ON THE GENERATION OF SEMI-GROUPS OF LINEAR OPERATORS

Dedicated to Professor Gen-ichirô Sunouchi on his 60th birthday

ISAO MIYADERA

(Received Nov. 17, 1971)

1. Introduction. This paper is concerned with the generation of semi-groups of classes (0, A) and (1, A).

Let X be a Banach space and let B(X) be the set of all bounded linear operators from X into itself. A one-parameter family $\{T(t); t \ge 0\}$ is called a *semi-group* (of operators), if it satisfies the following conditions:

(1.1)
$$T(t) \in B(X) \text{ for } t \geq 0$$
.

(1.2)
$$T(0) = I \text{ (the identity)}, T(t+s) = T(t)T(s) \text{ for } t, s \ge 0.$$

(1.3)
$$\lim_{h\to 0} T(t+h)x = T(t)x \text{ for } t>0 \text{ and } x\in X.$$

Let $\{T(t); t \ge 0\}$ be a semi-group. By the *infinitesimal generator* A_0 of $\{T(t); t \ge 0\}$ we mean

(1.4)
$$A_0 x = \lim_{h \to 0+} (T(h)x - x)/h$$

whenever the limit exists. If A_0 is closable, then $A = \overline{A}_0$ (the closure of A_0) is called the *complete infinitesimal generator* of $\{T(t); t \ge 0\}$.

The following basic classes of semi-groups are well known (see [2]). If a semi-group $\{T(t); t \ge 0\}$ satisfies the condition $(C_0) \lim_{t\to 0+} T(t)x = x$ for $x \in X$, then $\{T(t); t \ge 0\}$ is said to be of class (C_0) . In this case A_0 is closed and hence the complete infinitesimal generator coincides with the infinitesimal generator. If a semi-group $\{T(t); t \ge 0\}$ satisfies the condition

$$(1, A) \qquad \int_0^1 || T(t) || dt < \infty \text{ and } \lim_{\lambda \to \infty} \lambda \int_0^\infty e^{-\lambda t} T(t) x \, dt = x \text{ for } x \in X \text{,}$$

then $\{T(t); t \ge 0\}$ is said to be of *class* (1, A). If, instead of the condition (1, A), T(t) satisfies the weaker condition

$$(0, A) \qquad \int_0^1 || T(t)x || dt < \infty \text{ and } \lim_{\lambda \to \infty} \lambda \int_0^\infty e^{-\lambda t} T(t)x \, dt = x \text{ for } x \in X,$$

then a semi-group $\{T(t); t \ge 0\}$ is said to be of *class* (0, A). Clearly $(C_0) \subset (1, A) \subset (0, A)$ in the set theoretical sense. It is known that in general the infinitesimal generator of a semi-group of class (1, A) need not

be closed, and that every semi-group of class (0, A) has the complete infinitesimal generator (see [2, 5]).

Our main results are as follows.

THEOREM 1. An operator A is the complete infinitesimal generator of a semi-group $\{T(t); t \ge 0\}$ of class (0, A) if and only if

(i) A is densely defined, closed linear operator with domain and range in X,

(ii) there is a real ω such that $\{\lambda; \lambda > \omega\} \subset \rho(A)$ (the resolvent set of A),

(iii) $||R(\lambda; A)|| = O(1/\lambda)$ as $\lambda \to \infty$, where $R(\lambda; A)$ is the resolvent of A,

and $R(\lambda; A)$ satisfies either of the following conditions (iv_1) , (iv_2) ;

(iv) for each $x \in X$ there exists a non-negative measurable function f(t, x) on $(0, \infty)$ satisfying

(a) for each $x \in X$, f(t, x) is bounded on every compact subset of the open interval $(0, \infty)$,

(b)
$$\int e^{-\omega t} f(t, x) dt < \infty$$
 for $x \in X$,

(c) $||R(\lambda; A)^n x|| \leq 1/(n-1)! \int_0^\infty e^{-\lambda t} t^{n-1} f(t, x) dt$ for $x \in X$, $\lambda > \omega$ and $n \ge 1$,

(iv₂) (a') for every $\varepsilon > 0$ there exist $M_{\varepsilon} > 0$ and $\lambda_0 = \lambda_0(\varepsilon)$ such that $\|\lambda^n R(\lambda; A)^n\| \leq M_{\varepsilon} \text{ for } \lambda > \lambda_0 \text{ and } n \text{ with } n/\lambda \in [\varepsilon, 1/\varepsilon],$

(b) there exists an M > 0 such that $||R(\lambda; A)^n x|| \leq M(\lambda - \omega)^{-n} ||x||_1$ for $x \in D(A)$, $\lambda > \omega$ and $n \ge 1$, where $||x||_1 = ||x|| + ||Ax||$,

(c') $\int_{0}^{\infty} e^{-\omega t} \liminf_{n \to \infty} || T(t; n)x| |dt < \infty \text{ for } x \in X, \text{ where } x \in X, \text{ or } X, \text{ or } x \in X, \text{ or } x$

