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1. Introduction. In the present paper, we shall characterize some
functions, those which satisfy a Lipschitz condition, as Fourier transforms
of a certain sub-class of L?(R,), and we shall give a contraction theorem
of L*-Fourier transforms. .

A complex valued function f(x,, %,, -+, ;) on R, the k-dim. Euclidean
space, is denoted by f(x).

When f has the following property (i) or (i), we say f is (p)-
normalized:

(i) if 1<p<2 then limm_mg | f@@) [ dz = 0, for any finite
I+y
interval I, where 1/p + 1/9' = 1;
(ii) if p =1, then f is continuous and lim,_.. f(x) = 0.
We denote the j-th difference of f(x), with respect to he R,, by
4i(f (), that is,

(@) = mz_0<—1>f+m(fn)f(x + mh) .
We say g(x) is a normalized j-contraction of f(x) if ¢ is normalized and
| 4i(9(@)) | = | 4i(f(x))| for any « and he R,. R
Let X be a sub-space of L*(R,) with norm || *||; and X be the space
of Fourier transforms of functions in X. We say an element f of X
is j-contractible in X, if every normalized j-contraction of f is also in X.
And we say f e X is uniformly j-contractible in X, if 7 is j-contractible

in X and if lim,_. || 9. llx = 0 for any sequence §,(x) of normalized j-con-
tractions of f such that lim,..§.(x) = 0 on R,.
Our main result is as follows:

THEOREM 1. Let 1 < p <2 and k/p — k/2 < j. Suppose that w(r) is
a monotone decreasing function on (0, ) such that

Sw r*twr(r)dr < oo .

0

If | f(x)| £ w(x]|), then 7 is uniformly j-contractible in L*(R).
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Theorem 1 can be proved by a way of characterizing some Lipschitz
classes of functions by means of Fourier transforms. There are several
results on characterizing Lipschitz classes (cf. for example, Herz [4].).
Our Theorems 8 and 4 (in § 5 and 6) concerned with the above problem
are very similar to Theorem 1 in Herz [4]. However, our proof of
Theorems 3 and 4 adopted in this paper is quite elementary. That is,
we shall discuss the problem along the line set by Beurling [1], Boas
[2], Sunouchi [6], and Kinukawa [5].

The one dimensional case of Theorem 1 is refered to Kinukawa [5].

2. Notations. We shall use the following notations:
t, x) = mi_,l tnm

Y.it; F) = Y.,8) = Y(0)

SRkl F(@) | sin ¢, 2)/2 [da |

Il

—

Yoilts 1) = [ 14i7@) paa]”

ApiaF) =\ Nt Taits )P |t |-kdt}””

1/p
[t~ Y.it It I"‘dt}

r ax
1]

L lz1>1t

rl t [a(a—j) S

Cina®) ={|_[1817]
R L
K = Constant numbers which may be different from one
occurrence to another.
Let W be the class of radial functions w(x) € L*(R,) such that
w(zl)=wr)=0

is decreasing on (0, ). For each we W, we define

N F e ={[ 17@) 1 wr@asf "

B, oF) = 1F@) wdx]”“l t rkdt}”’

an,j,a(F) =

[l
{l
Ay 7) = {|
{i
{f

X pla —k 1p
N F@ 1 olede] e e

[Ed]

[ F@ [ o) [ o]t a)

lz|<1/1t]

and
ll Flly = 308 G F (Il w (17770}

oLy is defined by a class of F with ,||F ||, < «. For the case 0 < p < a,
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we see L, S L?, and ,L, = L°.
3. Lemmas.

LeEMMA 1. For te R,, there is an orthogonal transformation Y, =
Sk Ay, from x € R, to y € R, with the determinant 1, in which |x| = |y]|
and (t, ) = S, tw, = | t|y.. (cf. Bochner [3], p. 70.)

