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K. Tandori [4] proved the following

THEOREM A. If {p(n)} is a sequence of positive numbers with

(1) p(n) = o(V log log n) ,

then there exists a sequence of real numbers {an} with
oo

&) 2-ι Q>nP\n) < oo

such that the Walsh series

(3) | α A ( » )

can be rearranged into an almost everywhere divergent series.

F. Mόricz [1] proved a trigonometric series analogue of Theorem A, and
later he sharpened it in [2]. The author proved in [3] the following
theorem which includes F. Mόricz's results.

THEOREM B. // {p(n)} is a sequence of positive numbers with

(4) p(n) = o( Λ/ log n) ,

then there exists a sequence of real numbers {an, bn} with

(5) Σ(αi +
71 = 1

such that the trigonometric series
oo

(6) Σ (αn cos nx + bn sin nx)

can be rearranged into an everywhere divergent series.

The aim of the present paper is to sharpen Theorem A or to prove
a Walsh series analogue of Theorem B.

THEOREM. If {ρ(n)} is a sequence of positive numbers with (4), then
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there exists a sequence of real numbers {an} with (2) such that the Walsh
series (3) can be rearranged into an almost everywhere divergent series.

COROLLARY. Suppose (4), then there exists a sequence of real numbers
{an} e l2 such that the Walsh series (3) can be rearranged to satisfy the
condition

lim sup > 0
p(N)

almost everywhere.

1. Lemmas. First of all let us introduce a function n = n{k, j)
(j = ly . . .f 2k; k = 0, 1, •)• For each k, consider all integers

( 7) 2V° + 2vi + + 2^

satisfying (l/2)k(k + 1) + 1 ^ vQ < vγ < . . . < v, = (1/2)(fc + l)(fc + 2). On

account of (l/2)(fc + l)(k + 2) - {(l/2)k(k + 1) + 1} = k, the number of the

integers (7) is Σ?=o (j) = 2\ And we label (7) as n(k, j) (j = 1, . . . , 2k).

Thus we obtain

( 8 ) 2(1/2)(*+1)(*+2) = n(k, 1) < n(k, 2 ) < < n(k, 2k)

LEMMA 1. Set -^(0; a;) = wo(x) = 1 and

( 9 )

; x) = —

; a?) = — f , (fc; α;)(l -
Δ

(j = 1, . . . , 2&; A: = 0, 1, •); £λew the following (i) — (iii) hold.

( i ) £7αc/& ψ\, (fc; α;) (j = 1, , 2fe) is α linear combination of Walsh

functions with even indices 2p(<2{ll2)k{k+ί)+1).
(ii) ψj(k; x) = 0 or 1 (xeE)

where E denotes the set of all dyadic irrational numbers.
(iii) Set

E}k) = {xe E(0, 1/2); ^(k; x) = 1} (j = 1, , 2k; fc = 0 , 1 , •) ,1}

^ i f e ) ( i = 1, •-., 2*; fc = 0, 1, . . . ) ,

(*> = ^ (1 ^ ^ < / ^ 2 fc), U ^ = # ( 0 , 1/2) ,
3=1

mes Ej» = l/2*+ 1 ( i = 1, . . . , 2*; jfc = 0, 1, •)

E(Q, 1/2) means £ Π (0, 1/2).
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PROOF. ( i ) : The statement for k = 0 holds trivially. Supposing the

case k = k, we see by (8) and (9) that each ψ5(k + 1; x) (j = 1, , 2k+1)

is a linear combination of Walsh functions with even indices 2p such

that

2p < 2al2)h{k+1)+ί + n(k 2k) = 2{ll2Hk+ιUk+2)+ί

( i i ) is obvious by the definition of ψj(k; x).

(iii): (9) and (ii) yield

E$ϊ? = {x e E(0,1/2); ψj(k; x) = 1, wn{kfj)(x) = 1}

and

E£+ι) = {̂  e JE7(O, 1/2); ^(Λ; α) - 1, wn(fcfi)(a?) = -1} .

Hence we get

K Λ1} u ί?,?+1) = ^ j ( f c ) , ^2/Λ0 n ^ 2

(/+ 1 ) = Φ

( j £?;*> - £ Γ = £7(o, 1/2), Ejk) n JS?;^ = Φ ( i ^ j < f ^ 2k).
J ' = l

In virtue of

mes S^Λ" = S -f 2ί-i(/c + 1; x)d
W l / 2 )

mes Etf+ι) = I ^ ( Λ + 1; x)dx
J£(0,l/2)

we get

mes £;ifc) - —k mes ^ ( 0 ) - 1/2Λ+1 ( j = 1, , 2*; fc = 0, 1,

This completes the proof of Lemma 1.