(1.5)
$$T(t;n) = \left(I - \frac{t}{n}A\right)^{-n} = \left[\frac{n}{t}R\left(\frac{n}{t};A\right)\right]^n \text{ for } t > 0 \text{ and } n > \omega t$$
$$= I \text{ for } t = 0 \text{ and } n \ge 1.$$

THEOREM 2. An operator A is the complete infinitesimal generator of a semi-group $\{T(t); t \ge 0\}$ of class (1, A) if and only if (i)-(iii) in Theorem 1 are satisfied, and $R(\lambda; A)$ satisfies either of the following conditions (\mathbf{v}_1) , (\mathbf{v}_2) ;

 (\mathbf{v}_1) there exists a non-negative measurable function f(t) on $(0, \infty)$ with the properties

- (a) $\int_{0}^{\infty} e^{-\omega t} f(t) dt < \infty$, (b) $||R(\lambda; A)^{n}|| \leq 1/(n-1)! \int_{0}^{\infty} e^{-\lambda t} t^{n-1} f(t) dt$ for $\lambda > \omega$ and $n \geq 1$,

 (\mathbf{v}_2) (\mathbf{a}') for every $\varepsilon > 0$ there exist $M_{\varepsilon} > 0$ and $\lambda_0 = \lambda_0(\varepsilon)$ such that $||\lambda^n R(\lambda; A)^n|| \leq M_{\varepsilon} \text{ for } \lambda > \lambda_0 \text{ and } n \text{ with } n/\lambda \in [\varepsilon, 1/\varepsilon],$

(b) there exists an M > 0 such that $||R(\lambda; A)^n x|| \leq M(\lambda - \omega)^{-n} ||x||_1$ for $x \in D(A), \lambda > \omega$ and $n \ge 1$, (c') $\int_{0}^{\infty} e^{-\omega t} \liminf_{n \to \infty} || T(t; n) || dt < \infty$.

Theorem 1 is new. To generate semi-groups of class (0, A) the author assumed in [3] that, instead of (iv_1) -(a), for each $x \in X$, f(t, x) is continuous in t > 0. The condition (\mathbf{v}_1) in Theorem 2 was first given by Phillips [2, 5], and the conditions (iv_2) and (v_2) in the above theorems are quite new.

Our proof of Theorem 1 is based on the generation theorem for semigroups of class $(C_{(k)})$ due to Oharu [4], and Theorem 2 is proved by using Theorem 1. In §2 we shall deal with semi-groups of class $(C_{(k)})$. Proofs of Theorems 1 and 2 are given in §3.

2. Semi-groups of class $(C_{(k)})$. In this section we present the classes $(C_{(k)}), k = 0, 1, 2, \cdots$, of semi-groups introduced by Oharu [4].

Let $\{T(t); t \ge 0\}$ be a semi-group. It is well known that $\omega_0 \equiv \lim_{t \to \infty} t_{t \ge 0}$ $t^{-1}\log ||T(t)||$ is finite or $-\infty$. And ω_0 is called the *type* of $\{T(t); t \ge 0\}$. According to Feller [1] we define the continuity set \sum of $\{T(t); t \ge 0\}$ by

$$\Sigma = \left\{ x \in X; \lim_{t \to 0+} T(t)x = x \right\}$$
.

We see that $X_0 \equiv \bigcup_{t>0} T(t)[X] \subset \Sigma$ and if $\lambda > \omega_0$ then the Laplace integral $\int_{a}^{\infty} e^{-\lambda t} T(t) x dt \text{ exists for each } x \in \Sigma.$

LEMMA 2.1. If X_0 is dense in X and if there exists an $\omega > \omega_0$ such that for each $\lambda > \omega$ there is an operator $R(\lambda) \in B(X)$ with the properties (a) $R(\lambda)x = \int_{0}^{\infty} e^{-\lambda t} T(t)x dt$ for $x \in X_0$ and (b) $R(\lambda)$ is invertible, then $A \equiv \overline{A}_0$ exists and $\vec{R}(\lambda) = R(\lambda; A)$ for $\lambda > \omega$.