LEMMA 2. Let w(r) be non-negative and decreasing on (0, ). Then,
Sor given constants € (0 <e < 1) and 0 (k < 9), there exists a non-negative
Junction w*(r) such that (i) w(r) £ w*(r), (i) rw*(r) is decreasing on

0, o), (i) r’w*(r) is tmereasing on (0, <), and (iv) S w*(r)r*dr =
0

Ksmw(fr) r*tdr. (Cf. Herz [4], Lemma 2.5.)

LEMMA 3. Suppose 0 < p<a and 0 <a <j. Then
| F@) | |k ||, < K LA, o(F)

PrROOF. (Cf. Beurling [1].) Suppose .4, .(F) < . We sh:ill prove
that there is w(x) e W such that .|| F(x)|a | ¥+, < K A3 ; (F).
Put w@) = S |t|*=Y?(t)dt. Then we have [[w],= S w(x)de =

~ 1t1<1/|=z] R
K A . (F) < . Therefore w(x) = w(|2|) e L'(R,) and w(| x|) is decreas-
ing on (0, ). That is, we W.

We have

A2y B) = |t Pren Tty
R

— Lk| F(z) |a[§Rk | ¢ |-+=ra Pos(t) | sinz, @)/2 I“J'dt]dx

Il

SR,, | F() |"[M(%)]"'dz, say .
Let P = a/p and @ = a/(a — p). Then, by the Holder inequality, we get
V = w'(x) M~ (x)

= Sm<1/m| t ¥ [sin (¢, 2)/2]dt

where v,=(—k—pa)/P+(—pa)/Q = —pa—kp/a and v, = p/Q+(p—a)/P=0.
So we have the following inequality

Vgs It]]sin ¢, @)j2]idt = S, say -
1tI<1/|=

For the case k = 2, apply Lemma 1 to the above integral S. Then (cf.
Bochner [3], p. 70),
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§= Slﬂlglllzll y || sin(y, | # [)/2 ["dy

[z T
- S 'r"‘”“d'rg | sin(r | % | cos 6)/2 * sin*~0 do
0

0

= | [ gomervag| | sin(g cos 0)/2 | (sin 0)*ds .
0 0

Since & < j and 0 < p < a, we have
E—14+v+p=kQ1—pla)+pJ —a)—1> —1.

Hence we have
S — K’ @ ,—k+pa+kpla .

For the case k = 1, transform the variable ¢ by B/|z| in the original
form of S, then we have also the above equality. Now we have a lower
bound for (M(x))~* such that

(M@)™ = K(| @ [Trrestele)? (w(w)) =/

— Kl x |a(a—klp+kla) w(x)l—a/p .
Finally we have

Ayl F) Z K| | F@) [ way = do
177

which completes the proof of Lemma 3, because of || w ||, = A2, .(F).
(For the case a = p, we have directly

AP 2 K| |F@)[*Sdo = K| F@]a )

LEMMA 4. Let 0<p<a, 0<a<j and k—1A/p— 1/a) <a.
Then we have 5
oA io(F) = K || F(x) | |« eHe ],

PRrROOF. Suppose that there exists we W such that
ol | F (@) | o [oMerkla]], , <

For this w, we find w*(x) which has the properties of Lemma 2. Let
P=a/p, Q =al/la— D), a,= —(pa + k — 2k/Q) and a, = —2k/Q. By the
Holder inequality, we have

AL F) = To@yw* (/1 ¢ )7#e] ¢ [} x {w*(1/] ¢ )"=7= | ¢ [}t

Rk

< SR (&)*Pw*(1/] t |)Pele=D| ¢ falpdt}

X {§ "]t oo | ¢ eedt)
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The second part of the above is equal to K| w|[? and is finite. (Cf.
Lemma 2 — (iv).) Note that pP = a. We have

| w[[7712+ A2 ,0(F) < KS Yeyw*(1/| ¢ )=/7| ¢ |m7dt
By
- KS | F(x) |“dxs | sin(t, ©)/2 [“w*(1/| ¢ )=7 | ¢ |=Fdt .
Ry Ry
We have to estimate the second integral, say S*, in the above. We have

se=| Jalreyr e+ | weae)n s
1t1<1/lx|

1t1>1/ =]
=1I,+1,, say.
The integrands of I, and I, are radial. Therefore, we have
1|z
0

