CONTRACTIONS OF FOURIER TRANSFORMS IN \boldsymbol{R}_{k}.

Dedicated to Professor Gen-ichirô Sunouchi on his 60th birthday

Masakiti Kinukawa

(Received Nov. 14, 1970)

1. Introduction. In the present paper, we shall characterize some functions, those which satisfy a Lipschitz condition, as Fourier transforms of a certain sub-class of $L^{p}\left(R_{k}\right)$, and we shall give a contraction theorem of L^{p}-Fourier transforms.

A complex valued function $f\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ on R_{k}, the k-dim. Euclidean space, is denoted by $f(x)$.

When f has the following property (i) or (ii), we say f is (p)normalized:
(i) if $1<p \leqq 2$, then $\lim _{|y| \rightarrow \infty} \int_{I+y}|f(x)|^{p^{\prime}} d x=0$, for any finite interval I, where $1 / p+1 / p^{\prime}=1$;
(ii) if $p=1$, then f is continuous and $\lim _{|x| \rightarrow \infty} f(x)=0$.

We denote the j-th difference of $f(x)$, with respect to $h \in R_{k}$, by $\Delta_{h}^{j}(f(x))$, that is,

$$
\Delta_{h}^{j}(f(x))=\sum_{m=0}^{j}(-1)^{j+m}\binom{j}{m} f(x+m h) .
$$

We say $g(x)$ is a normalized j-contraction of $f(x)$ if g is normalized and $\left|\Delta_{h}^{j}(g(x))\right| \leqq\left|\Delta_{h}^{j}(f(x))\right|$ for any x and $h \in R_{k}$.

Let X be a sub-space of $L^{p}\left(R_{k}\right)$ with norm $\|*\|_{X}$ and \hat{X} be the space of Fourier transforms of functions in X. We say an element \hat{f} of \hat{X} is j-contractible in \hat{X}, if every normalized j-contraction of \hat{f} is also in \hat{X}. And we say $\hat{f} \in \hat{X}$ is uniformly j-contractible in \hat{X}, if \hat{f} is j-contractible in \hat{X} and if $\lim _{n \rightarrow \infty}\left\|g_{n}\right\|_{x}=0$ for any sequence $\hat{g}_{n}(x)$ of normalized j-contractions of \hat{f} such that $\lim _{n \rightarrow \infty} \hat{g}_{n}(x)=0$ on R_{k}.

Our main result is as follows:
Theorem 1. Let $1 \leqq p<2$ and $k / p-k / 2<j$. Suppose that $w(r)$ is a monotone decreasing function on $(0, \infty)$ such that

$$
\int_{0}^{\infty} r^{k-1} w^{p}(r) d r<\infty .
$$

If $|f(x)| \leqq w(|x|)$, then \hat{f} is uniformly j-contractible in $L^{p}\left(R_{k}\right)$.

Theorem 1 can be proved by a way of characterizing some Lipschitz classes of functions by means of Fourier transforms. There are several results on characterizing Lipschitz classes (cf. for example, Herz [4].). Our Theorems 3 and 4 (in §5 and 6) concerned with the above problem are very similar to Theorem 1 in Herz [4]. However, our proof of Theorems 3 and 4 adopted in this paper is quite elementary. That is, we shall discuss the problem along the line set by Beurling [1], Boas [2], Sunouchi [6], and Kinukawa [5].

The one dimensional case of Theorem 1 is refered to Kinukawa [5].
2. Notations. We shall use the following notations:

$$
\begin{aligned}
(t, x) & =\sum_{m=1}^{k} t_{m} x_{m} \\
\widetilde{Y}_{a, j}(t ; F) & =\widetilde{Y}_{a, j}(t)=\tilde{Y}(t) \\
& =\left[\int_{R_{k}}|F(x)|^{a}|\sin (t, x) / 2|^{a j} d x\right]^{1 / a} \\
Y_{a, j}(t ; f) & =\left[\int_{R_{k}}\left|\Delta_{t}^{j}(f(x))\right|^{a} d x\right]^{1 / a} \\
{ }_{a} \tilde{A}_{p, j, \alpha}(F) & =\left\{\int_{R_{k}}\left[|t|^{-\alpha} \tilde{Y}_{a, j}(t ; F)\right]^{p}|t|^{-k} d t\right\}^{1 / p} \\
{ }_{a} A_{p, j, \alpha}(f) & =\left\{\int_{R_{k}}\left[|t|^{-\alpha} Y_{a, j}(t ; f)\right]^{p}|t|^{-k} d t\right\}^{1 / p} \\
{ }_{a} B_{p, \alpha}(F) & =\left\{\int_{R_{k}}\left[|t|^{a \alpha} \int_{|x|>|t|}|F(x)|^{a} d x\right]^{p / a}|t|^{-k} d t\right\}^{1 / p} \\
{ }_{a} C_{p, j, \alpha}(F) & =\left\{\int_{R_{k}}\left[|t|^{a(\alpha-j)} \int_{|x|<|t|}|F(x)|^{a}|x|^{a j} d x\right]^{p / a}|t|^{-k} d t\right\}^{1 / p} \\
{ }_{a} C_{p, j, \alpha}^{*}(F) & =\left\{\int_{R_{k}}\left[|t|^{-\alpha \alpha} \int_{|x|<1 /|t|}|F(x)|^{a}|(t, x)|^{a j} d x\right]^{p / a}|t|^{-k} d t\right\}^{1 / p} \\
K & =\text { Constant numbers which may be different from one } \\
& \text { occurrence to another. }
\end{aligned}
$$