PROOF. It is easy to see that $R(\lambda)x = \int_0^\infty e^{-\lambda t} T(t)x dt$ for $x \in \Sigma$. Hence $A_0R(\lambda)x = \lim_{h \to 0^+} A_hR(\lambda)x = \lim_{h \to 0^+} R(\lambda)A_hx \stackrel{\text{so}}{=} \lambda R(\lambda)x - x \text{ for } x \in \Sigma, \text{ where}$ $A_h = (T(h) - I)/h$. Since $D(A_0) \subset \Sigma$, we have $R(\lambda)A_0x = \lambda R(\lambda)x - x$ for $x \in D(A_0)$. To show the closability of A_0 let $x_n \in D(A_0)$, $x_n \to 0$ and $A_0 x_n \to y$ as $n \to \infty$. Since $R(\lambda)A_0x_n = \lambda R(\lambda)x_n - x_n$, we obtain $R(\lambda)y = 0$ and hence y=0 by (b). Therefore $A\equiv \overline{A}_0$ exists and $R(\lambda)Ax=\lambda R(\lambda)x-x$, i.e., $R(\lambda)(\lambda - A)x = x$ for $x \in D(A)$. Let $x \in X$. Since X_0 is dense in X, there is a sequence $\{x_n\}$ in X_0 such that $x_n \to x$ as $n \to \infty$. Hence $R(\lambda)x_n \to R(\lambda)x$ and $A_0R(\lambda)x_n = \lambda R(\lambda)x_n - x_n \rightarrow \lambda R(\lambda)x - x$ as $n \rightarrow \infty$. This means that $R(\lambda)x \in D(A)$ and $AR(\lambda)x = \lambda R(\lambda)x - x$, i.e., $(\lambda - A)R(\lambda)x = x$ for $x \in X$.

Thus $\{\lambda; \lambda > \omega\} \subset \rho(A)$ and $R(\lambda) = R(\lambda; A)$ for $\lambda > \omega$. Q.E.D.

DEFINITION 2.1. A semi-group $\{T(t); t \ge 0\}$ is said to be of class $(C_{(k)})$, where k is a nonnegative integer, if it satisfies the following conditions:

(a₁) X_0 is dense in X.

(a₂) There exists an $\omega > \omega_0$ such that for each $\lambda > \omega$ there is an operator $R(\lambda) \in B(X)$ with the properties

(a) $R(\lambda)x = \int_{0}^{\infty} e^{-\lambda t} T(t)x dt$ for $x \in X_{0}$,

(b) $R(\lambda)$ is invertible.

(a₃) $D(A^k) \subset \Sigma$, where A is the complete infinitesimal generator of $\{T(t); t \ge 0\}$ and $A^0 = I$.

It follows from the definition that $(C_{(k)}) \subset (C_{(k+1)})$ and $(C_{(0)})$ is nothing else but the class (C_0) . If $\{T(t); t \ge 0\}$ is a semi-group of class (0, A), then (a_1) and (a_2) are satisfied, and moreover $\lim_{t\to 0^+} T(t)x = x$ for $x \in D(A)$, namely, $D(A) \subset \Sigma$ (see [2]). This means $(0, A) \subset (C_{(1)})$. And an example in [2] shows that $(0, A) \neq (C_{(1)})$ (see [2; p. 371, example 1]).

We now mention the generation theorem for semi-groups of class $(C_{(k)})$ due to Oharu [4].

THEOREM A. An operator A is the complete infinitesimal generator of a semi-group $\{T(t); t \ge 0\}$ of class $(C_{(k)})$ if and only if

 (α_1) A is densely defined, closed linear operator with domain and range in X,

 (α_2) there is a real ω such that $\{\lambda; \lambda > \omega\} \subset \rho(A)$,

 (α_3) there exists an M > 0 such that

 $||R(\lambda; A)^n x|| \leq M(\lambda - \omega)^{-n} ||x||_k \text{ for } x \in D(A^k), \lambda > \omega \text{ and } n \geq 1,$ where $||x||_k = ||x|| + ||Ax|| + \cdots + ||A^k x||,$

 $\begin{array}{ll} (\alpha_{*}) \quad for \ every \ \varepsilon > 0 \ and \ x \in D(A^{k}) \ there \ are \ M_{\varepsilon} > 0 \ and \ \lambda_{0} = \lambda_{0}(\varepsilon, x) \\ such \ that \ ||\lambda^{n}R(\lambda; A)^{n}x|| \leq M_{\varepsilon}||x|| \ for \ \lambda > \lambda_{0} \ and \ n \ with \ n/\lambda \in [\varepsilon, 1/\varepsilon]. \end{array}$

Then the semi-group $\{T(t); t \ge 0\}$ generated by A has the following property; for each $x \in D(A^k)$

$$T(t)x = \lim_{n \to \infty} T(t; n)x = \lim_{n \to \infty} \left(I - \frac{t}{n}A\right)^{-n} x$$

uniformly on every compact interval of $[0, \infty)$.

3. Proofs of Theorems 1 and 2. We start from the following

LEMMA 3.1. Let A be a closed linear operator with domain and range in X.

Suppose that

(i) there is a real ω such that $\{\lambda; \lambda > \omega\} \subset \rho(A)$,

(ii) for each $x \in X$ there exists a non-negative measurable function f(t, x) on $(0, \infty)$ satisfying the following properties

(ii)
$$\int e^{-\omega t} f(t, x) dt < \infty$$
 for $x \in X$,

(ii₂)
$$|| \overset{j_0}{R}(\lambda; A)^n x || \leq 1/(n-1)! \int_0^\infty e^{-\lambda t} t^{n-1} f(t, x) dt \text{ for } x \in X, \lambda > \omega$$

and $n \geq 1$.

