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Introduction. We denote by Hx the Hardy-class That is the totality
of all the functions F(z) = Σ~=o^2" which are holomorphic in the disk
\z\ < 1 in complex plane and

= sup(
0<r<l\J — π

(T |2f(re«)l^)l/i - (T
\J — π / \J— π

where F(θ) is the boundary function of F(reiθ). By σ«(θ) = σ«(θ; F), we
denote the n-th Cesaro mean of order a of the series Σ?=o G»e4*'. The
behavior of ha(F)(θ) = (Σ"-i \<K(0) - σϊ~ι(θ)\*/n)ιlt has been investigated by
many authors. G. Sunouchi and A. Zygmund introduced

in [5] and [6], respectively. Between ha(F) and g*(F), there are the
relations Caha{F){θ) S g*{F){θ) ^ C'aha{F){θ) for some constants Ca and C'a.
The following results have been known.

THEOREM A. (i) Ifa> Max (1/2,1/λ) and 0 < λ <oo, then \\ha{F)\\x ^

(ϋ) If α = 1/λ and 0 < λ £ 1, ί/ien

and HM-^IL ^ C^HFIb /or any
0 < μ < 1 atwί the same results hold for gt{F).

The case when a = 1/λ and 1 < λ < 2 is recently obtained by C.
Fefferman [2].

Meanwhile, T. M. Flett proved the following theorem for ha,q(F)(θ) =
and

where (1/p) + (1/β) = 1 in [3].

THEOREM B. I / 2 ^ 9 < o o , o < λ < o o and a > Max (1/λ, 1 - (1/q)),

then \\ha.,(F)\\χ ^ Ca.i.,\\F\\ι and \\g*.q(F)\U S C.
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We use the letter C as a positive constant, not always the same in
different occasions. The constants with indices may depend on them.

The purpose of this paper is to study a critical case a = 1/λ in
theorem B with the recipe used by C. Fefferman in [2].

I wish to thank Professor G. Sunouchi for suggesting the problem
and for many useful advices. I also thank Professor S. Igari for kind
advices.

1. Conclusions. We set as usual for holomorphic function F(z) =

F(rei°) = ΣZ=oCn*
Λ in | z | < 1,

τl{θ) = τi(θ; F) = ± ^ - v c ^ θ ,

where Al = (nta). If we denote σa

n{θ) = σa

n{θ; F) the π-th Cesaro mean of

degree a of the series ΣΓ=o cne
inθ and if a > 0, then we have

τi(θ) = a{σΓ\θ) -

If we define a function ha,q(F) on ( — π, π) with respect to the above
function F by

Then we get the following theorem.

THEOREM 1. When 2 ^ q < oo, 0 < λ < 2, 1/λ + 1/q > 1 αwώ a = 1/λ,

|{^G(-7Γ,7Γ);Λα > g(F)(^)>Λ:}|5

for any K > 0 αraZ F G iϊ^.

In the sequel, we denote by |-£7| the Lebesgue measure of a set E in
(.-oo, oo). For ECL (-7Γ, π), %E will be the set (-π, π)\E.

To prove theorem 1, we introduce an auxiliary function

(1.2) gUF)(θ) = [[(1 - rY^l^-φdφ) dr] ,

where, now and in the sequel, the relation 1/p + 1/q = 1 is always assumed.
T. M. Flett ([3; Theorem 13]) proved that if q ^ 2 and a > (-1/q), then

(1.3) K,q{F)(θ) ^ Ca.qg*.9(F)(θ)

for every point θ. We prove in §4 that

THEOREM 2. // a, q and λ satisfy the conditions of theorem 1, then
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\{θe(-π,π);gUF)(θ) > κ}\ ^

for any it > 0 and Fe Hx.

Theorem 1 follows easily from Theorem 2 and (1.3).
The proof of Theorem 2 proceeds in two steps:

(1.4) l < λ < 2 , 2<^q < λ/(λ - 1) and a = 1/λ ,

(1.5) 0 < λ <; 1, 2 ^ g < + oo and a = 1/λ .

We use also the following notations. For a function φ(z) = φ(reiθ) in
I z I < 1, we denote

dr

dφ(z)

For feL( — π, π), we introduce

α.6 s
where f(z) = f(reίθ) is the Poisson integral of /. We prove in § 3 the fol-
lowing theorem for Sa,q(f), which is equivalent to Theorem 2.

