AN EXAMPLE ON DEFECT OF A COMPOSITE FUNCTION

Dedicated to Professor Gen-ichirô Sunouchi on his 60th birthday

Seiki Mori

(Received Oct. 22, 1971)

1. Let $f(z)$ be a meromorphic function in the complex plane $|z|<+\infty$. We assume that the reader is familiar with the fundamental concepts of Nevanlinna's theory and in particular with the most usual of its symbols:
$\log ^{+}, m(r, f), n(r, f), N(r, f), T(r, f), \delta(a, f)$ and etc..
Valiron [5] proved the following theorem.
Theorem A. If $f(z)$ is a meromorphic function of finite order μ and of lower order λ, and if $\mu-\lambda<1$, then all deficiencies of $f(z)$ are invariant under a change of origin.

Further, this theorem is generalized as follows. (See Mori [4].)
Theorem B. Let $g(z)$ be a polynomial of degree n and $f(z)$ a transcendental meromorphic function of order μ_{f} and of lower order λ_{f}. Assume that $\mu_{f}-\lambda_{f}<1 / n$. Then, for any w_{0}, it holds that

$$
\delta\left(w_{0}, f(g(z))\right)=\delta\left(w_{0}, f(z)\right)
$$

By a geometrical argument, Belinskii and Gol'dberg [1] gave an example of a meromorphic function $f(z)$ of order 1 and of lower order 0 having the following property: a deficiency of $f(z)$ varies under a change of origin.

This shows that in Valiron's theorem A cited above the condition $\mu-\lambda<1$ can not be dropped.

In this note, following Edrei and Fuchs [2], [3], we give an example which shows that the condition $\mu_{f}-\lambda_{f}<1 / n$ in Theorem B can not be weakened. In the case $n=1$, our argument seems to be more elementary than the one due to Belinskii and Gol'dberg.
2. In the construction of the example, we need following two lemmas.

Lemma 1. Let $g(z)$ be a meromorphic function of order $\mu_{g}<+\infty$ and $\tau(\neq \infty)$ a complex number. Then, for any fixed $t>0$, there exists
an auxiliary function $\Phi_{n}\left(z^{n}\right)$ such that

$$
\delta\left(0, \Phi_{n}\left(z^{n}\right)\right)=\delta(\tau, g(z))
$$

and
(1) $\delta\left(0, \Phi_{n}\left((z+t)^{n}\right)\right)=1-\lim _{r \rightarrow \infty} \sup ^{\frac{\sum_{j=0}^{n-1} N\left(r,\left(1 / g\left(\omega^{j}(z+t)\right)-\tau\right)\right)}{\sum_{j=1}^{n-1} T\left(r, g\left(\omega^{j}(z+t)\right)\right)} . ~}$

Here the auxiliary function $\Phi_{n}\left(z^{n}\right)$ is written as

$$
\begin{equation*}
\Phi_{n}\left(z^{n}\right)=\prod_{j=0}^{n-1} \frac{g\left(\omega^{j} z\right)-\tau}{g\left(\omega^{j} z\right)-X} \tag{2}
\end{equation*}
$$

where $\omega=e^{(2 \pi / n) i}$ and X is some complex number.
Proof. We follow Edrei's argument in [2]. Let Ω be the set as in [2]. Then, for any fixed $t>0$, there exists a complex number X such that $X \notin \Omega$,

$$
N\left(r, \frac{1}{g(z)-X}\right) \sim T(r, g(z))
$$

and

$$
N\left(r, \frac{1}{g\left(\omega^{j}(z+t)\right)-X}\right) \sim T\left(r, g\left(\omega^{j}(z+t)\right)\right)
$$

$(j=0,1,2, \cdots, n-1)$ as $r \rightarrow \infty$, since a set of deficient values in the sense of Valiron is of capacity zero.

Now we note that in (2), a zero of one of the n functions

$$
g\left(\omega^{j} z\right)-\tau \quad(j=0,1,2, \cdots, n-1)
$$

can not cancel a zero of the n functions $g\left(\omega^{j} z\right)-X$. Hence we have

$$
\delta\left(0, \Phi_{n}\left(z^{n}\right)\right)=\delta(\tau, g(z))
$$

(see Edrei [2]), and further we see

$$
\begin{aligned}
N\left(r, \Phi_{n}\left((z+t)^{n}\right)\right) & =\sum_{j=0}^{n-1} N\left(r, \frac{1}{g\left(\omega^{j}(z+t)\right)-X}\right) \\
& \sim \sum_{j=0}^{n-1} T\left(r, g\left(\omega^{j}(z+t)\right)\right)(r \longrightarrow+\infty)
\end{aligned}
$$

and

$$
N\left(r, \frac{1}{\Phi_{n}\left((z+t)^{n}\right)}\right)=\sum_{j=0}^{n-1} N\left(r, \frac{1}{g\left(\omega^{j}(z+t)\right)-\tau}\right),
$$

so we have

$$
\begin{aligned}
\delta\left(0, \Phi_{n}\left((z+t)^{n}\right)\right) & =1-\limsup _{r \rightarrow \infty} \frac{N\left(r, 1 /\left(\Phi_{n}\left((z+t)^{n}\right)\right)\right)}{T\left(r, \Phi_{n}\left((z+t)^{n}\right)\right)} \\
& =1-\limsup _{r \rightarrow \infty} \frac{\sum_{j=0}^{n-1} N\left(r, 1 /\left(g\left(\omega^{j}(z+t)\right)-\tau\right)\right)}{\sum_{j=0}^{n-1} T\left(r, g\left(\omega^{j}(z+t)\right)\right)}
\end{aligned}
$$