Let W be the class of radial functions $w(x) \in L^{1}\left(R_{k}\right)$ such that

$$
w(|x|)=w(r) \geqq 0
$$

is decreasing on $(0, \infty)$. For each $w \in W$, we define

$$
{ }_{a}\|F\|_{p, w}=\left\{\int_{R_{k}}|F(x)|^{a} w^{1-a / p}(x) d x\right\}^{1 / a}
$$

and

$$
{ }_{a}\|F\|_{p}=\inf _{w \in W}\left\{\left\{_{a}\|F\|_{p, w} \cdot\|w\|_{1}^{1 / p-1 / a}\right\}\right.
$$

${ }_{a} L_{p}$ is defined by a class of F with ${ }_{a}\|F\|_{p}<\infty$. For the case $0<p \leqq a$,
we see ${ }_{a} L_{p} \subseteq L^{p}$, and ${ }_{a} L_{a}=L^{a}$.

3. Lemmas.

Lemma 1. For $t \in R_{k}$, there is an orthogonal transformation $y_{m}=$ $\sum_{l=1}^{k} a_{m l} x_{l}$ from $x \in R_{k}$ to $y \in R_{k}$ with the determinant 1 , in which $|x|=|y|$ and $(t, x)=\sum_{l=1}^{k} t_{l} x_{l}=|t| y_{1}$. (cf. Bochner [3], p. 70.)

Lemma 2. Let $w(r)$ be non-negative and decreasing on $(0, \infty)$. Then, for given constants $\varepsilon(0<\varepsilon<1)$ and $\delta(k<\delta)$, there exists a non-negative function $w^{*}(r)$ such that (i) $w(r) \leqq w^{*}(r)$, (ii) $r^{*} w^{*}(r)$ is decreasing on $(0, \infty)$, (iii) $r^{\delta} w^{*}(r)$ is increasing on ($0, \infty$), and (iv) $\int_{0}^{\infty} w^{*}(r) r^{k-1} d r=$ $K \int_{0}^{\infty} w(r) r^{k-1} d r$. (Cf. Herz [4], Lemma 2.5.)

Lemma 3. Suppose $0<p<a$ and $0<\alpha<j$. Then

$$
{ }_{a}\left\|F(x)|x|^{\alpha-k / p+k / a}\right\|_{p} \leqq K_{a} \widetilde{A}_{p, j, \alpha}(F) .
$$

Proof. (Cf. Beurling [1].) Suppose ${ }_{a} \tilde{A}_{p, j, \alpha}(F)<\infty$. We shall prove that there is $w(x) \in W$ such that ${ }_{a}\left\|F(x)|x|^{\alpha-k / p+k / a}\right\|_{p, w}^{a} \leqq K{ }_{a} \widetilde{A}_{p, j, \alpha}^{p}(F)$. Put $w(x)=\int_{|t|<1| | x \mid}|t|^{-p \alpha} \widetilde{Y}^{p}(t) d t$. Then we have $\|w\|_{1}=\int_{R_{l k}} w(x) d x=$ $K_{a} \widetilde{A}_{p, j, \alpha}^{p}(F)<\infty$. Therefore $w(x)=w(|x|) \in L^{1}\left(R_{k}\right)$ and $w(|x|)$ is decreasing on $(0, \infty)$. That is, $w \in W$.

We have

$$
\begin{aligned}
{ }_{a} \widetilde{A}_{p, j, \alpha}^{p}(F) & =\int_{R_{k}}|t|^{-k-p \alpha} \widetilde{Y}^{p-a}(t) \tilde{Y}^{a}(t) d t \\
& =\int_{R_{k}}|F(x)|^{a}\left[\int_{R_{k}}|t|^{-k-p \alpha} \widetilde{Y}^{p-a}(t)|\sin (t, x) / 2|^{a j} d t\right] d x \\
& =\int_{R_{k}}|F(x)|^{a}[M(x)]^{-1} d x, \text { say } .
\end{aligned}
$$