THEOREM 3. If a, q and λ have the relation (1.4), then

\{θe(-π, 7Γ); Sa,q(f)(θ) > κ}\ ^

for any fc > 0 and fe Lx( — π, π).

2. Preparations. We collect up in this section the lemmas which are
used in the proofs. Some of them are well known and others are proved
completely.

LEMMA 1. Γ 1/| 1 - reiθ\?dθ^ Cβ(l - rf-^for any β>l and 0 < r < 1.
J — π

LEMMA 2. When m is an integer greater than 1 and β > — 1,

\\l - rYr^d i
dr = .

mAβ

m

LEMMA 3. (e.g. [4; VI. 2]) // Ωa{— oo9 oo) is an open set which does
not contain any infinite interval, then there exists a disjoint sequence
{Ij} of intervals such that Ω = (JΓ=i Is and they have the following pro-
perties:

(2.1)

(2.2)

= inf {|α>- = \Ij\ .

0 implies \IS\ ̂  2|Zί|
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(2.3) We set If = (j {/<; U Π ϊ3 Φ 0} . If x ί If and yl9 y2elj} then
\x - y,\ ̂  3|a - yz\.

LEMMA 4. For fe Lλ(—π, π) and K > 0, we denote

0e(-7Γ,7r]; sup (-r^— l/ωi^)>«4.

If Ω Φ (—π, π], then we have Ω = UΓ=i-Γ> 2̂/ applying lemma 3

(2.5) | 0

(2.6) I /(ί) I ̂  /c a.e. in W .

(2.7) [ l/^IW^C^IIίl.

Furthermore, if we decompose f as

(θel,,j = 1,2,
(2.8) 9(θ) = \

(f(θ)

f(θ) = g(θ) + h(θ), h0) = h{θ)χΣ.{θ) (j = 1, 2, •)

where χr means the characteristic function of I3, then

(2.9) \g(θ)\ ^ Cxκ a.e. and \\g\\x S Wfh .

(2.10) ( \hj(θ)\dθ ^ Cxκ \Ij\ and \\hj\U ^ Cxκ \ IS

(2.11) S hi(θ)dθ = 0 .

LEMMA 5. Let P(z) = P(reif) — Re. (1 + z)/(l — 2) δe ίΛe Poisson kernel,

Rr(θ) = FP(rew) αw<Z fli(r, ^) = Σw:ί«/jι(Λr*A/)W, then

| f l i ( r , 0 ) | £ C r .
1 — r

J* αwd /ly are defined by (2.3) and (2.8), respectively.

PROOF. If we set Φ(z) = (1 + «)/(! - z), then |i? r(^)| ^ i/2"|Φ'ίrβ")| =
_

2i/ 2 /| 1 - re w |2. For ί e I? and τ l f r2 e J i ( we have 11 - reiW~^ | ̂  (1 - r) +

1̂  - Til ^ (1 - r) + Z\θ - τt\ ̂  C\ 1 - re ' " "^ ' | by (2.3). Hence
1131 sup 11 - re i W- r ) \~2 ̂

By (2.10), we have the estimation that
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^ sup IRr{θ -τ)\\ |A,(r) [dr ^ C,*| J, | sup11 -
τelj JIj τelj

for θ $ If. Therefore, we have

| I M r , 0 ) | £ Σ \{Rr*h3){θ)\^
J-* | l - reiβ\* ~ 1 - r

by lemma 1.

LEMMA 6. Π |i? r(^ - τ) - Rr(φ)\dφdr ^ C .

PROOF. A simple calculation shows that

\Rr(φ - τ) - Rr(φ)\ ^ 2l/Y|e- i Γ(l - r e ί ( ^ r ) ) " 2 - (1 - re4*)-1

If 2 τ I ̂  I ^ I ̂  Γ, then

- r)

Hence

Π I i?r(0 - r) - 2ϊr(0) I dφdr ̂  c\ ( C ' i | i + i^i)d?5 ̂  C .

