{j=1}^{2 k} E_{j}^{(k)}=E_{1}^{(0)}=E(0,1 / 2), \quad E_{j}^{(k)} \cap E_{j^{\prime}}^{(k)}=\phi\left(1 \leqq j<j^{\prime} \leqq 2^{k}\right)
\end{gathered}
$$

In virtue of

$$
\left.\begin{array}{rl}
\operatorname{mes} E_{2 j-1}^{(k+1)} & =\int_{E(0,1 / 2)} \dot{\psi}_{2 j-1}(k+1 ; x) d x \\
\operatorname{mes} E_{2 j}^{(k+1)} & =\int_{E(0,1 / 2)} \psi_{2 j}(k+1 ; x) d x
\end{array}\right\}=\frac{1}{2} \operatorname{mes} E_{j}^{(k)}
$$

we get

$$
\operatorname{mes} E_{j}^{(k)}=\frac{1}{2^{k}} \operatorname{mes} E_{1}^{(0)}=1 / 2^{k+1}\left(j=1, \cdots, 2^{k} ; k=0,1, \cdots\right) .
$$

This completes the proof of Lemma 1.
Lemma 2. Set $\Psi_{1}(0 ; x)=w_{1}(x)$ and

$$
\begin{align*}
\Psi_{2 j-1}(k+1 ; x) & =\psi_{j}(k ; x) w_{n(k, j)}(x), \\
\Psi_{2 j}(k+1 ; x) & =-w_{1}(x) \psi_{j}(k ; x) w_{n(k, j)}(x) \tag{10}
\end{align*}
$$

($j=1, \cdots, 2^{k} ; k=0,1, \cdots$) then the following (iv) - (vii) hold.
(iv) Each $\Psi_{j}(k ; x)\left(j=1, \cdots, 2^{k}\right)$ is a linear combination of Walsh functions with indices p such that

$$
2^{(1 / 2) k(k+1)} \leqq p<2^{(1 / 2) k(k+1)+1}
$$

(v) If $1 \leqq j<j^{\prime} \leqq 2^{k+1}$, then $\Psi_{j^{\prime}}(k+1 ; x)$ and $\Psi_{j}(k+1 ; x)$ have no term of the same index.
(vi) $\quad \Psi_{2 j-1}(k+1 ; x)=1 \quad\left(x \in E_{2 j-1}^{(k+1)}\right)$,

$$
\begin{array}{ll}
\Psi_{2 j-1}(k+1 ; x)+2 \Psi_{2 j}(k+1 ; x)=1 & \left(x \in E_{2 j}^{(k+1)}\right), \\
\Psi_{2 j-1}(k+1 ; x)=\Psi_{2 j}(k+1 ; x)=0 & \left(x \in E(0,1 / 2)-E_{j}^{(k)}\right) .
\end{array}
$$

(vii) $\quad \int_{0}^{1} \Psi_{j}^{2}(k ; x) d x= \begin{cases}1 & (j=1 ; k=0), \\ 1 / 2^{k-1} & \left(j=1, \cdots, 2^{k} ; k=1,2, \cdots\right) .\end{cases}$

Proof. (iv): The statement can be checked directly for $k=0$, and by using (i), (8) and (10) for $k \geqq 1$.
(v): By the definition (10), the indices p_{j} of the Walsh functions in $\Psi_{2 j-1}(k+1 ; x)$ are all even, and those in $\Psi_{2 j}(k+1 ; x)$ are all odd ($\left.=1+p_{j}\right)$. Moreover we have

$$
n(k, j) \leqq p_{j}<n(k, j)+2^{(1 / 2) k(k+1)+1}(\leqq n(k, j+1))
$$

for $1 \leqq j \leqq 2^{k}$, so we get the statement (v).
(vi): If $x \in E_{2 j-1}^{(k+r)}$, then

$$
1=\psi_{2 j-1}(k+1 ; x)=\frac{1}{2} \psi_{j}(k ; x)\left(1+w_{n(k, j)}(x)\right)
$$

Hence

$$
\psi_{j}(k ; x)=1, \quad w_{n(k, j)}(x)=-1
$$

and

$$
\Psi_{2 j-1}(k+1 ; x)=1 \quad\left(x \in E_{2 j-1}^{(k+1)}\right) .
$$

In the same way, if $x \in E_{2 j}^{(k+1)}$, then

$$
\begin{aligned}
& \Psi_{2 j-1}(k+1 ; x)=-1, \Psi_{2 j}(k+1 ; x)=1 \\
& \Psi_{2 j-1}(k+1 ; x)+2 \Psi_{2 j}(k+1 ; x)=1
\end{aligned}
$$

and if $x \in E(0,1 / 2)-E_{j}^{(k)}$, then $\psi_{j}(k ; x)=0$,

$$
\Psi_{2 j-1}(k+1 ; x)=\Psi_{2 j}(k+1 ; x)=0 .
$$

(vii): $\int_{0}^{1} \Psi_{2 j-1}^{2}(k+1 ; x) d x=\int_{0}^{1} \Psi_{2 j}^{2}(k+1 ; x) d x=\int_{0}^{1} \psi_{j}^{2}(k ; x) d x$

$$
=2 \operatorname{mes} E_{j}^{(k)}=1 / 2^{k}
$$

$$
\left(j=1, \cdots, 2^{k} ; k=0,1, \cdots\right)
$$

This completes the proof of Lemma 2.
2. Proof of the theorem. Set $S_{0}(x)=\Psi_{1}(0 ; x)$. When $S_{k}(x)$ has been determined, we define $S_{k+1}(x)$ by inserting $+\Psi_{2 j-1}(k+1 ; x)+2 \Psi_{2 j}(k+1 ; x)$ after $\left(\left(3+(-1)^{j}\right) / 2\right) \Psi_{j}(k ; x)$ in $S_{k}(x) .{ }^{2)} \quad$ Then for each $x \in E(0,1 / 2)$ and