Let $P=a / p$ and $Q=a /(a-p)$. Then, by the Hölder inequality, we get

$$
\begin{aligned}
V & =w^{1 / Q}(x) M^{-1 / p}(x) \\
& \geqq \int_{|t|<1| | x \mid}|t|^{\gamma_{1}} \widetilde{Y}^{\gamma_{2}}|\sin (t, x) / 2|^{p j} d t
\end{aligned}
$$

where $\gamma_{1}=(-k-p \alpha) / P+(-p \alpha) / Q=-p \alpha-k p / a$ and $\gamma_{2}=p / Q+(p-a) / P=0$. So we have the following inequality

$$
V \geqq \int_{|t|<1| | x \mid}|t|^{r_{1}}|\sin (t, x) / 2|^{p j} d t=S \text {, say . }
$$

For the case $k \geqq 2$, apply Lemma 1 to the above integral S. Then (cf. Bochner [3], p. 70),

$$
\begin{aligned}
S & =\int_{|y| \leq 1 /|x|}|y|^{r_{1}}\left|\sin \left(y_{1}|x|\right) / 2\right|^{p j} d y \\
& =\int_{0}^{1 /|x|} r^{k-1+\gamma_{1}} d r \int_{0}^{\pi}|\sin (r|x| \cos \theta) / 2|^{p j} \sin ^{k-2} \theta d \theta \\
& =|x|^{-\left(k-1+\gamma_{1}\right)-1} \int_{0}^{1} \beta^{\left(k-1+\gamma_{1}\right)} d \beta \int_{0}^{\pi}|\sin (\beta \cos \theta) / 2|^{p j}(\sin \theta)^{k-2} d \theta .
\end{aligned}
$$

Since $\alpha<j$ and $0<p<a$, we have

$$
k-1+\gamma_{1}+p j=k(1-p / a)+p(j-\alpha)-1>-1 .
$$

Hence we have

$$
S=K|x|^{-k+p \alpha+k p / a}
$$

For the case $k=1$, transform the variable t by $\beta /|x|$ in the original form of S, then we have also the above equality. Now we have a lower bound for $(M(x))^{-1}$ such that

$$
\begin{aligned}
(M(x))^{-1} & \geqq K\left(|x|^{-k+p \alpha+k p / a}\right)^{P}(w(x))^{-P / Q} \\
& =K|x|^{a(\alpha-k / p+k / a)} w(x)^{1-a / p}
\end{aligned}
$$

Finally we have

$$
{ }_{a} \widetilde{A}_{p, j, \alpha}^{p}(F) \geqq K \int_{R_{k}}|F(x)|^{a}|x|^{a(\alpha-k / p+k / a)} w(x)^{1-a / p} d x
$$

which completes the proof of Lemma 3, because of $\|w\|_{1}={ }_{a} \widetilde{A}_{p, j, \alpha}^{p}(F)$. (For the case $a=p$, we have directly

$$
\left.{ }_{a} \widetilde{A}_{a, j, \alpha}^{a}(F) \geqq K \int_{R_{k}}|F(x)|^{a} S d x=K\left\|F(x)|x|^{\alpha}\right\|_{a \bullet}^{a}\right)
$$

Lemma 4. Let $0<p<a, \quad 0<\alpha<j$ and $(k-1)(1 / p-1 / a)<\alpha$. Then we have

$$
{ }_{a} \widetilde{A}_{p, j, \alpha}(F) \leqq K_{a}\left\|F(x)|x|^{\alpha-k / p+k / a}\right\|_{p} .
$$

Proof. Suppose that there exists $w \in W$ such that

$$
{ }_{a}\left\|F(x)|x|^{\alpha-k / p+k / a}\right\|_{p, w}<\infty .
$$

For this w, we find $w^{*}(x)$ which has the properties of Lemma 2. Let $P=a / p, Q=a /(a-p), \alpha_{1}=-(p \alpha+k-2 k / Q)$ and $\alpha_{2}=-2 k / Q$. By the Hölder inequality, we have

$$
\begin{aligned}
{ }_{a} \tilde{A}_{p, j, \alpha}^{p}(F)= & \int_{R_{k}}\left\{\tilde{Y}^{p}(t) w^{*}(1 /|t|)^{-1+p / a}|t|^{\alpha_{1}}\right\} \times\left\{w^{*}(1 /|t|)^{1-p / a}|t|^{\alpha_{2}}\right\} d t \\
\leqq & \left\{\int_{R_{k}} \widetilde{Y}(t)^{p P} w^{*}(1 /|t|)^{P(p / a-1)}|t|^{\alpha_{1} P} d t\right\}^{1 / P} \\
& \times\left\{\int_{R_{k}} w^{*}(1 /|t|)^{Q(1-p / a)}|t|^{\alpha_{2} Q} d t\right\}^{1 / Q} .
\end{aligned}
$$