IL=K|x |ajS w*(1/r)'—el? paaPreitk=igp

1 .
= K[ X I-—alP—k S w*(l @ l/,r)l—-a/p ,ralP+aJ+k—-l d,r — Kl x I-—-alP—k Iu ,
0
say, and

L=K| w i pmredr

1|2

— Kl x |—a1P—-k Sl w*(l x I/,r)l——a/p,ralP-i—k-—ld,r — K[ x |—-a1P-—k I21 ,

say. By the properties (ii) and (iii) of Lemma 2, we have the following
inequalities: If 0 <7 <1, then w*(|/r)~* < [’ w*( «|)]**/?, and if
1< 7, then w*(|x|/r)* < [r*w*(x[)]"*?, where k¥ <0 and 0 <e < 1.
Now we have

1
Agwmxwmgww
0

and

Los wi(a )| radr,
where 4, =a,P+aj+k—1+0(1 —a/p)and 4,=a,P+ k —1+¢(l — a/p).
Since 0 <a <j and (k — 1) (1/» — 1/a) < a, we can choose constants &
and ¢ such that k <0<k + pa(j —a)/(e — p) and k — apa/(a — p)<e < 1.

1

The choice of 6 and ¢ makes 4, > —1 and 4, < —1. Therefore, S'r"ldr
0

and S r%2dr are finite constants, and we have
1

L+ LS K|o [ w (o )™ < Ko [ (@ ).
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Summarizing the above results, we have
A3 5uF) S K| | F @) 07 0@ da) - | w (179
= Kl Fli(x) [ [kl |15, « [ w |71
which completes the proof of Lemma 4.
LEMMA 5. Let 0 < p<a and 0 < a, then
oBoo(F) = K oCp,j,o(F) -
ProoF. (Cf. Sunouchi [6]) Note that

and

Ctsall) = K| 1@ 1w da] ar
0 <r

||

We have

Py m+1 o
B <K S § r”“"‘dr[ s

m=—co J2m z=m821<|x|<2l+1

| F(x) l“dx]m

o X . »la 1 gm-+1
SR b | L TEL 0 o

l=—oc0 =—c0 J2M

oo /a
k3 eyl IF@PFaras]
I=—c el<|z|<gltt
é KaCI?;J',a(F) .
LEMMA 6. Let 0 < p<aand 0 <a <j, then
Coia (F) S K oBy ol F) -

ProOF. By the same way of Lemma 5, we have
am+1

| F(x) l"dx]p,a X i‘,t ‘ ey,

Crie () = K5, @] |
Since, by the assumtion a < j, pa — pj — 1 < —1, we have the conclusion.
LEMMA 7. (i) We have
Cria(F) = oCo,ielF) -
(ii) If F(x) is radial, then
Cria(F) = K ,Cpi,l F) .

Proor. (i) is trivial, since (¢, )| < |t||x|. We need to prove (ii)
for the case k¥ = 2. By the same argument of Lemma 3, we have

2l<|zi<altl
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; (Uit )
S | F'(x) [*(2, @) [¥de = K|t l"-’g |F(’,-) [epoitk=idp
lz|<1/It] .
X S | cos 6 |*(sin 6)**dg
0

=Kt | F@ e,
|t]

lz1<1/
which shows (ii).
LEMMA 8. Let 0<p<a and 0 <a <, then
ugp,j,a(F) é KaBp.a (F) .