LEMMA 2. Set ¥,(0; x) = w^x) and

Ψ2j-i(k + 1; x) = ψi(ifc; a;)Wn(ife,i)(«) >

y2i(fc + 1; a?) = - ^ ( ^ ^ . ( A : ; x)wMktί)(x)

(j = 1, , 2fe; fe = 0 , 1 , •); *Λβ^ *Λβ following (iv) — (vii)

(iv) jδ/αc/t Ψj(k; x) (j = 1, •••, 2fc) is α linear combination of Walsh

functions with indices p such that

2(i/2)Λ(fc+D < p

(v) If l ^ j < j ' ^ 2&+1, ίΛβ^ ?Ύ(/c + 1; OJ) αrwi Ws(k + 1; a?) feαvβ no

o/ ίfee same index.
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(vi) Ψ2i^(k + 1; x) = 1 (xe

Ψts-άk + l;x) + 2Ψ2j(k + 1; x) = 1 (xe

Ψ2Uk + l;χ) = Ψ*{k + 1; x) = 0 (xeE(0,1/2) -

(vίi) [ W *)<fe I1 °" = 1; * = 0) '

PROOF, (iv): The statement can be checked directly for k = 0, and
by using (i), (8) and (10) for k ^ 1.

( v ) : By the definition (10), the indices p3- of the Walsh functions
in Ψ2j-i(k + 1; x) are all even, and those in Ψ2j(k + 1; x) are all odd
( = 1 + pj). Moreover we have

n(k, j) ^ pj < n(k, j) + 2(1/2)fc(fc+1)+1 (^ n(k, j + 1))

for 1 ^ j ^ 2k, so we get the statement (v).
(vi): If xsEip?, then

1 = ψ2j-i(k + 1; x) = —ψj(k; x)(l + wn(kti)(x)) .
A

Hence

Yak; x) = 1 , w»(*,, )(*) = - 1

and

Ψ,Uk + 1; «) = 1 (xeEg™).

In the same way, if xeE$+ι), then

fWfc + 1; as) = - 1 , r,y(fc + 1; x) = 1 ,

?•„_,(*; + 1; a) + 2Ψ»{k + 1; x) = 1

and if xeE(0,1/2) - ^«*>, then ^(k; x) = 0,

r^^fc + 1; x) = Ψu(k + 1; a?) = 0 .

(vii): [ψh-^k + 1; x)dx = [ψh(k + 1; x)dx = [tfik; x)dx
Jo Jo Jo

= 2 mes Ef] = l/2fc

( i = 1 , . . . , 2 * ; f c = 0 , l , • • • ) •

This completes the proof of Lemma 2.

2. Proof of the theorem. Set S0(x) = Ψ^O; x). When Sk(x) has been
determined, we define Sk+1(x) by inserting + Wa-i(k + l; x) + 2Ψzi(k + l] x)
after ((3 + (-l)0/2)Γy(ifc; a?) in Sk(x).2) Then for each ^6^(0,1/2) and

2) For example, Si(x) = ?Fi(0; a?) + ?Γi(l; x) + 2Ψt(l; %), S2(x) = ΨΊ(0; x) + ?Γi(l; a?) + r i (2 ; α?) +
; x) + 2^ 2 (1; a?) + Ψs(2; x) + 2 ^ ( 2 ; a?).
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k, Sk(x) has a partial sum which equals to k + 1. For, taking j = j(x, k)
such that xeE}k), we easily get

¥,(0; *)+••• + 3 + ['1)S¥S(K; x) = k + 1

with the aid of (vi).
Now define a sequence of integers (0 ^) mί < m2 < such that

J ? ( n ) ^ 4 for n ^ 2 ^ ( ^ = —m^ra* + 1) + 1; i = 1, 2, -.) .
v log w % 2

Define {αn} by setting an = 0 (1 ^ n < 2M0 and

2^ g + l 1

= Σ anwn(x) = Σ ttw^n(α;)
n=2Mi n=2Mi

(i = 1, 2, •••)• Then it is obvious that the series (3) can be rearranged
so as to diverge everywhere on i?(0, 1). And we get

Tf{x)dx
o

i + I) 2 Jo

2^-zrJ[ y?(0; x)dx + Σ 2Σ {[virile; x)dx + 4Γ
+ l) 2 LJo *=i j=i LJo J JO(TO< + l ) 2

00 00

Σ alp\n) ̂  Σ
2 1

Σ

— ., , • = Σ — < °°
<=i i2 Jo <=i I2

Thus the assertion of our theorem has been proved. The proof of
Corollary can be carried out analogically to that of Theorem 2 in [1].
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