Then we have

(i') there exists a constant M > 0 such that

 $||R(\lambda; A)^n x|| \leq M(\lambda - \omega)^{-n} ||x||_1$ for $x \in D(A), \lambda > \omega$ and $n \geq 1$,

(ii') $\int_{0}^{\infty} e^{-\omega t} \liminf_{n \to \infty} || T(t; n)x || dt < \infty$ for $x \in X$, where T(t; n) are operators defined by (1.5).

PROOF. (i') Let $\lambda > \omega$ and $x \in D(A)$. Since $R(\lambda; A)^k (A - \omega)x = (\lambda - \omega)R(\lambda; A)^k x - R(\lambda; A)^{k-1}x$, we obtain from (ii₂) that

$$\begin{split} ||(\lambda - \omega)^k R(\lambda; A)^k x - (\lambda - \omega)^{k-1} R(\lambda; A)^{k-1} x || \\ &= ||(\lambda - \omega)^{k-1} R(\lambda; A)^k (A - \omega) x || \leq \frac{(\lambda - \omega)^{k-1}}{(k-1)!} \int_0^\infty e^{-\lambda t} t^{k-1} f(t, (A - \omega) x) dt \end{split}$$

for $k \geq 1$. Hence

$$egin{aligned} &||(\lambda-\omega)^n R(\lambda;A)^n x-x|| &\leq \int_0^\infty e^{-\lambda t} \sum_{k=1}^n rac{(\lambda-\omega)^{k-1}t^{k-1}}{(k-1)!} f(t,(A-\omega)x) dt \ &\leq \int_0^\infty e^{-\omega t} f(t,(A-\omega)x) dt ext{ for } n \geq 1 \ . \end{aligned}$$

Since $R(\lambda; A)^n, \lambda > \omega, n \ge 1$, are bounded linear operators from the Banach space D(A) with the norm $||x||_1 = ||x|| + ||Ax||$ into X, the above inequality implies that there is an M > 0 such that

$$||(\lambda - \omega)^n R(\lambda; A)^n x|| \leq M ||x||_1$$

for $x \in D(A)$, $\lambda > \omega$ and $n \ge 1$ (the uniform boundedness principle).

(ii') Let T > 0 be arbitrary but fixed, and let $x \in X$. Then for each integer n with n > T |w|, T(t; n) is well defined on [0, T] and by (ii₂)

$$||T(t; n)x|| \leq \frac{(n/t)^n}{(n-1)!} \int_0^\infty e^{-ns/t} s^{n-1} f(s, x) ds \text{ for } 0 < t \leq T.$$

For each integer $n \ge 1$ let us define a function E_n by

$$E_n(t) = egin{cases} (1-\omega t/n)^n ext{ for } 0 \leq t \leq n/|\omega| \ 0 ext{ for } n/|\omega| < t \end{cases} ext{ if } \omega
eq 0$$
 ,

and $E_n(t) \equiv 1$ if $\omega = 0$. Then

I. MIYADERA

$$egin{aligned} &\int_{0}^{T} &E_n(t) \mid\mid T(t;\,n)x \mid\mid dt &\leq \int_{0}^{\infty} &E_n(t) \Big[rac{(n/t)^n}{(n-1)!} \int_{0}^{\infty} &e^{-ns/t} s^{n-1} f(s,\,x) ds \Big] dt \ &= \int_{0}^{\infty} &s^{n-1} f(s,\,x) \Big[rac{1}{(n-1)!} \int_{0}^{\infty} &E_n(t) (n/t)^n e^{-ns/t} dt \Big] ds \;, \end{aligned}$$

where $n > T |\omega|$. Now,

$$J \equiv \frac{1}{(n-1)!} \int_{0}^{\infty} E_{n}(t) (n/t)^{n} e^{-ns/t} dt$$

= $\frac{1}{(n-1)!} \int_{0}^{n/|\omega|} (n/t - \omega)^{n} e^{-ns/t} dt = \frac{n e^{-\omega s}}{(n-1)!} \int_{|\omega|-\omega}^{\infty} \frac{t^{n}}{(t+\omega)^{2}} e^{-st} dt ;$

and a simple calculus shows that $J \leq (n/(n-1))e^{-\omega s}s^{1-n}$ if $\omega \geq 0$, and $J \leq 4 \ (n/(n-1))e^{-\omega s}s^{1-n}$ if $\omega < 0$. Therefore

$$\int_{0}^{T} E_{n}(t) || T(t; n) x || dt \leq 4 \frac{n}{n-1} \int_{0}^{\infty} e^{-\omega s} f(s, x) ds \text{ for } n > T |\omega|.$$

Passing to the limit as $n \to \infty$, we see from the Fatou lemma that

$$\int_{0}^{T} e^{-\omega t} \liminf_{n\to\infty} || T(t; n) x || dt \leq 4 \int_{0}^{\infty} e^{-\omega s} f(s, x) ds$$

Since T is arbitrary, we obtain the desired conclusion.

