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1. Introduction. In the present paper, we shall characterize some
functions, those which satisfy a Lipschitz condition, as Fourier transforms
of a certain sub-class of Lp(Rk), and we shall give a contraction theorem
of Lp-Fourier transforms.

A complex valued function f(xly x2, , xk) on Rk, the k-άim. Euclidean
space, is denoted by f(x).

When / has the following property (i) or (ii), we say / is (p)-
normalized:

( i ) if 1 < p ^ 2, then l i m ^ ^ l | f(x) \p/ dx = 0, for any finite
Ji+y

interval I, where 1/p + 1/p' = 1;
(ii) if p = 1, then / is continuous and lim^,.^ f(x) = 0.
We denote the j- th difference of /(a?), with respect to heRk, by

Δl(f(x)), that is,

Δί(f(x)) - Σ ( - l ) i + m ( 3 )f(x + mh) .
m=0 \m)

We say g(x) is a normalized ^-contraction of f(x) if g is normalized and
I Δi(g(x)) I ̂  I Δ{(f(x)) \ for any x and heRk.

Let X be a sub-space of Lp(Rk) with norm || * \\z and X be the space
of Fourier transforms of functions in X. We say an element f of X
is i-contractible in X, if every normalized ^'-contraction of / is also in X.
And we say feX is uniformly ^'-contractible in X, if / is j-contractible
in X and if lim^oo || gn \\z = 0 for any sequence gn(x) of normalized j-con-
tractions of / such that lim^βo n̂(a?) = 0 on Rk.

Our main result is as follows:

THEOREM 1. Let 1 <; p < 2 α^d Λ/ί> — Λ/2 < j . Suppose that w(r) is
a monotone decreasing function on (0, ©o)

r^"1 wp(r)dr < oo .

1/ I /(a;) I :g w(| a; |), then f is uniformly j-contractible in Lp(Rk).
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Theorem 1 can be proved by a way of characterizing some Lipschitz
classes of functions by means of Fourier transforms. There are several
results on characterizing Lipschitz classes (cf. for example, Herz [4].).
Our Theorems 3 and 4 (in § 5 and 6) concerned with the above problem
are very similar to Theorem 1 in Herz [4]. However, our proof of
Theorems 3 and 4 adopted in this paper is quite elementary. That is,
we shall discuss the problem along the line set by Beurling [1], Boas
[2], Sunouchi [6], and Kinukawa [5].

The one dimensional case of Theorem 1 is refered to Kinukawa [5].

2. Notations. We shall use the following notations:
k

(t, x) = Σ tmχm

?..,(«; F) = Ϋa,3{t) = Ϋ(t)

F(x)\'\sm(t,x)/2\«dxJ'

14(/(*)) \adχT

.Ά,.UF) = { j ^ [| t \-Ϋatj(t; F)]> I ί l-'

«AP,Uf) = {J [I t \-"Y.Λt', /)]" 11 \-«dψ

aBpJF) = \\ \\t\"\ \F(x)\'dx\ \t\-kdt\
ljRkL J\χ\>\t\ J J

.c,,,jF) = \\ \\tr-"( iF(X)i ix\*'dχ\la\

aC*UF) = \\ \\t \-™\ I F(x) I" I (ί, x) | ' dxΎ"\ t \-"dtY'P

K = Constant numbers which may be different from one
occurrence to another.

Let W be the class of radial functions w(x) e Lι{R^ such that

w (I x I) = w(r) Ξ> 0

is decreasing on (0, oo). For each weW, we define

JΛ f c J

and
II /ΓMI — i n f i l l F lί lί 7v; I I 1 / P ~ 1 / O 1a l l - F \\p — n i l t o l l -̂  I I J » , W II ̂  1 1 1 / •

weT7

aLp is defined by a class of F with β | | F | | p < oo. For the case 0 < p ̂  α,
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we see aLp £ Lp, and aLa = La.

3. Lemmas.

L E M M A 1. For teRk, there is an orthogonal transformation ym =
Σ ? = i Q"mί®ι from x e Rk to y e Rk with the determinant 1, in which \x\ = \y\
and (ί, x) = Σ?=i hxt = 11 \ yt. (cf. Bochner [3], p. 70.)