The second part of the above is equal to $K\|w\|_{1}^{1 / Q}$ and is finite. (Cf. Lemma 2 - (iv).) Note that $p P=a$. We have

$$
\begin{aligned}
& \|w\|_{1}^{-P / Q} \cdot{ }_{a} \widetilde{A}_{p, j, \alpha}^{a}(F) \leqq K \int_{R_{k}} \tilde{Y}^{a}(t) w^{*}(1 /|t|)^{1-a / p}|t|^{\alpha_{1} P} d t \\
& \quad=K \int_{R_{k}}|F(x)|^{a} d x \int_{R_{k}}|\sin (t, x) / 2|^{a j} w^{*}(1 /|t|)^{1-a / p}|t|^{\alpha_{1} P} d t
\end{aligned}
$$

We have to estimate the second integral, say S^{*}, in the above. We have

$$
\begin{aligned}
S^{*} & \leqq \int_{|t|<1 /|x|}|x|^{\alpha j} w^{*}(1 /|t|)^{1-a / p}|t|^{\alpha_{1} P+a j} d t+\int_{|t|>1| | x \mid} w^{*}(1 /|t|)^{1-a / p}|t|^{\alpha_{1} P} d t \\
& =I_{1}+I_{2}, \quad \text { say } .
\end{aligned}
$$

The integrands of I_{1} and I_{2} are radial. Therefore, we have

$$
\begin{aligned}
I_{1} & =K|x|^{a j} \int_{0}^{1 /|x|} w^{*}(1 / r)^{1-a / p} r^{\alpha_{1} P+a j+k-1} d r \\
& =K|x|^{-\alpha_{1} P-k} \int_{0}^{1} w^{*}(|x| / r)^{1-a / p} r^{\alpha_{1} P+a j+k-1} d r=K|x|^{-\alpha_{1} P-k} I_{11}
\end{aligned}
$$

say, and

$$
\begin{aligned}
I_{2} & =K \int_{1 /|x|}^{\infty} w^{*}(1 / r)^{1-a / p} r^{\alpha_{1} P+k-1} d r \\
& =K|x|^{-\alpha_{1} P-k} \int_{1}^{\infty} w^{*}(|x| / r)^{1-a / p} r^{\alpha_{1} P+k-1} d r=K|x|^{-\alpha_{1} P-k} I_{21},
\end{aligned}
$$

say. By the properties (ii) and (iii) of Lemma 2, we have the following inequalities: If $0<r<1$, then $w^{*}(|x| / r)^{1-a / p} \leqq\left[r^{\delta} w^{*}(|x|)\right]^{1-a / p}$, and if $1 \leqq r$, then $w^{*}(|x| / r)^{1-a / p} \leqq\left[r^{\varepsilon} w^{*}(|x|)\right]^{1-a / p}$, where $k<\delta$ and $0<\varepsilon<1$. Now we have

$$
I_{11} \leqq w^{*}(|x|)^{1-a / p} \int_{0}^{1} r^{\Lambda_{1}} d r
$$

and

$$
I_{21} \leqq w^{*}(|x|)^{1-a / p} \int_{1}^{\infty} r^{a_{2}} d r
$$

where $\Delta_{1}=\alpha_{1} P+a j+k-1+\delta(1-a / p)$ and $\Delta_{2}=\alpha_{1} P+k-1+\varepsilon(1-a / p)$. Since $0<\alpha<j$ and $(k-1)(1 / p-1 / a)<\alpha$, we can choose constants δ and ε such that $k<\delta<k+p a(j-\alpha) /(a-p)$ and $k-a p \alpha /(a-p)<\varepsilon<1$. The choice of δ and ε makes $\Delta_{1}>-1$ and $\Delta_{2}<-1$. Therefore, $\int_{0}^{1} r^{a_{1}} d r$ and $\int_{1}^{\infty} r^{\Lambda_{2}} d r$ are finite constants, and we have

$$
I_{1}+I_{2} \leqq K|x|^{-\alpha_{1} P-k} w^{*}(|x|)^{1-a / p} \leqq K|x|^{-\alpha_{1} P-k} w(|x|)^{1-a / p} .
$$

Summarizing the above results, we have

$$
\begin{aligned}
{ }_{a} \widetilde{A}_{p, j, \alpha}^{a}(F) & \leqq K\left\{\int_{R_{k}}|F(x)|^{a}|x|^{-\alpha_{1} P-k} w(x)^{1-a / p} d x\right\} \cdot\|w\|_{1}^{P / Q} \\
& =K_{a}\left\|F(x)|x|^{\alpha-k / p+k / a}\right\|_{p, w}^{a} \cdot\|w\|^{P / Q}
\end{aligned}
$$

which completes the proof of Lemma 4.
Lemma 5. Let $0<p<a$ and $0<\alpha$, then

$$
{ }_{a} B_{p, \alpha}(F) \leqq K_{a} C_{p, j, \alpha}(F) .
$$

Proof. (Cf. Sunouchi [6]) Note that

$$
{ }_{a} B_{p, \alpha}^{p}(F)=K \int_{0}^{\infty} r^{p \alpha-1}\left[\int_{|x|>r}|F(x)|^{a} d x\right]^{p / a} d r,
$$

and

$$
{ }_{a} C_{p, j, \alpha}^{p}(F)=K \int_{0}^{\infty} r^{p \alpha-1-p ;}\left[\int_{|x|<r}|F(x)|^{a}|x|^{a j} d x\right]^{p / a} d r .
$$