LEMMA 3.2. Let A be a closed linear operator with domain and range in X. If we assume (i), (ii) in Lemma 3.1 and (ii₃) for each $x \in X$, f(t, x)is bounded on every compact subset of $(0, \infty)$, then for each $\varepsilon > 0$ there exist $M_{\varepsilon} > 0$ and $\lambda_0 = \lambda_0(\varepsilon)$ such that

Q.E.D.

$$(3.1) \qquad ||\lambda^n R(\lambda; A)^n|| \leq M_{\varepsilon} \text{ for } \lambda > \lambda_0 \text{ and } n \text{ with } n/\lambda \in [\varepsilon, 1/\varepsilon].$$

PROOF. Let $x \in X$ and $\lambda > 2 |\omega|$. Clearly

$$||\lambda^n R(\lambda; A)^n x|| \leq rac{\lambda^n}{(n-1)!} \int_0^\infty e^{-(\lambda-\omega)t} t^{n-1} e^{-\omega t} f(t, x) dt \equiv I$$
.

Note that the function $e^{-(\lambda-\omega)t}t^{n-1}$ $(n \ge 1)$ is increasing on $[0, \alpha]$ and decreasing on $[\alpha, \infty)$, where $\alpha = (n-1)/(\lambda - \omega)$. Let δ and η be arbitrary numbers with $0 < \delta < 1 < \eta$, and divide the integral domain as follows:

$$I=rac{\lambda^n}{(n-1)!}iggl[\int_0^{\deltalpha}+\int_{\deltalpha}^{\etalpha}+\int_{\etalpha}^{\infty}iggr]\equiv I_1+I_2+I_3$$
 .

Then

$$I_{\scriptscriptstyle 1} \leq rac{\lambda^n}{(n-1)!} e^{-(\lambda-\omega)\,\deltalpha} (\deltalpha)^{n-1} K(x) = rac{e^{-(n-1)\,\delta}}{(n-1)!} \lambda(\lambdalpha)^{n-1} \delta^{n-1} K(x) \;,$$

ON THE GENERATION OF SEMI-GROUPS OF LINEAR OPERATORS

$$I_3 \leq \frac{e^{-(n-1)\eta}}{(n-1)!} \lambda(\lambda \alpha)^{n-1} \eta^{n-1} K(x), \text{ where } K(x) = \int_0^\infty e^{-\omega t} f(t, x) dt.$$

Since $\alpha \lambda = (n-1)(1 + \omega/(\lambda - \omega)) \leq 2(n-1)$, we have

$$I_{\scriptscriptstyle 1} \leq rac{(n-1)^{n-1}}{(n-1)!} \lambda e^{-(n-1)\,\delta} (2\delta)^{n-1} K(x) \; .$$

By virtue of the Stirling formula, we obtain

(3.2)
$$I_1 \leq \frac{e}{\sqrt{2\pi}} \frac{\lambda}{\sqrt{n}} (2\delta e^{1-\delta})^{n-1} K(x) .$$

Similarly as in the above, we have

(3.3)
$$I_{\mathfrak{z}} \leq \frac{e}{\sqrt{2\pi}} \frac{\lambda}{\sqrt{n}} (2\eta e^{1-\eta})^{n-1} K(x) \; .$$

Let $0 < \varepsilon < 1$ and let $n/\lambda \in [\varepsilon, 1/\varepsilon]$. Since $\lambda \leq n/\varepsilon$, it follows from (3.2) and (3.3) that

$$I_{\scriptscriptstyle 1} \leq rac{e}{\sqrt{2\pi}} arepsilon \sqrt{n} \, (2\delta e^{\imath - \delta})^{n-\imath} K(x), \ I_{\scriptscriptstyle 3} \leq rac{e}{\sqrt{2\pi}} arepsilon \sqrt{n} \, (2\eta e^{\imath - \eta})^{n-\imath} K(x) \; .$$

Choose $\delta \in (0, 1)$ and $\eta \in (1, \infty)$ such that $2\delta e^{1-\delta} < 1$ and $2\eta e^{1-\eta} < 1$. Since $\sqrt{n} (2\delta e^{1-\delta})^{n-1}$ and $\sqrt{n} (2\eta e^{1-\eta})^{n-1}$ are bounded with respect to n, there is a $K_{\varepsilon} > 0$ such that

(3.4)
$$I_1 + I_3 = \frac{\lambda^n}{(n-1)!} \left[\int_0^{\delta \alpha} + \int_{\eta \alpha}^{\infty} \right] \leq K_{\varepsilon} K(x) .$$

Finally we estimate

$$I_2 = rac{\lambda^n}{(n-1)!} \int_{\delta lpha}^{\gamma lpha} e^{-\lambda t} t^{n-1} f(t, x) dt$$
 .