LEMMA 2. Let w(r) be non-negative and decreasing on (0, ©o). Then,
for given constants e (0 < ε < 1) and d (k < δ), ίΛβrβ exists a non-negative
function w*(r) such that (i) w(r) ̂  w*(r), (ii) r e ^*(r) is decreasing on

S CO

w*{r)rh~ιdr =
0

ί("«;(r)r*- ι dr. (Cf. Herz [4], Lemma 2.5.)
Jo

LEMMA 3. Suppose 0 < p < a and 0 < a < j . Then

β | | F(α?) I » |«-*/'+*/ | |p ̂  ίΓΛ.i .αί^)

PROOF. (Cf. Beurling [1].) Suppose aΆPfj>a(F) < oo. We shall prove
that there is w(x) e W such that a\\F(x)\x\a-klP+kla \\a

PtW •£ K aΆlJ>a(F).

Put w(x) = ί I ί l -^y^^dί . Then we have || w W, = ί ^(α )da =
^ J|ί|<l/|»| Jiϊfc

A ( F ) T h f () (| |) L 1 ^ ) d (| |) i d
^ J | | < / | | J f c

ΛΓβA5fiiβ(F) < oo. Therefore w(x) = w(| a? |) e L 1 ^ ) and w(| a? |) is decreas-
ing on (0, oo). That is, we W.

We have

ί|-*-»«r»-(ί)y (t)dt

= ί I F(x) | Γ ( \t \-k-*a Ϋ»-°(t) I Bin(ί, x)/2
J Rk L.JRk

= \ I F(x) nMixψ'dx, say .

Let P = alp and Q = a/(a — p). Then, by the Holder inequality, we get

V = wllQ(x) M~ι!p{x)

\t\rΦ%\sm(t, x)/2\ridt ,

where 71 = (-k-pa)/P+(-pa)/Q = -pa-kp/a and 72 = p/Q + (p-a)/P = 0.
So we have the following inequality

J
I ί M sin (ί, a?)/2 |Piώί = S, say .

For the case k ^ 2, apply Lemma 1 to the above integral S. Then (cf.
Bochner [3], p. 70),
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S=\ \y\ri\ sindfc | x |)/2 \pjdy
J \v\£il\χ\
CU\x\ Cπ

= \ rk-1+^dr\ I sin(r | x | cos 0)/2 | p i sin fc-20dθ
Jo Jo

= [ x \-*~i+n)-iVβ*-ι+n)dβ¥ I sin(/3 cos θ)/2 \pj (sin
J J

Since a < j and 0 < p < α, we have

k-l + y1 + pj = k(l- via) + p(j - a) - 1 > - 1 .

Hence we have
S = K \ x \~k+pa+kpίa .

For the case k — 1, transform the variable £ by /3/| OJ | in the original
form of S, then we have also the above equality. Now we have a lower
bound for (M(x))~ι such that

(Mix))-1 ^ K{\ x

= KI a? | ( )

Finally we have

Λl,iΛF) ^ κ \ I F(x) \a I x \a{a~k!p+kla) w(x)ι-alp dx ,
jRk

which completes t h e proof of Lemma 3, because of || w | |x = aΆ
p

fj>a(F).

( F o r the case a = p, we have directly

Λl.UF) ^A I F(x) \aSdx = K\\ F(x) \ x \« \\a

a.)

LEMMA 4. Let 0 < p < α, 0 < α < i and (k — l)(l/p — I/a) < a.

Then we have

α^-p,i,αl^ j ^ ϋ α | | Γ \X) \ X \ \\p .