[^1]$k, S_{k}(x)$ has a partial sum which equals to $k+1$. For, taking $j=j(x, k)$ such that $x \in E_{j}^{(k)}$, we easily get
$$
\Psi_{1}(0 ; x)+\cdots+\frac{3+(-1)^{j}}{2} \Psi_{j}(K ; x)=k+1
$$
with the aid of (vi).
Now define a sequence of integers $(0 \leqq) m_{1}<m_{2}<\cdots$ such that
$$
\frac{\rho(n)}{\sqrt[4]{\log n}} \leqq \frac{1}{i} \quad \text { for } \quad n \geqq 2^{n_{i}}\left(M_{i}=\frac{1}{2} m_{i}\left(m_{i}+1\right)+1 ; i=1,2, \cdots\right)
$$

Define $\left\{a_{n}\right\}$ by setting $a_{n}=0\left(1 \leqq n<2^{M_{1}}\right)$ and

$$
\begin{aligned}
& T_{i}(x)=\frac{1}{m_{i}+1} w_{2^{m_{i}}}\left(x-\frac{1+(-1)^{i}}{4}\right) S_{m_{i}}\left(x-\frac{1+(-1)^{i}}{4}\right) \\
& =\sum_{n=2^{M_{i}}}^{2^{M_{i}+1}} a_{n} w_{n}(x)=\sum_{n=2^{M_{i}}}^{2^{M i+1}} a_{n} w_{n}(x)
\end{aligned}
$$

$(i=1,2, \cdots)$. Then it is obvious that the series (3) can be rearranged so as to diverge everywhere on $E(0,1)$. And we get

$$
\begin{aligned}
& \int_{0}^{1} T_{i}^{2}(x) d x \\
& \qquad=\frac{1}{\left(m_{i}+1\right)^{2}} \int_{0}^{1} S_{m_{i}}^{2}(x) d x \\
& =\frac{1}{\left(m_{i}+1\right)^{2}}\left[\int_{0}^{1} \Psi_{1}^{2}(0 ; x) d x+\sum_{k=1}^{m_{i}} \sum_{j=1}^{2 k-1}\left\{\int_{0}^{1} \Psi_{2_{j-1}}^{2}(k ; x) d x+4 \int_{0}^{1} \Psi_{2 j}^{2}(k ; x) d x\right\}\right] \\
& =\frac{1}{\left(m_{i}+1\right)^{2}}\left[1+m_{i} \cdot 2^{k-1} \cdot \frac{5}{\left.2^{k-1}\right] \leqq \frac{5}{m_{i}+1} \quad(i=1,2, \cdots),}\right. \\
& \quad \sum_{n=1}^{\infty} a_{n}^{2} \rho^{2}(n) \leqq \sum_{i=1}^{\infty} \frac{\sqrt{M_{i}+1}}{i^{2}} \sum_{n_{n=2^{M i}}^{2}}^{2_{i}^{M_{i}+1}} a_{n}^{2} \\
& \\
& \quad \leqq \sum_{i=1}^{\infty} \frac{\sqrt{M_{i}+1}}{i^{2}} \int_{0}^{1} T_{i}^{2}(x) d x \leqq \sum_{i=1}^{\infty} \frac{10}{i^{2}}<\infty
\end{aligned}
$$

Thus the assertion of our theorem has been proved. The proof of Corollary can be carried out analogically to that of Theorem 2 in [1].

References

[1] F. MORICz, On the order of magnitude of the partial sums of rearranged Fourier series of square integrable functions, Acta Sci. Math., 28 (1967), 155-167.
[2] F. Móricz, On the convergence of Fourier series in every arrangement of the terms, Acta Sci. Math., 31 (1970), 33-41.
[3] S. Nakata, On the divergence of rearranged Fourier series of square integrable functions, Acta Sci. Math., to appear.
[4] K. Tandori, Über die Divergenz der Walshschen Reihen, Acta Sci. Math., 27 (1966), 261-263.

Toyama University
Toyama, Japan

[^0]: ${ }^{1)} E(0,1 / 2)$ means $E \cap(0,1 / 2)$.

[^1]: ${ }^{2)}$ For example, $S_{1}(x)=\Psi_{1}(0 ; x)+\Psi_{1}(1 ; x)+2 \Psi_{2}(1 ; x), S_{2}(x)=\Psi_{1}(0 ; x)+\Psi_{1}(1 ; x)+\Psi_{1}(2 ; x)+$ $2 \Psi_{2}(2 ; x)+2 \Psi_{2}(1 ; x)+\Psi_{3}(2 ; x)+2 \Psi_{4}(2 ; x)$.