It is easy to see that $\delta \varepsilon/4 \leq \delta \alpha \leq \eta \alpha \leq 2\eta/\varepsilon$ for $n \geq 2$. Set $\lambda_0 = \lambda_0(\varepsilon) =$ max $(2/\varepsilon, 2|\omega|)$. Then for $\lambda > \lambda_0$ and *n* with $n/\lambda \in [\varepsilon, 1/\varepsilon]$,

$$\begin{split} I_2 &\leq \frac{\lambda^n}{(n-1)!} \int_{\varepsilon^{\varepsilon/4}}^{2\eta/\varepsilon} e^{-\lambda t} t^{n-1} f(t, x) dt \leq K(\varepsilon, x) \frac{\lambda^n}{(n-1)!} \int_0^{\infty} e^{-\lambda t} t^{n-1} dt \\ &= K(\varepsilon, x), \text{ where } K(\varepsilon, x) = \sup \left\{ f(t, x); \, \delta \varepsilon/4 \leq t \leq 2\eta/\varepsilon \right\}. \end{split}$$

Combining this with (3.4), for every $x \in X$ we have

$$||\lambda^n R(\lambda; A)^n x|| \leq K_{\varepsilon} \int_0^{\infty} e^{-\omega t} f(t, x) dt + K(\varepsilon, x)$$

for $\lambda > \lambda_0$ and *n* with $n/\lambda \in [\varepsilon, 1/\varepsilon]$. By the uniform boundedness principle, there exists an $M_{\varepsilon} > 0$ such that $||\lambda^n R(\lambda; A)^n|| \leq M_{\varepsilon}$ for $\lambda > \lambda_0$ and n with

 $n/\lambda \in [\varepsilon, 1/\varepsilon].$

We now prove Theorem 1.

PROOF OF THEOREM 1. Suppose first that $\{T(t); t \ge 0\}$ is of class (0, A). Then the complete infinitesimal generator A satisfies the condition (i). Since $R(\lambda; A)x = \int_0^{\infty} e^{-\lambda t} T(t)xdt$ for $x \in X$ and $\lambda > \omega_0$ (= the type of $\{T(t); t \ge 0\}$), (iii) follows from the condition (0, A) together with the uniform boundedness theorem. Choose an $\omega > \omega_0$ and set f(t, x) = ||T(t)x|| for $x \in X$ and t > 0. Then (ii) and (iv₁) are valid. (Note that $R(\lambda; A)^n x = 1/(n-1)! \int_0^{\infty} e^{-\lambda t} t^{n-1} T(t)xdt$ for $x \in X$ and $\lambda > \omega$.)

Suppose next that (i)-(iii) and (iv₁) are satisfied. It follows from Lemmas 3.1 and 3.2 that the condition (iv₂) holds true. Hence, by virtue of Theorem A, A is the complete infinitesimal generator of a semi-group $\{T(t); t \ge 0\}$ of class $(C_{(1)})$ and

(3.5)
$$T(t)x = \lim_{n \to \infty} T(t; n)x \text{ for } x \in D(A) \text{ and } t \ge 0.$$

Let $0 < \varepsilon < 1$. It follows from (iv_2) -(a') that if $n > \lambda_0/\varepsilon$, then

$$(3.6) || T(t; n) || = \left\| \left[\frac{n}{t} R\left(\frac{n}{t}; A \right) \right]^n \right\| \leq M_{\varepsilon} \text{ for } t \in [\varepsilon, 1/\varepsilon] .$$

Since D(A) is dense in X, (3.5) and (3.6) imply that

$$T(t)x = \lim_{n \to \infty} T(t; n)x$$
 for $x \in X$ and $t > 0$.

Hence we see from $(iv_2)-(c')$ that

(3.7)
$$\int_{0}^{\infty} e^{-\omega t} || T(t)x || dt < \infty \text{ for } x \in X.$$

We next want to show

(3.8)
$$\lim_{\lambda\to\infty} \lambda \int_0^\infty e^{-\lambda t} T(t) x dt = x \text{ for } x \in X.$$

Since $\{T(t); t \ge 0\}$ is of class $(C_{(1)}), R(\lambda; A)[X](=D(A)) \subset \Sigma$ and $R(\lambda; A)x = \int_{0}^{\infty} e^{-\lambda t} T(t)x dt$ for $x \in X_{0} = \bigcup_{t>0} T(t)[X]$ and sufficiently large λ (see Lemma 2.1). Therefore

$$T(h)R(\lambda; A)x = \int_0^\infty e^{-\lambda t} T(t+h)x dt = e^{\lambda h} \int_h^\infty e^{-\lambda t} T(t)x dt$$

for h > 0 and $x \in X$. Letting $h \to 0+$, it follows from $R(\lambda; A)[X] \subset \Sigma$ that

258

Q.E.D.

$$R(\lambda;A)x = \int_0^\infty e^{-\lambda t} T(t)xdt$$

for $x \in X$ and sufficiently large λ . Further, by (iii), $||\lambda R(\lambda; A)x - x|| =$ $||R(\lambda; A)Ax|| \leq O(1/\lambda) ||Ax|| \to 0$ for $x \in D(A)$ and hence $||\lambda R(\lambda; A)x - x|| \to 0$ for $x \in X$ as $\lambda \to \infty$. Thus we obtain (3.8), and hence $\{T(t); t \ge 0\}$ is of class (0, A). Q.E.D.