PROOF. Suppose that there exists w e W such that

For this w, we find w*(x) which has the properties of Lemma 2. Let
P = a/p, Q = a/(a - p), a, = -(pa + k - 2k/Q) and a2 = -2k/Q. By the
Holder inequality, we have

ΛliΛF) = \ {Ϋp(t)w*(l/\ t |)- 1 + p / α | t \aή x {w*(l/\ t \y~Pla 11 \aήdt
jRk

{[ w*(i/\tιr-^'|t|««β,
)Rk

X
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The second part of the above is equal to jKΊ|w||l / ρ and is finite. (Cf.
Lemma 2 — (iv).) Note that pP = α. We have

II w \\τPIQ-aΆι,3 ,a(F) ^ κ\ Ϋa(t)w*(i/\ t \y~alp 11 \^pdt
}Rk

I F(x) \adx [ I sin(ί, x)/2 \ajw*(l/\ t \y~alp \ t \«ipdt .

We have to estimate the second integral, say S*, in the above. We have

s * ^ ( \χ |αiw*(i/ι t \y~alp 11 \aip+ajdt + ( w*(i/\ t \y-aίp \ t \a^pdt
J | ί | / | | J | t |>l/ | ίc |

= I, + I29 say .

The integrands of Ix and I2 are radial. Therefore, we have

S l/|x|
w*(l/ry-alp raip+ai+k-1dr

o

= KI x \-^p~k [w*(\ x \/ry-ah>

 r^
p+a5+k-1 dr = K \ x \~a^p-k I n ,

Jo

say, and

J2 = [ (/y
J 1/1*1

= K I x | - α i p - f c Γ w * ( | x \ l r y - a l p r ^ p + k - ι d r = K \ x \-^p~k I21 ,

say. By the properties (ii) and (iii) of Lemma 2, we have the following
inequalities: If 0 < r < 1, then w*(\ x \/ry-alp ^ [rδ w*(\ x \)Y~alP, and if
1 ^ r, then w*(\ x \/ry~alP ^ [rε w*(\ x \)Y~aίp, where k < δ and 0 < e < 1.
Now we have

and

I 2 1 ^ w*(\x\y-alλ~r4*dr,

where Δγ = aJP + aj + k — 1 + 3(1 — a/p) and Δ2 = aj? + k — 1 + ε(l — a/p).
Since 0 < a < j and (k — 1) (1/p — 1/α) < a, we can choose constants δ
and ε such that k <δ <k + pa(j — a)/(a — p) and k — apa/(a — p)< e < 1.

The choice of δ and ε makes Δt > — 1 and zf2 < — 1 . Therefore, I rJldr

and I r j 2 d r are finite constants, and we have

y~alp
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Summarizing the above results, we have

*Ά%tSta(F) ^ κl[ I F(x) \a I x \-*ip-kw(xy-aΐPdx\ || w ||ίPIQ

which completes the proof of Lemma 4.

LEMMA 5. Let 0 < p < a and 0 < a, then

aBp,a(F) ^ KaCp>jJF) .

PROOF. (Cf. Sunouchi [6]) Note that

aBUF) = κ\~rH"( I F(x) fd
Jθ LJ\x\>r

and

We have

^ \ P l aIF(x) \adx\P

J

Iα I x \aύdχPla~\ X Σ Γ* rp«~ιdr
J m = -ooj2W

= K Σ

^ K.C'

LEMMA 6. Let 0 < p < a and 0 < a < j , then

aCp,s,a(F)^KaBP,a(F).

PROOF. By the same way of Lemma 5, we have

"\'dχ\'" x Σ

Since, by the assumtion a < j , pa — pj — I < — 1, we have the conclusion.

LEMMA 7. (i) T7β have

aC*ita(F) £ aCp>jJF) .

(ii) J / Ĵ (a?) is radial, then

aCp,j,a(F) = K aCp,j,a(F) .

PROOF, (i) is trivial, since |(ί, x)\ ̂  11 \ \ x |. We need to prove (ii)
for the case k ̂  2. By the same argument of Lemma 3, we have



I
|x |<l/|ί |

CONTRACTIONS OF FOURIER TRANSFORMS IN Rk 239

I F(x) \a(t, x) \ajdx = K\t \aj[nt]\ F(r) I'r't+^dr
Jo

x [* \coaθ\ai(amθ)h-*dθ
Jo

= K\t\aj\ \F(x)\a\x\ajdx ,
J\χ\<ιl\t\

which shows (ii).