We have

$$
\begin{aligned}
{ }_{a} B_{p, \alpha}^{p}(F) & \leqq K \sum_{m=-\infty}^{\infty} \int_{2^{m}}^{2^{m+1}} r^{p \alpha-1} d r\left[\sum_{l=m}^{\infty} \int_{2^{l}<|x|<2 l+1}|F(x)|^{a} d x\right]^{p / a} \\
& \leqq K \sum_{l=-\infty}^{\infty}\left(2^{l}\right)^{-p j}\left[\int_{2^{l}<|x|<2 l^{l+1}}|F(x)|^{a}|x|^{a j} d x x^{p / a}\right] \times \sum_{m=-\infty}^{l} \int_{2^{m}}^{2^{m+1}} r^{p \alpha-1} d r \\
& =K \sum_{l=-\infty}^{\infty}\left(2^{l}\right)^{-p j+p \alpha}\left[\int_{2^{l}<|x|<2^{l+1}}|F(x)|^{a}|x|^{a j} d x\right]^{p / a} \\
& \leqq K_{a} C_{p, j, \alpha}^{p}(F) .
\end{aligned}
$$

Lemma 6. Let $0<p<a$ and $0<\alpha<j$, then

$$
{ }_{a} C_{p, j, \alpha}(F) \leqq K_{a} B_{p, \alpha}(F) .
$$

Proof. By the same way of Lemma 5, we have

$$
{ }_{a} C_{p, j, \alpha}^{p}(F) \leqq K \sum_{l=-\infty}^{\infty}\left(2^{l}\right)^{p j}\left[\int_{2^{l}<|x|<2 l+1}|F(x)|^{a} d x\right]^{p / a} \times \sum_{m=l}^{\infty} \int_{2^{m}}^{2^{m+1}} r^{p \alpha-p j-1} d r .
$$

Since, by the assumtion $\alpha<j, p \alpha-p j-1<-1$, we have the conclusion.
Lemma 7. (i) We have

$$
{ }_{a} C_{p, j, \alpha}^{*}(F) \leqq{ }_{a} C_{p, j, \alpha}(F) .
$$

(ii) If $F(x)$ is radial, then

$$
{ }_{a} C_{p, j, \alpha}^{*}(F)=K_{a} C_{p, j, \alpha}(F) .
$$

Proof. (i) is trivial, since $|(t, x)| \leqq|t||x|$. We need to prove (ii) for the case $k \geqq 2$. By the same argument of Lemma 3, we have

$$
\begin{aligned}
\left.\int_{|x|<1| | t \mid}|F(x)|^{a}(t, x)\right|^{a j} d x= & K|t|^{a j} \int_{0}^{1 /|t|}|F(r)|^{a} r^{a j+k-1} d r \\
& \times \int_{0}^{\pi}|\cos \theta|^{a j}(\sin \theta)^{k-2} d \theta \\
= & K|t|^{a j} \int_{|x|<1 /|t|}|F(x)|^{a}|x|^{\alpha j} d x
\end{aligned}
$$

which shows (ii).
Lemma 8. Let $0<p<a$ and $0<\alpha<j$, then

$$
{ }_{a} \tilde{A}_{p, j, \alpha}(F) \leqq K_{a} B_{p, \alpha}(F)
$$

Proof. Split the domain of the integral in $\widetilde{Y}_{a, j}(t: F)$ into two parts; $D_{1}=\left\{x \in R_{k} ;|x|<1 /|t|\right\} \quad$ and $\quad D_{2}=\left\{x \in R_{k} ;|x|>1 /|t|\right\}$. In $\widetilde{Y}_{a, j}(t)$, replace $|\sin (t, x) / 2|$ by $(|t||x| / 2)$ on D_{1}, and by 1 on D_{2}, then we see that ${ }_{a} \widetilde{A}_{p, j, \alpha}^{p}(F) \leqq K\left\{_{a} B_{p, \alpha}^{p}(F)+{ }_{a} C_{p, j, \alpha}^{p}(F)\right\}$. Combining with Lemma 6, we have the conclusion.