To prove Theorem 2 we prepare the following

LEMMA 3.3. Let A be a closed linear operator with domain and range in X.

Suppose that

(i) there is a real ω such that $\{\lambda; \lambda > \omega\} \subset \rho(A)$,

(ii) $||R(\lambda; A)|| = O(1/\lambda) \text{ as } \lambda \to \infty$,

(iii) there exists a non-negative measurable function f(t) on $(0, \infty)$ satisfying the following properties

(iii) $\int_{0}^{\infty} e^{-\omega t} f(t) dt < \infty$, (iii) $||R(\lambda; A)^{n}|| \leq 1/(n-1)! \int_{0}^{\infty} e^{-\lambda t} t^{n-1} f(t) dt$ for $\lambda > \omega$ and $n \geq 1$. If we define $T_{\lambda}(t)$ by $T_{\lambda}(t) = \{\lambda R(\lambda; A)\}^{[\lambda t]}$ for $\lambda > \max(0, \omega)$ and $t \geq 0$,

where $[\lambda t]$ denotes the integral part of λt , then

(i') there is a $\lambda_1 > 0$ such that

$$\int_{_0}^{^\infty}\!\!e^{-\mu t}||\ T_{\lambda}(t)\,||dt \leqq 1 + \int_{_0}^{^\infty}\!\!e^{-\omega t}f(t)dt \ for \ \lambda>\lambda_{_1}$$
 ,

(ii') there exist M > 0 and $\lambda_0 > 0$ such that

$$||T_{\lambda}(t)|| \leq M \Big(1 + \int_{0}^{\infty} e^{-\omega s} f(s) ds \Big)^2 e^{\mu t} / t^2 \ for \ t > 0 \ and \ \lambda > \lambda_0$$
 ,

where $\mu = |\omega| + 1$.

PROOF. Let $\lambda > \max(0, \omega)$. Since

$$||T_{\lambda}(t)|| \leq \frac{\lambda^{\lfloor \lambda t \rfloor}}{(\lfloor \lambda t \rfloor - 1)!} \int_{0}^{\infty} e^{-\lambda s} s^{\lfloor \lambda t \rfloor - 1} f(s) ds = \frac{\lambda^{k}}{(k-1)!} \int_{0}^{\infty} e^{-\lambda s} s^{k-1} f(s) ds$$

for $k/\lambda \leq t < (k+1)/\lambda$, $k = 1, 2, \dots$, we obtain

$$\begin{split} &\int_{0}^{\infty} e^{-\mu t} || T_{\lambda}(t) || dt = \int_{0}^{1/\lambda} e^{-\mu t} dt + \sum_{k=1}^{\infty} \int_{k/\lambda}^{(k+1)/\lambda} e^{-\mu t} || T_{\lambda}(t) || dt \\ &\leq 1/\lambda + \sum_{k=1}^{\infty} \int_{k/\lambda}^{(k+1)/\lambda} e^{-\mu t} \Big[\frac{\lambda^{k}}{(k-1)!} \int_{0}^{\infty} e^{-\lambda s} s^{k-1} f(s) ds \Big] dt \\ &\leq 1/\lambda + \sum_{k=1}^{\infty} e^{-\mu k/\lambda} \frac{\lambda^{k-1}}{(k-1)!} \int_{0}^{\infty} e^{-\lambda s} s^{k-1} f(s) ds \end{split}$$

I. MIYADERA

$$\leq 1/\lambda + \int_{0}^{\infty} \exp \left[-\mu s rac{1-e^{-\mu/\lambda}}{\mu/\lambda}
ight] f(s) ds \; .$$

Choose a $\lambda_1 \ge \max(1, \omega)$ such that $(1 - e^{-\mu/\lambda})/(\mu/\lambda) > |\omega|/\mu$ for $\lambda > \lambda_1$. Then we have

$$\int_{\scriptscriptstyle 0}^{\scriptscriptstyle \infty}\!\!e^{-\mu t}||\,T_{\lambda}(t)\,||dt \leq 1 + \int_{\scriptscriptstyle 0}^{\scriptscriptstyle \infty}\!\!e^{-|\omega|s}f(s)ds \leq 1 + \int_{\scriptscriptstyle 0}^{\scriptscriptstyle \infty}\!\!e^{-\omega t}f(t)dt$$

for $\lambda > \lambda_1$.