LEMMA 8. Let 0 < p < a and 0 < a < j , then

PROOF. Split the domain of the integral in ΫaJ (ί: F) into two parts;
A = {x e R k ; \ x | < 1/| 11} a n d D2 = {xeRk; \x\> 1/| t \). I n ΫaJ(t),
replace | sin (ί, α?)/2 | by (| t \ \ x |/2) on D19 and by 1 on Z)2, then we see
that aΆ*j,a(F) ^ K{aBl*(F) + aClίta{F)}. Combining with Lemma 6, we
have the conclusion.

LEMMA 9. aC*jta(F) ^ KaΆPti,a(F).

PROOF. Since

F(x)\a \(t, xψdx £κ[ I F(x) \a I sin(t, x)/2 \ajdx
J | | / | |

we have the conclusion.

LEMMA 10. Let 0 < p < a and 0 < a. If a non-negative function
w(x) is radial and w(\ x |) is decreasing on (0, oo), then

PROOF.

+ l oo Γf2 Z + 1 Πp

^dr Σ , I w(f) l ί*"1^
i=m Lj2! J

[w(2ι)Y(2')kι)Y(2')k"a Σ

^ K\\w(x)\x\a-k{llp~lla) \\l.

4. THEOREM 2. Let 0<p<a and (k — l)(l/p-l/a) < a. Suppose F(x)
is radial. Then a\\ F(x) \ x {"-wip-w \\p < oo, if and only if aBPiΛ (F) < oo.

PROOF. By Lemmas 3 to 9, we have the result.
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5. THEOREM 3. Let 1< a ^ 2, I/a + 1/α' = 1, 1 ^ p < 2, α = ft/p - k/a'

and a<j. If f(x) is {p)-normalized and aAPtj>tt{f) < °°, then there exists
Fea,Lp such that its Fourier transform F (in Lp) is equal to f and

a'\\F\\p£KaAPti,a(f)

PROOF. By the assumption aAp>j>a(f) < oo, we have Aj

tf{x)eLa{Rk)
for almost all teRk. Therefore, we have the Fourier transform

e~i{u>x)Δ{f(u)du ,

which we write [ei{tfX) - l]jFt(x). Since Δ\(Δ{f) = Δ{{Δ{f), the Fourier
transforms of the both sides are equal, which means Ft = F8 = ί7, say.

By the Hausdorff-Young inequality, we have

IKe^ - iyF(x)\\a, tZ K\\ Δif(u)\\a ,

that is,

Ϋa ti(t; F) ^ KYa>j(t; f) .

Hence we have

By Lemma 3, a,\\F(x)\\p ^ Ka,ΆPtj>a(F). Therefore, we have

F(x) e a,Lp s Lp .

We have to show that / is the Fourier transform of F. Denote the
Fourier transform of F by F, then

A\F(v) = hum. κ\ F(x)(ei{t'x) - l)jei{u>x)dx .

By the inversion argument, we get Δ(F(u) = Δj

tf(u), that is,

f{u) - F(u) = £(-!•)*( I )[f(u + vΐ) ~ F{u + vt)] .

Consider the case 1 < p < 2. Then, for any finite interval I,

~ F{u) \>'du ^ K ± ( J ) \ i f { u ) _ p{u) Ydu ,\
JI

which converges to zero when 11 \ —> oo because of (p)-normalization of /
and of FeLp. (When p = 1, we do not need to integrate \f(u) — F(u) \
in order to get the conclusion.) Therefore, we have f(u) = F(u), a.e..

REMARK. If we start from assuming that / is the Fourier transform
of FeLp(l <̂  p < 2), then a direct implication of Lemma 3 is
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..|| F(x) I x r^~^\\p ^ KaAP,Uf) .

6. THEOREM 4. Let 1 < a ^ 2, 1/α + 1/α' = 1, 1 ^ p < α, α =

— k/a and a < j . If Fe aLp, then the Fourier transform F = f
satisfies aΛPyjfa(f) ^ Ka\\F\\p.

PROOF. Since [(ei{Xtt) - ΐ)jF(x)]A = Δ{f, by the Hausdorff-Young ine-
quality, we have

that is, Ya',j(f) ^ K Ϋaj(F). Hence we have

aΆp,Uf) ^ KaApJ,a(F) .