ProoF. Split the domain of the integral in Y, ; (¢: F) into two parts;
D ={weR,; |x|<1//t) and D,={xeRy; |o|>1/t]}. In ¥,;0),
replace |sin (¢, )/2| by (|t]|]|2|/2) on D, and by 1 on D, then we see
that ,A2; (F) < K{,B?.(F) + .C?,.(F)}. Combining with Lemma 6, we
have the conclusion.

LEMMA 9. C};.(F) < K A, ,.(F).

ProOF. Since

| IF@PFItfde = K| [ F@ [ |sint, 0)/2|#ds
lzI<1/lt]

lz|<1/|t|
é KY:,j(t) ’

we have the conclusion.

LEMMA 10. Let 0 < p<a and 0 < a. If a non-negative function
w(x) is radial and w( x|) is decreasing on (0, =), then

oBro(w) = K || w(®) | a [+l ]
Proor.

oBla(w) = i“ Sz:“r,,a_ldr lg [Szlﬂl 0(E) [uEk—ldE]p/a

m=—oco ol

Y m+1
= K3 (o)) 3 |7 e
l=—oc0 m m

< K3 [w@)P@)=
l=—o0
< Kl w(@) | @ 00 7.

4. THEOREM 2. Let 0<p<aand (k—1)(1/p—1/a) <a. Suppose F(x)
ts radial. Then .|| F(z) @ |**W2=0 [, < ooy if and only if By, (F) < oo.

PrOOF. By Lemmas 3 to 9, we have the result.



240 M. KINUKAWA

5. THEOREM 8. Letl<a=2,1l/a+1l/a’'=1,1Zp<2,a =Fk/p —Ekld
and a < j. If f(x) is (p)-normalized and A, ;. (f) < =, then there exists
Fe, L, such that its Fourier tramsform F (in L*) vs equal to f and
a’” F ”P é KaAP»iya(f)‘

PrOOF. By the assumption ,A4,;.(f) < e, we have 4{f(x)<c L*(R,)
for almost all te R,. Therefore, we have the Fourier transform

N—ooco

i f)* = 1.im. KS =0 43 F () du
lul]<N

which we write [¢!*® — 1]/ F,(x). Since 4i(4if) = 4i(4if), the Fourier
transforms of the both sides are equal, which means F, = F, = F, say.
By the Hausdorff-Young inequality, we have

(e — 1) F(x) |l = K| 4{f () la,
that is,
Yo st F) < KY,5(6 f) -
Hence we have
oAy a(F) S K oAy o f) < oo
By Lemma 3, ,||F®)|, < K.A4,,.(F). Therefore, we have
F(x)e,L,& L".
We have to show that f is the Fourier transform of F. Denote the
Fourier transform of F' by F, then

4iF () = 1im. KS F(@)(e — 1)ie™ods .
N—oo N

|z]<

By the inversion argument, we get A{F’(u) = 4i{f(u), that is,
A i 7 N
fw) — Fu) = zz‘,l(—l)”<v)[f(u + vt) — F(u + vt)] .
Consider the case 1 < p < 2. Then, for any finite interval I,

gl | fu) — F(w) |Pdu < K;’i ( j) SI-&-vt | Fw) — Fw) ”du

Y

which converges to zero when |f|— o because of (p)-normalization Aof f
and of FeL*”. (When p =1, we do not need to integrate | f (u) — F'(w) |
in order to get the conclusion.) Therefore, we have f(u) = F(u), a.e..