We next prove (ii'). By the assumption (ii) there exist $M \ge 1$ and $\lambda_2 > \max(0, \omega)$ such that $||\lambda R(\lambda; A)|| \le M$ for $\lambda \ge \lambda_2$. Since $[\lambda(t+s)] - ([\lambda t] + [\lambda s]) = 0$ or 1 for every $t, s \ge 0$ and $\lambda > 0$, we obtain

(3.9)
$$\begin{aligned} || \ T_{\lambda}(t+s)|| &= || \{\lambda R(\lambda; A)\}^{[\lambda(t+s)]}|| \\ &\leq M || \{\lambda R(\lambda; A)\}^{[\lambda t]} \{\lambda R(\lambda; A)\}^{[\lambda s]}|| \leq M || \ T_{\lambda}(t)|| \ || \ T_{\lambda}(s)|| \end{aligned}$$

for $\lambda \geq \lambda_2$ and $t, s \geq 0$.

Let $\lambda > \lambda_0 \equiv \max(\lambda_1, \lambda_2)$ and set $g(t) = e^{-\mu t} ||T_{\lambda}(t)||$. Then (3.9) implies that $2g(t) \leq 2Mg(t-s)g(s) \leq M([g(t-s)]^2 + [g(s)]^2)$ and hence

$$2g(t)^{_{1/2}} \leq M^{_{1/2}} \{g(t-s) + g(s)\} \ \ ext{for} \ \ 0 \leq s \leq t$$
 .

Now

$$egin{aligned} t[g(t)]^{_{1/2}}&=2\!\int_{_{0}}^{_{t/2}}\!g(t)^{_{1/2}}\!ds&\leq M^{_{1/2}}\!\int_{_{0}}^{^{t/2}}\!\{g(t-s)\,+\,g(s)\}ds\ &=M^{_{1/2}}\!\int_{_{0}}^{^{t}}\!g(s)ds&\leq M^{_{1/2}}\!\Big(1\,+\,\int_{_{0}}^{^{\infty}}\!e^{-\omega s}f(s)ds\Big) \end{aligned}$$

by (i'). Therefore we have the conclusion.

Q.E.D.

PROOF OF THEOREM 2. If A is the complete infinitesimal generator of a semi-group $\{T(t); t \ge 0\}$ of class (1, A), then (i)-(iii) and (v_1) are valid with f(t) = ||T(t)|| and $\omega > \omega_0$.

Suppose next that (i)-(iii) and (v_1) are satisfied. Then (v_2) holds true. In fact, similarly as in the proof of Lemma 3.1, (v_2) -(b'), (c') follow from (i), (ii) and (v_1) . By virtue of Lemma 3.3,

$$|| \{ \lambda R(\lambda; A) \}^{[\lambda t]} || \leq K e^{\mu t} / t^2 ext{ for } t > 0 ext{ and } \lambda > \lambda_0$$
 ,

where $K = M \left(1 + \int_{0}^{\infty} e^{-\omega s} f(s) ds\right)^{2}$ and M, λ_{0}, μ are constants in Lemma 3.3 (ii'). If we set $M_{\varepsilon} = K e^{\mu/\varepsilon} / \varepsilon^{2}$ for $\varepsilon > 0$, then

$$||\{\lambda R(\lambda; A)\}^{[\lambda t]}|| \leq M_{\varepsilon} ext{ for } \varepsilon \leq t \leq 1/\varepsilon ext{ and } \lambda > \lambda_0$$

and hence $(v_2)-(a')$ is obtained. Consequently it follows from Theorem 1 that A is the complete infinitesimal generator of a semi-group $\{T(t); t \ge 0\}$

ON THE GENERATION OF SEMI-GROUPS OF LINEAR OPERATORS

of class (0, A). Since $T(t)x = \lim_{n\to\infty} T(t; n)x$ for $x \in X$ and t > 0 (see the proof of Theorem 1), $(v_2)-(c')$ implies that $\int_0^{\infty} e^{-\omega t} || T(t) || dt < \infty$. Thus $\{T(t); t \ge 0\}$ is of class (1, A). Q.E.D.

REMARK. The class (A) of semi-groups was introduced by Phillips, and he showed that if $\{T(t); t \ge 0\}$ is of class (A) then $\lim_{t\to 0^+} T(t)x = x$ for $x \in D(A^2)$, where A is the complete infinitesimal generator of $\{T(t); t \ge 0\}$ (see [2, 6]). This implies that $(A) \subset (C_{(2)})$. And a generation theorem for semi-groups of class (A) is also obtained from Theorem A (see [4]).

References

- W. Feller, On the generation of unbounded semi-group of bounded linear operators, Ann. of Math., 58 (1953), 166-174.
- [2] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., (1957).
- [3] I. Miyadera, On the generation of strongly ergodic semi-groups of operators, II, Tôhoku Math. J., 6 (1954), 231-242.
- [4] S. Oharu, Semi-groups of linear operators in a Banach space, Publ. R.I.M.S. Kyoto Univ., 7 (1971), 205-260.
- [5] R. S. Phillips, An inversion formula for Laplace Transforms and semi-groups of linear operators, Ann. of Math., 59 (1954), 325-356.
- [6] R. S. Phillips, Semi-groups of operators, Bull. Amer. Math. Soc., 61 (1955), 16-33.

DEPARTMENT OF MATHEMATICS WASEDA UNIVERSITY TOKYO, JAPAN