By Lemma 4, we have the conclusion.

REMARK. A full use of Lemma 4 is as follows: If FeLp and

(k - l)(l/p - 1/α) < a < j ,

then the Fourier transform F = / satisfies

a'^-p,j,a\J) ^ -Λ- all -^ W I ̂  I lip

7. THEOREM 5. Suppose 1 ̂  p ^ 2 a7̂ cί a = λ /p - &/2 < j . A (p)-
normalized function f(x) is the Fourier, transform of Fe2Lp, if and only

if 2APjJf) < oo. And 2\\F\\P^ K2Ap,Uf) ^K2\\F\\P.

This is a corollary of Theorems 3 and 4.

THEOREM 6. Let 1 ̂  p ^ 2, α = fc/p - A/2 ami α: < j . Suppose that
f(x) is (p)-normalized, and that f(x) and F(x) are radial. Then, f(x) is
the Fourier transform of F(x) with aBp>a{F) < oo, if and only if

2Ap,j,a(f)< oo.

This is a result from Theorems 2 and 5.

8. THEOREM 7. If fe2Lp, then f is uniformly (j)-contractible in

2LP, where 1 ̂  p < 2 αraZ A/p — k/2 < j .

PROOF. Let g be a (p)-normalized (j)-contraction of fe2Lp. Then
I Δ3

tg(u) I ̂  I Jί/(%) |. Since fe 2LPJ we have, by Theorem 5, 2AP)j>a(f) < oo.
Hence 2Ap>j>a(g) < oo. Again, by Theorem 5, we see that g is the Fourier
transform of ge2Lp. This shows that fe2Lp is (i)-contractible. Now we
have to show the uniform contraction property. Suppose that gn(t) is a
sequence of (p)-normalized (i)-contractions of / such that lim^oo gn(t) = 0
on Rk. Then, by the definition of norm and by Theorem 5,

sll gn \\P ^ K2APtJ,a{gn) ^ K2APtJta(f) < cχ3 .
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Now apply the Lebesgue convergence theorem, then we have the con-

clusion, lim^ooall 0* ||p = 0. (cf. Kinukawa [5].)

THEOREM 8. Let 1 ^ p < 2 and a = k/p - k/2 < j . Suppose that
w(x) is radial and 2Bp>a(w) < <*>. If \f(x)\<Lw{\x\), then f is uniformly
(j)-contractible in 2LP.

PROOF. Since w(x) is radial, by Theorem 2, we2Lp. Hence fe2Lp.
Apply Theorem 7, we have the result.

PROOF OF THEOREM 1. Theorem 1 is a corollary of Theorem 8 and
Lemma 10.

9. THEOREM 9. Let 1 < a ^ 2, I/a + 1/α' = 1, 0 < p< a', a = k/p-

k/a! and a <j. If Fe La(Rk) and aAp>j,a(F) < oo, then F e a.Lp.

PROOF. Since [Aj

tF{x)Y = [e~ί{u't] - l]jF(u), the Hausdorff-Young theo-
rem implies

Ϋa'Λt; F) ^ KYa,3{t; F),

that is,

O>AP,UF) ^ KaAp,j>a(F) .

By Lemma 3, we have the result.

COROLLARY. Let 1 < a ^ 2, 1/α + 1/α' = 1, k/p - k/ar < j, and

ak/[aβ + k(a-l)] < p < α/(α-l). If

YaΛt; F) = [ j Λ I Δ{F(x) \a

then Fea>LP. (Cf. Titchmarsh [7], p. 115.)

PROOF. It is enough to prove aAp,j>a(F) < oo. For this purpose, we
divide the range of the integral in aAp>j>a(F) into two parts; | ί | <£ 1 and
111 > 1. In the first part, we have Ya>j(t; F) ^ K | ί |', and in the last
part, Ya,j(t; F) ^ K, because of FeLa, Therefore, we have

aAlj,a(F) ^ KΪi1 r-pa+p^dr + ί"V-^-^r] < oo ,

since — pa + pβ > 0 by the assumption on p.
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