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K. Tandori [4] proved the following
THEOREM A. If {o(n)} is a sequence of positive numbers with
(1) p(n) = o(v/ Tog log m) ,

then there exists a sequemce of real numbers {a,} with
(2) i‘, aio’(n) < oo
such that the Walsh series

(3) S a,w,(x)

n=1
can be rearranged into an almost everywhere divergent series.

F. Méricz [1] proved a trigonometric series analogue of Theorem A, and
later he sharpened it in [2]. The author proved in [3] the following
theorem which includes F. Mbriez’s results.

THEOREM B. If {o(n)} s a sequence of positive mumbers with
(4) p(n) = o( ¥ Togm)
then there exists a sequence of real mumbers {a,, b,} with
(5) S (@ + b)e(m) < o
such that the trigonometric series
(6) gl (a, cos nx + b, sin nx)

can be rearranged into an everywhere divergent series.

The aim of the present paper is to sharpen Theorem A or to prove
a Walsh series analogue of Theorem B.

THEOREM. If {o(n)} is a sequence of positive mumbers with (4), then
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there exists a sequence of real numbers {a,} with (2) such that the Walsh
series (3) can be rearranged into an almost everywhere divergent series.

COROLLARY. Suppose (4), then there exists a sequence of real numbers
{a,} €l, such that the Walsh series (3) can be rearranged to salisfy the

condition
N
. D Uy Wi ()
lim sup 2=t
oo o)

almost everywhere.

1. Lemmas. First of all let us introduce a function 7 = n(k, 7)
G=1,++,2%k=0,1,.--). For each k, consider all integers
(7) 2% 4 211 4 eee 4 Qi
satisfying 1/2)k(k + 1) + 1<y, <y, < «+- <y; = (1/2)(k + 1)(k + 2). On
account of (1/2)(k + 1)(k + 2) — {(1/2)k(k + 1) + 1} = k, the number of the
integers (7) is >.F, (lf) = 2%, And we label (7) as n(k,5) (j =1, ---, 2%).
Thus we obtain
(8) QDA EAD = p(f 1) < w(k, 2) < «++ < n(k, 2%)

— 2(112)(k+1)(k+2)+1 —_ 2(1/2)k(k+ll+1

LEMMA 1. Set ,(0; ) = wy(x) =1 and

il + 1; ) = % ks D)L+ Wa (@)

(9) X
Yok + 15 @) = > Vyri(ke; )1 — Wan, ()

(G=1 4,25 k=0,1, --+); then the following (i) — (iii) hold.

(i) Each yik;x) (=1, ---,2% is a linear combination of Walsh
Sunctions with even indices 2p (< 2K+ +L)

(ii) +ik;2)=0o0r 1 (x€K)
where K denotes the set of all dyadic irrational numbers.

(iii) Set

EY = {xe E(0,1/2); yi(k;2) =1} (j=1,--+,25k=10,1,...),"
then

B0 UBS™ =B (j=1,-+,25k=0,1,..-),

ok
EfPNEP =9 (1=j<j =29 UE" = EQ01/2),
mes EfM = 1/25% (f =1, «ve, 25k = 0,1, -+) .

1 E(, 1/2) means E N (0, 1/2).




ON THE DIVERGENCE OF REARRANGED WALSH SERIES 277

ProoF. (i): The statement for £ = 0 holds trivially. Supposing the
case k =k, we see by (8) and (9) that each v;(k +1;2) (=1, ---, 2t1)
is a linear combination of Walsh functions with even indices 2p such
that

(1/2)k(k+1)+1 kY — (1/2) (k+1) (k+2) +1
2p < 2 + n(k, 2%) = 2 .

(ii) is obvious by the definition of ~;(k; ).
(iii): (9) and (ii) yield

Ef1Y = {x e B0, 1/2); vri(k; ) = 1, w,e,5(x) = 1)
and
Ej}™ = {we E(0, 1/2); yi(k; ) = 1, w,4,5(®) = —1} .
Hence we get
Ez(;cjll) U EZ(JI;—H) — Ej(k), Ez(}‘fl” N EZ(chﬂ) =g ;
ok
UE® =E® =E(0,1/2), EPNEP =¢ 1=j<j =29.

In virtue of
mes & = S sl + 1; 2)ds
E(0,1/2)

mes EfY = Yroi(k + 1; )da

E(0,1/2)

we get
mes EjY = — mes B = 1/2% (j =1, -+, 2k = 0,1, --) .