Thus we have our Lemma.
We note that $\Phi_{n}(z)$ is a meromorphic function of order μ_{g} / n and that

$$
\delta\left(0, \Phi_{n}\left(z^{n}\right)\right)=\delta\left(0, \Phi_{n}(z)\right)
$$

holds.
Lemma 2 (Edrei and Fuchs [3]). Let $z_{1}, z_{2}, z_{3}, \cdots\left(\left|z_{1}\right| \leqq\left|z_{2}\right| \leqq\left|z_{3}\right| \leqq \cdots\right)$ be a given sequence of distinct complex numbers having no finite point of accumulation and let $\nu_{1}, \nu_{2}, \nu_{3}, \cdots$ be a given sequence of positive integers. Finally, let $\zeta(r)$ be any given function of $r(>0)$, decreasing and strictly positive. Then, it is possible to find a meromorphic function $F(z)$ of the form

$$
F(z)=\sum_{k=1}^{\infty} \frac{\alpha_{k}}{\left(z-z_{k}\right)^{\nu_{k}}}, \quad\left(\alpha_{k}>0, \sum \alpha_{k}<+\infty\right)
$$

and a set E of finite measure such that

$$
T(r, F)=N(r, F) \quad(r \notin E)
$$

and

$$
0 \leqq T(r, F)-N(r, F)<\zeta(r) \quad\left(r>r_{0}, r \in E\right)
$$

3. For our purpose it suffices to construct a meromorphic function $\Phi(z)$ in the complex plane $|z|<+\infty$ such that $\mu_{\phi}=1 / n, \lambda_{\oplus}=0, \delta(0, \Phi(z))=0$ and such that $\delta\left(0, \Phi\left((z+t)^{n}\right)\right)=1$ for any fixed $t>0$.

First we consider an integral function

$$
f_{1}(z)=\prod_{k=1}^{\infty}\left(1-\left(\frac{z}{r_{k}}\right)^{\eta_{k}}\right), \quad\left(0<2 r_{r} \leqq r_{k+1}, \eta_{k}(\geqq 1): \text { integer }\right)
$$

We can see

$$
N\left(r, \frac{1}{f_{1}}\right) \leqq T\left(r, f_{1}\right) \leqq N\left(r, \frac{1}{f_{1}}\right)+4
$$

and can take two sequences $\left\{r_{k}\right\}_{k=1}^{\infty}$ and $\left\{\eta_{k}\right\}_{k=1}^{\infty}$ such that

$$
\begin{equation*}
T\left(r_{k}, f_{1}\right)<\left(\log r_{k}\right)^{2} \tag{3}
\end{equation*}
$$

and

$$
\eta_{k}=\left[r_{k}\left(\log r_{k}\right)^{4}\right]
$$

where [a] denotes the integral part of a. (See [1], [3]). For the sequences $\left\{r_{k}\right\}_{k=1}^{\infty},\left\{\eta_{k}\right\}_{k=1}^{\infty}$ and a fixed $t>0$, we take z_{k} such that

$$
z_{k}=\alpha\left(r_{k}-s\right),
$$

where, if $n=2 m+1$, then

$$
\alpha=-1, \quad s=t \sin ^{2}\left(\frac{m}{2 m+1} \pi\right)
$$

or if $n=2 m$, then

$$
\alpha=e^{i(1-1 /(2 m)) \pi}, \quad s=t \sin ^{2}\left(\frac{2 m-1}{4 m} \pi\right)
$$

We next take a sequence $\left\{\boldsymbol{\nu}_{k}\right\}_{k=1}^{\infty}$ such that $\nu_{k}=\left[r_{k}\left(\log r_{k}\right)^{3}\right]$. Then by Lemma 2 we can find a meromorphic function

$$
f_{2}(z)=\sum_{k=1}^{\infty} \frac{\alpha_{k}}{\left(z-z_{k}\right)^{\nu_{k}}}, \quad\left(\alpha_{k}>0, \sum \alpha_{k}<+\infty\right)
$$

such that $T\left(r, f_{2}\right)=N\left(r, f_{2}\right)+O(1)$. We now put

$$
f(z)=f_{1}(z) \cdot f_{2}(z) .
$$

Then we have

$$
\begin{aligned}
T(r, f(z)) & =T\left(r, f_{1}(z) \cdot f_{2}(z)\right) \leqq T\left(r, f_{1}\right)+T\left(r, f_{2}\right) \\
& \leqq N\left(r, \frac{1}{f_{1}}\right)+N\left(r, f_{2}\right)+O(1)
\end{aligned}
$$

and

$$
T(r, f(z)) \geqq \max \left(N\left(r, \frac{1}{f_{1}}\right), N\left(r, f_{2}\right)\right)
$$