Lemma 9. ${ }_{a} C_{p, j, \alpha}^{*}(F) \leqq K_{a} \widetilde{A}_{p, j, \alpha}(F)$.
Proof. Since

$$
\begin{aligned}
\int_{|x|<1| | t \mid}|F(x)|^{a}|(t, x)|^{a j} d x & \leqq K \int_{|x|<1| | t \mid}|F(x)|^{\mid}|\sin (t, x) / 2|^{\mid a j} d x \\
& \leqq K \widetilde{Y}_{a, j}^{a}(t)
\end{aligned}
$$

we have the conclusion.
Lemma 10. Let $0<p<a$ and $0<\alpha$. If a non-negative function $w(x)$ is radial and $w(|x|)$ is decreasing on $(0, \infty)$, then

$$
{ }_{a} B_{p, \alpha}(w) \leqq K\left\|w(x)|x|^{\alpha-k(1 / p-1 / a)}\right\|_{p}
$$

Proof.

$$
\begin{aligned}
{ }_{a} B_{p, \alpha}^{p}(w) & \leqq \sum_{m=-\infty}^{\infty} \int_{2^{m}}^{2^{m+1}} r^{p \alpha-1} d r \sum_{l=m}^{\infty}\left[\int_{2^{l}}^{2^{l+1}}|w(\xi)|^{a} \xi^{k-1} d \xi\right]^{p / a} \\
& \leqq K \sum_{l=-\infty}^{\infty}\left[w\left(2^{l}\right)\right]^{p}\left(2^{l}\right)^{k p / a} \sum_{m=-\infty}^{l} \int_{2^{m}}^{2^{m+1}} r^{p \alpha-1} d r \\
& \leqq K \sum_{l=-\infty}^{\infty}\left[w\left(2^{l}\right)\right]^{p}\left(2^{l}\right)^{k p / a+p \alpha} \\
& \leqq K\left\|w(x)|x|^{\alpha-k(1 / p-1 / a)}\right\|_{p}^{p}
\end{aligned}
$$

4. Theorem 2. Let $0<p<a$ and $(k-1)(1 / p-1 / a)<\alpha$. Suppose $F(x)$ is radial. Then ${ }_{a}\left\|F(x)|x|^{\alpha-k(1 / p-1 / a)}\right\|_{p}<\infty$, if and only if ${ }_{a} B_{p, \alpha}(F)<\infty$.

Proof. By Lemmas 3 to 9 , we have the result.
5. Theorem 3. Let $1<a \leqq 2,1 / a+1 / a^{\prime}=1,1 \leqq p<2, \alpha=k / p-k / a^{\prime}$ and $\alpha<j$. If $f(x)$ is (p)-normalized and ${ }_{a} A_{p, j, \alpha}(f)<\infty$, then there exists $F \in{ }_{a^{\prime}} L_{p}$ such that its Fourier transform \hat{F} (in L^{p}) is equal to f and ${ }_{a^{\prime}}\|F\|_{p} \leqq K_{a} A_{p, j, \alpha}(f)$.

Proof. By the assumption ${ }_{a} A_{p, j, \alpha}(f)<\infty$, we have $\Delta_{t}^{j} f(x) \in L^{a}\left(R_{k}\right)$ for almost all $t \in R_{k}$. Therefore, we have the Fourier transform

$$
\left(\Delta_{t}^{j} f\right)^{\wedge}=\underset{N \rightarrow \infty}{\stackrel{\left(a^{\prime}\right)}{. . m} .} K \int_{|u|<N} e^{-i(u, x)} \Delta_{t}^{j} f(u) d u,
$$

which we write $\left[e^{i(t, x)}-1\right]^{j} F_{t}(x)$. Since $\Delta_{t}^{j}\left(\Delta_{s}^{j} f\right)=\Delta_{s}^{j}\left(\Delta_{t}^{j} f\right)$, the Fourier transforms of the both sides are equal, which means $F_{t}=F_{s}=F$, say.

By the Hausdorff-Young inequality, we have

$$
\left\|\left(e^{i(t, x)}-1\right)^{j} F(x)\right\|_{a^{\prime}} \leqq K\left\|\Delta_{t}^{j} f(u)\right\|_{a},
$$

that is,

$$
\tilde{Y}_{a^{\prime}, j}(t ; F) \leqq K Y_{a, j}(t ; f)
$$

Hence we have

$$
{ }_{a^{\prime}} \widetilde{A}_{p, j, \alpha}(F) \leqq K_{a} A_{p, j, \alpha}(f)<\infty
$$

By Lemma 3, ${ }_{a^{\prime}}\|F(x)\|_{p} \leqq K_{a^{\prime}} \widetilde{A}_{p, j, \alpha}(F)$. Therefore, we have

$$
F(x) \in_{a^{\prime}} L_{p} \subseteq L^{p} .
$$

We have to show that f is the Fourier transform of F. Denote the Fourier transform of F by \hat{F}, then

$$
\Delta_{t}^{j} \hat{F}(u)=\underset{N \rightarrow \infty}{\stackrel{\left(i^{\prime}\right)}{i}, \ldots} . K \int_{|x|<N} F(x)\left(e^{i(t, x)}-1\right)^{j} e^{i(u, x)} d x
$$