This completes the proof of Lemma 1.
LEMMA 2. Set T (0; ) = w,(x) and
Usiak + 15 2) = (k5 )W, () ,
Vol + 15 ) = —wy(@)y5(k; X)W, (X)

G=1+-+,25k=0,1, ---); then the following (iv) — (vii) hold.
(iv) Each ¥ik;z) (j =1, ---,2% is a linear combination of Walsh
fumnctions with indices p such that

10)

2(1/2)k(k+1) é 0 < 2(1/2)k(k+1)+1

(v) If1<j<j <2, then ¥k + 15 ) and ¥k + 1; ) have no
term of the same index.
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(Vi) Tuk+ L) =1 (we BED),
Vool + 1 0) + 20k + L) = 1 (e BY)
Vo b+ L 0) =Uulk+1;2) =0 (weE(©,1/2) — EM).
: 1 G=Lk=0),

Uik, x)de = .
| i ayas {1/2"—1 =1, 25k =1,2 ).

ProOF. (iv): The statement can be checked directly for £ = 0, and
by using (i), (8) and (10) for k£ = 1.

(v): By the definition (10), the indices p; of the Walsh functions
in ¥,;_(k + 1; ) are all even, and those in ¥,;(k + 1; x) are all odd
(=1+ p;). Moreover we have

n(k, J) < p; < n(k, J) + 2" (< n(k, § + 1))

for 1 <7 < 2% so we get the statement (v).
(vi): If ze Et", then

(vii)

1=y (k+12) = %"/’i(k; o)1 + wap, @) .

Hence
Ypilk; ) =1,  Waun(®@ = —1
and
UV k+1,2)=1 (zeBE}tY
In the same way, if xe E}™, then
UV k+1L0)=-1,7,,k+12)=1,
Uy b+ 1)+ 20+ 1;,2)=1;
and if xe E(0, 1/2) — E, then +;(k; ) = 0,
Ty k+1L,2)=",k+1;2)=0.

(vii): Sow;,-_l(k +1; w)de = S‘wg,.(k +1; wydo = Sﬂ;x;(k; 2)do
0 0
=2mes E¥ = 1/2*
(G=1.-,25k=0,1,---).
This completes the proof of Lemma 2.
2. Proof of the theorem. Set S)(x) = ¥,(0; ). When S,(x) has been

determined, we define S,,,(¥) by inserting + ¥,;_,(k +1; x) + 2¥,;(k + 1; )
after (8+(—1))/2)¥;(k; x) in S,(x).? Then for each xe E(0,1/2) and

2 For example, Si(z) = ¥1(0; x) + ¥1(1; x) + 2¥=(1; x), Sao(x) = ¥1(0; x) + ¥i(1; ) + ¥i(2; x)+
20 5(2; x) + 2We(1; x) + Us(2; x) + 204(2; x).
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k, Si(x) has a partial sum which equals to k¥ + 1. For, taking j = j(z, k)
such that xe E, we easily get

V(0 2) + - +§i§1_)’w,.(1<; ©) =k +1

with the aid of (vi).
Now define a sequence of integers (0 <) m, < m, < --- such that

_M<l {f >2M5M.=L ) ] 1 e .
Viogmn ; o *e= (M; 2m1(m1+ )+ 1t=1,2 -.4).

Define {a,} by setting a, = 0(1 < n < 2") and

(1) = il — L+ (=1 _ 14 (=1
7o) = (e = s (o - HHET)
oMi+1 oMit1—;
= 3, a,w,(x) = 25 a,W,(x)
n=2M; n=2M;

(?=1,2, ---). Then it is obvious that the series (3) can be rearranged
so as to diverge everywhere on EF (0, 1). And we get

S‘ Ti(z)de
; S
= — |\ S: (x)do
(m; + 1)* Jo (@
_ 1 S ?Ifg(()' )d m; zil {§1w2 i 2\ A ‘1 _ p
= —-(mz T 1)2‘_ 0 WU ) ax + kE:l - . 2j_1( ’ x) X + 30 2:’-( ’ x) x}]
1 70 . 5 ] 5 .
= 1 i 2" . é — 1’ 2’ el
m + L 21T m +1 g )

oo oo oM ;+1
a0 = X == 3, @,
n=1 =1 _oM;

2

V' M,
VM1 S Ti@)de < 3 _‘22
Z )

1=1

-

IIA
M

I

1=1

Thus the assertion of our theorem has been proved. The proof of
Corollary can be carried out analogically to that of Theorem 2 in [1].
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