By (3) and by construction of $f(z)$, we obtain

$$
\begin{aligned}
N\left(r_{k}, f\right)=N\left(r_{k}, f_{2}\right) & \sim \nu_{k} \log \frac{r_{k}}{r_{k}-s}+O\left(\left(\log r_{k}\right)^{2}\right) \\
& \sim s\left(\log r_{k}\right)^{3} .
\end{aligned}
$$

Thus we see

$$
T\left(r_{k}, f\right) \sim s\left(\log r_{k}\right)^{3}
$$

as $r_{k} \rightarrow+\infty$ and $s>0$. Therefore

$$
1 \geqq \limsup _{r \rightarrow \infty} \frac{N(r, f(z))}{T(r, f(z))} \geqq \limsup _{r_{k} \rightarrow \infty} \frac{N\left(r_{k}, f(z)\right)}{T\left(r_{k}, f(z)\right)}=1
$$

Hence we have

$$
\delta(\infty, f(z))=0
$$

On the other hand, for any sufficiently large r such that $r_{k} \leqq r<r_{k+1}$, we have

$$
\begin{aligned}
T(r, f(z+t)) & \geqq N\left(r, \frac{1}{f_{1}(z+t)}\right) \\
& >K \cdot \eta_{k} \log \frac{r}{r_{k}-t}+O\left(\left(\log r_{k}\right)^{2}\right), \quad K>\frac{1}{3}
\end{aligned}
$$

and

$$
\begin{aligned}
N\left(r, f\left(\omega^{[n / 2]}(z+t)\right)\right) & =N\left(r, f_{2}\left(\omega^{[n / 2]}(z+t)\right)\right) \\
& \leqq \nu_{k} \log ^{+} \frac{r}{x_{k}}+O\left(\left(\log r_{k}\right)^{2}\right),
\end{aligned}
$$

where $x_{k}=\left|\omega^{-[n / 2]} \alpha\left(r_{k}-s\right)-t\right|>r_{k}-t$. These two estimates are obtained by the quite same argument as in [1]. Hence

$$
\limsup _{r \rightarrow \infty} \frac{N\left(r, f\left(\omega^{[n / 2]}(z+t)\right)\right)}{T(r, f(z+t))}=0 .
$$

Further we see, from the above construction,

$$
N\left(r, f\left(\omega^{j}(z+t)\right)\right) \leqq N\left(r, f\left(\omega^{[n / 2]}(z+t)\right)\right), \quad(j=0,1,2, \cdots, n-1) .
$$

Thus we have

$$
\lim \sup p \frac{\sum_{j=0}^{n-1} N\left(r, f\left(\omega^{j}(z+t)\right)\right)}{\sum_{j=0}^{n-1} T\left(r, f\left(\omega^{j}(z+t)\right)\right)}=0 .
$$

In (2), we put $\tau=0$ and $g(z)=1 / f(z)$. Then we have, by Lemma 1 ,

$$
\delta\left(0, \Phi_{n}(z)\right)=\delta(0, g(z))=\delta(\infty, f(z))=0
$$

and

$$
1 \geqq \delta\left(0, \Phi_{n}\left((z+t)^{n}\right)\right) \geqq 1-\lim _{r \rightarrow \infty} \sup ^{\frac{\sum_{j=0}^{n-1} N\left(r, 1 /\left(g\left(\omega^{j}(z+t)\right)\right)\right)}{\sum_{j=0}^{n-1} T\left(r, g\left(w^{j}(z+t)\right)\right)}=1 ~ . ~}
$$

Therefore, for any fixed $t>0$, there exists a meromorphic function $\Phi_{n}(z)$ of order $1 / n$ and of lower order 0 satisfying

$$
\delta\left(0, \Phi_{n}(z)\right)=0 \quad \text { and } \quad \delta\left(0, \Phi_{n}\left((z+t)^{n}\right)\right)=1
$$

Remark. In the case $1<\mu_{f}<+\infty$, we can also construct a similar example by an analogous argument.

References

[1] P. P. Belinskil and A. A. Gol'dberg, Applications of a theorem on conformal mappings to questions of invariance of defect of meromorphic functions, Ukraina Math. J., (1954), 263-269 (Russian).
[2] A. Edrei, Sum of deficiencies of meromorphic functions, Joural d'Analyse Math., vol 14 (1965), 79-107.
[3] A. Edrei and W.H.J. Fuchs, Entire and meromorphic functions with asymptotically prescribed characteristic, Canad. J. Math., 17 (1965), 385-395.
[4] S. Mori, The deficienciencies of a composite function of integral functions, to appear.
[5] G. Valiron, Valeurs exceptionelles et valeurs déficientes des fonctions méromorphes, C. R. Acad. Sci. Paris, 225 (1947), 556-558.

Mathematical Institute
Tôhoku University
Sendai, Japan