By the inversion argument, we get $\Delta_{t}^{j} \hat{F}(u)=\Delta_{t}^{j} f(u)$, that is,

$$
f(u)-\hat{F}(u)=\sum_{\nu=1}^{i}(-1)^{\nu}\binom{j}{\nu}[f(u+\nu t)-\hat{F}(u+\nu t)]
$$

Consider the case $1<p<2$. Then, for any finite interval I,

$$
\int_{I}|f(u)-\hat{F}(u)|^{p^{\prime}} d u \leqq K \sum_{\nu=1}^{j}\binom{j}{\nu} \int_{I+\nu t}|f(u)-\hat{F}(u)|^{p^{\prime}} d u
$$

which converges to zero when $|t| \rightarrow \infty$ because of (p)-normalization of f and of $\hat{F} \in L^{p^{\prime}}$. (When $p=1$, we do not need to integrate $|f(u)-\hat{F}(u)|$ in order to get the conclusion.) Therefore, we have $f(u)=\hat{F}(u)$, a.e..

Remark. If we start from assuming that f is the Fourier transform of $F \in L^{p}(1 \leqq p<2)$, then a direct implication of Lemma 3 is

$$
{ }_{a^{\prime}}\left\|F(x)|x|^{\alpha-k\left(1 / p-1 / a^{\prime}\right)}\right\|_{p} \leqq K_{a} A_{p, j, \alpha}(f) .
$$

6. Theorem 4. Let $1<a \leqq 2,1 / a+1 / a^{\prime}=1,1 \leqq p<a, \alpha=$ $k / p-k / a$ and $\alpha<j$. If $F \in_{a} L_{p}$, then the Fourier transform $\hat{F}=f$ satisfies ${ }_{a}{ }^{\prime} A_{p, j, \alpha}(f) \leqq K_{a}\|F\|_{p}$.

Proof. Since $\left[\left(e^{i(x, t)}-1\right)^{j} F(x)\right]^{\wedge}=\Delta_{t}^{j} f$, by the Hausdorff-Young inequality, we have

$$
\left\|\Delta_{t}^{j} f\right\|_{a^{\prime}} \leqq K\left\|\left(e^{i(x, t)}-1\right)^{j} F(x)\right\|_{a}
$$

that is, $Y_{a^{\prime}, j}(f) \leqq K \widetilde{Y}_{a, j}(F)$. Hence we have

$$
{ }_{a^{\prime}} A_{p, j, \alpha}(f) \leqq K_{a} \widetilde{A}_{p, j, \alpha}(F) .
$$

By Lemma 4, we have the conclusion.
Remark. A full use of Lemma 4 is as follows: If $F \in L^{p}$ and

$$
(k-1)(1 / p-1 / a)<\alpha<j
$$

then the Fourier transform $\hat{F}=f$ satisfies

$$
{ }_{{ }^{\prime}} A_{p, j, \alpha}(f) \leqq K_{a}\left\|F(x)|x|^{\alpha-k(1 / p-1 / a)}\right\|_{p} .
$$

7. Theorem 5. Suppose $1 \leqq p \leqq 2$ and $\alpha=k / p-k / 2<j$. $A(p)$ normalized function $f(x)$ is the Fourier transform of $F \in{ }_{2} L_{p}$, if and only if ${ }_{2} A_{p, j, \alpha}(f)<\infty$. And ${ }_{2}\|F\|_{p} \leqq K_{2} A_{p, j, \alpha}(f) \leqq K_{2}\|F\|_{p}$.

This is a corollary of Theorems 3 and 4.
ThEOREM 6. Let $1 \leqq p \leqq 2, \alpha=k / p-k / 2$ and $\alpha<j$. Suppose that $f(x)$ is (p)-normalized, and that $f(x)$ and $F(x)$ are radial. Then, $f(x)$ is the Fourier transform of $F(x)$ with ${ }_{a} B_{p, \alpha}(F)<\infty$, if and only if ${ }_{2} A_{p, j, \alpha}(f)<\infty$.

This is a result from Theorems 2 and 5.
8. Theorem 7. If $\hat{f} \in_{2} \hat{L}_{p}$, then \hat{f} is uniformly (j)-contractible in ${ }_{2} \hat{L}_{p}$, where $1 \leqq p<2$ and $k / p-k / 2<j$.