REMARK. If we start from assuming that f is the Fourier transform
of FeL*(1 £ p < 2), then a direct implication of Lemma 3 is
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A F@) | =720 ], < KAy 56(f) -
6. THEOREM 4. Let 1<a<2, lla+1l/d =1, 1=Zp<a o=

A

klp — kla and o <j. If Fe,L, then the Fourier transform F = f
satisﬁes a’Ap,i,a(f) § Ka” F ”:D‘

ProoF. Since [(¢"* — 1)’F(x)]* = 4if, by the Hausdorff-Young ine-
quality, we have
[ 4if |l = Kl (e — 1)F(x) | ,
that is, Y, ;(f) < K Y, ,;(F). Hence we have
Ay io(f) S KA, 5u(F) .
By Lemma 4, we have the conclusion.
REMARK. A full use of Lemma 4 is as follows: If F e L? and
(k—1DA/p—1lo)<a<yg,
then the Fourier transform F = f satisfies
oA f) S K || F(x) | @ =7 ],

7. THEOREM 5. Suppose L=< p =2 and a =k/p —k/2<j. A (p)-
normalized function f(x) is the Fourier transform of F e,L,, if and only
tf 2Ap54(f) < oou And G| F |, = K 24,,5..(f) = Kl F ],

This is a corollary of Theorems 3 and 4.

THEOREM 6. Let 1= p =2, a =k/p — k/2 and a < j. Suppose that
f(@) is (p)-normalized, and that f(x) and F(x) are radial. Then, f(x) is
the Fourier transform of F(x) with ,B,.(F) < c, if and only if
2Ay,5,0(f) < oo

This is a result from Theorems 2 and 5.

8. THEOREM 7. If fe,L,, then f is uniformly (j)-contractible in
oLy, where 1 < p< 2 and k/p — k/2 < j.

PROOF. Let § be a (p)-normalized (j)-contraction of fe,L,. Then
| 4ig(w) | < | 4if(w)|. Since fe,L, we have, by Theorem 5, ,4, ; () < co.
Hence ,A4,;.(d) < . Again, by Theorem 5, we see that § is the Fourier
transform of g €,L,. This shows that fe J:,, is (j)-contractible. Now we
have to show the uniform contraction property. Suppose that §,(f) is a
sequence of (p)-normalized (j)-contractions of f such that lim,.. §.(t) = 0
on R,. Then, by the definition of norm and by Theorem 5,

A gully < Kol (@) < Kol sl ) < o0 .
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Now apply the Lebesgue convergence theorem, then we have the con-
clusion, lim,_.. .|| 9.1/, = 0. (cf. Kinukawa [5].)

THEOREM 8. Let 1= 9p<2 and a =k/p —k/2<j. Suppose that
w(@) s radial and B, (w) < co. If |f(@)| = w(x]), then f is uniformly
(9)-contractible in ,L,.

ProoF. Since w(x) is radial, by Theorem 2, we,L,. Hence fe,L,.
Apply Theorem 7, we have the result.

ProOF OF THEOREM 1. Theorem 1 is a corollary of Theorem 8 and
Lemma 10.

9. THEOREM 9. Let 1<a=2, lla+1/d =1, 0< »< o, @ =klp—
kla' and a < j. If FeL*R,) and ,A, ;. (F) < o, then F¢€,L,.
PRrOOF. Since [4iF(x)]" = [e~"** — 1)7F(u), the Hausdorff-Young theo-
rem implies
Y. it; F) < KY, ;6 F) ,
that is,
a’gp,j,a(F) g KaAP»J',a(F) .
By Lemma 3, we have the result.

COROLLARY. Let 1<a=2, lla+1l/la' =1, kip—Fkla’<j, and
ak/lap+k(a—-1)] < p < a/(a—1). If

Y.t F) = [SR,,' 4iF (@) |adx]”" <K|t],

then Fe,L, (Cf. Titchmarsh [7], p. 115.)

ProorF. It is enough to prove A4, ;.(F) < o. For this purpose, we
divide the range of the integral in ,A4,;.(F) into two parts; |¢| <1 and
[t| > 1. In the first part, we have Y, ;¢ F) < K |t|’, and in the last
part, Y, ;(t; F) < K, because of F e L°, Therefore, we have

o

A2 o(F) < K[SIT“’““”ﬂ“ldr + S fr“’“‘ldr] < oo,

1

since —pa + pB > 0 by the assumption on p.
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