Proof. Let \hat{g} be a (p)-normalized (j)-contraction of $\hat{f} \in_{2} \hat{L}_{p}$. Then $\left|\Delta_{t}^{j} \hat{g}(u)\right| \leqq\left|\Delta_{t}^{j} \hat{f}(u)\right|$. Since $\hat{f} \in_{2} \hat{L}_{p}$, we have, by Theorem $5,{ }_{2} A_{p, j, \alpha}(\hat{f})<\infty$. Hence ${ }_{2} A_{p, j, \alpha}(\hat{g})<\infty$. Again, by Theorem 5, we see that \hat{g} is the Fourier transform of $g \in_{2} L_{p}$. This shows that $\hat{f} \in_{2} \hat{L}_{p}$ is (j)-contractible. Now we have to show the uniform contraction property. Suppose that $\hat{g}_{n}(t)$ is a sequence of (p)-normalized (j)-contractions of \hat{f} such that $\lim _{n \rightarrow \infty} \hat{g}_{n}(t)=0$ on R_{k}. Then, by the definition of norm and by Theorem 5 ,

$$
{ }_{2}\left\|g_{n}\right\|_{p} \leqq K_{2} A_{p, j, \alpha}\left(\hat{g}_{n}\right) \leqq K_{2} A_{p, j, \alpha}(\hat{f})<\infty
$$

Now apply the Lebesgue convergence theorem, then we have the conclusion, $\lim _{n \rightarrow \infty}\left\|g_{n}\right\|_{p}=0$. (cf. Kinukawa [5].)

Theorem 8. Let $1 \leqq p<2$ and $\alpha=k / p-k / 2<j$. Suppose that $w(x)$ is radial and ${ }_{2} B_{p, \alpha}(w)<\infty$. If $|f(x)| \leqq w(|x|)$, then \hat{f} is uniformly (j)-contractible in ${ }_{2} \hat{L}_{p}$.

Proof. Since $w(x)$ is radial, by Theorem 2, $w \in_{2} L_{p}$. Hence $f \epsilon_{2} L_{p}$. Apply Theorem 7, we have the result.

Proof of Theorem 1. Theorem 1 is a corollary of Theorem 8 and Lemma 10.
9. Theorem 9. Let $1<a \leqq 2,1 / a+1 / a^{\prime}=1,0<p<a^{\prime}, \alpha=k / p-$ k / a^{\prime} and $\alpha<j$. If $F \in L^{a}\left(R_{k}\right)$ and ${ }_{a} A_{p, j, \alpha}(F)<\infty$, then $\hat{F} \in_{a^{\prime}} L_{p}$.

Proof. Since $\left[\Delta_{t}^{j} F(x)\right]^{\wedge}=\left[e^{-i(u, t)}-1\right]^{j} \hat{F}(u)$, the Hausdorff-Young theorem implies

$$
\tilde{Y}_{a^{\prime}, j}(t ; \hat{F}) \leqq K Y_{a, j}(t ; F)
$$

that is,

$$
{ }_{a}, \tilde{A}_{p, j, \alpha}(F) \leqq K_{a} A_{p, j, \alpha}(F) .
$$

By Lemma 3, we have the result.
Corollary. Let $1<a \leqq 2, \quad 1 / a+1 / a^{\prime}=1, \quad k / p-k / a^{\prime}<j, \quad$ and $a k /[a \beta+k(a-1)]<p<a /(a-1)$. If

$$
Y_{a, j}(t ; F)=\left[\int_{R_{k}}\left|\Delta_{t}^{j} F(x)\right|^{a} d x\right]^{1 / a} \leqq K|t|^{\beta}
$$

then $\hat{F} \in_{a} L_{p}$. (Cf. Titchmarsh [7], p. 115.)
Proof. It is enough to prove ${ }_{a} A_{p, j, \alpha}(F)<\infty$. For this purpose, we divide the range of the integral in ${ }_{a} A_{p, j, \alpha}(F)$ into two parts; $|t| \leqq 1$ and $|t|>1$. In the first part, we have $Y_{a, j}(t ; F) \leqq K|t|^{\beta}$, and in the last part, $Y_{a, j}(t ; F) \leqq K$, because of $F \in L^{a}$, Therefore, we have

$$
{ }_{a} A_{p, j, \alpha}^{p}(F) \leqq K\left[\int_{0}^{1} r^{-p \alpha+p \beta-1} d r+\int_{1}^{\infty} r^{-p \alpha-1} d r\right]<\infty,
$$

since $-p \alpha+p \beta>0$ by the assumption on p.

References

1. A. Beurling, Construction and analysis of some convolution algebras, Ann. l'Inst. Fourier, 14 (1964), 1-32.
2. R. P. Boas, Beurling's test for absolute convergence of Fourier series, Bull. Amer. Math. Soc., 66 (1960), 24-26.
3. S. Bochner and K. Chandrasekharan, Fourier transform, Princeton Univ., 1949.
4. C. S. Herz, Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms, Journ. Math. and Mech., 18 (1968), 283-323.
5. M. Kinukawa, A note on the closure of translations in L^{p}, Tohoku Math. Journ., 18 (1966), 225-231.
6. G. Sunouchi, On the convolution algebra of Beurling, Tohoku Math. Journ., 19 (1967), 303-310.
7. E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford Univ., 1937.

International Christian Univ.
Mitaka, Tokyo
Japan