LEMMA 7. (' ( | {Rr*h3) (φ) \ dφdr ^Cλfc\Ij\ (j = 1, 2, )
JoJc/J

PROOF, Let τό be the center of Iά. Using the properties (2.11), (2.2),
lemma 6 and (2.10) step by step

[\ \(Rr*hMφ)\dφdr

^ \ \h3{τ)\dτ[\ \Rr(φ - τ) - i ^ - τ3)\dφdr

τ)\dτ[\ IRr(φ - r) - i? r(^ -

LEMMA 8. (T. M. Flett [3; Theorem 7]) If FeHμ, μ> 0, and k^2,
then

f C v / C\ \ ii I h \ 1 / ,

'^CμΛ\\F\\μ.
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LEMMA 9. We define Ga,q(f)(θ) for a real-valued function f in L
(-JΓ, π) by

If a, q and λ satisfy the condition (1.4), then

PROOF. For / in Lϊ(—π, π), we define a function T{f) on the product
measure space {1, 2} x (0,1) x ( —π, π) by

(1 _ ryl-f{reiθ) {v = 1)

T(f)(v, r,θ) = \ I
(1 _ r)

a^--f{reiθ) (v = 2) .

Then we have

\Δ LΔ) || 1\J ) 112,2,2 = W II / IU

(2.13) WmWw^CiWfWi (1/λ + 1/λ'= 1) ,

(•(•l l - f l " I t / 8 - l l / ί

where || T(f) ||,,.,t = ^ (Σϊ=il 2X/)(y, ft *) l r ) 8 / r ^ <Ŵ  To prove the
U — πLJO J J

inequality (2.12), we use the ParsevaPs theorem and fractional integral
theorem. Let {cn; n = o, ± 1 , ± 2 , •••} be the Fourier coefficients of / .
We may assume c0 = 0 without loss of generality. Then, by virtue of
lemma 2 and the relation a — 1/2 = 1/λ — 1/2, we have

1 - r)2a\Ff(reiθ)\2drdθY12

2\l/2

= c(τ n*\e«ΐ Xμί C(Y
\& ( 2 | | l ) 4 ί r / ~ V£ n

To prove (2 13), consider F(z) = f(z) + if(z) where f(z) is the conjugate
harmonic function of f(z) with /(0) = 0. Then Fe Hx and \Ff\ ^ VY\F'\.
Hence

dθj £

by lemma 8 and M. Riesz theorem.
We apply the interpolation theorem of A. Benedek and R. Panzone

([1; Theorem 2, p. 316]) to the relations (2.12) and (2.13). Since 1/q =
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(1 - ί)/2 + tjX' and 1/p = (1 - ί)/2 + t/λ for 0 ^ ί < 1, we have || T(f) \\2,g>p ̂
Cx,q\\f\\x. The equation || T(/) | | l f ,,, = \\Ga,q(f)\\g conclude the lemma 9.

3. Proof of theorem 3. It suffices to prove for real-valued functions.
Let feLλ( — π,π) be a real-valued function and define Ω by (2.4). First
we consider the case Ω Φ ( — π, π]. Decomposing / as / = g + h by (2.8),
we have

(3.1) &„(/)(<?) ^ sa,q(g)(θ) + sa,t(h)(θ).

Further we define HSx, θ) = Σtfrf./jiΦr^X*) and ii2(r, ί) = Σ I J ^ / I ^ * ^ )
(θ) = Fh(reu) - H^r, θ). By definition (1.6),

Hence, replacing Sa,q(h)(θ) by Qt(ί) + Q,(0) in (3.1), we get

(3.2) Sβιq(f)(θ) < Sa«(gW) + Qtf) + Qt(θ) .

We estimate the each terms in the right hand side.
The estimation for Sa,q(g). For any μ, μ > λ, we see that g e Lμ{—π, π)

and Hfirli; :£ C^K^WgWi ^ C,,,/c^||/||i by (2.9). In particular, if we take
μ,\<μ<p, then \\Sa,q(g)\\μ, ^ Cβ,M||flr||J ^ C i>p.^"-2 | |/Ili by theorem β
in the introduction. Therefore

(3.3) \θe(-π, π); Sβ>

The estimation for Qx. Note that p ̂  g. Then we have

\iSrlHί{r'θ + ^

(by Minkowski's inequality)

^ C β J l ( l - r)f/»((* IH^r, β)| <w)dr (by lemma 1)

^ Cα>X(l - r)*-J\ ( _ ^ ^ N ) ' | f l 1(r, ί)|(Wdr (by lemma 5)
Jo J ~ Λ 1 — r /

Σ . I (Br *Ay)W Idθdr
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\{Rr*h3){θ)\dθdr

^ Cx,^ Σ IhI =S ιc"(^-\\f II,)" (by lemma 7 and (2.5)).

Therefore we can conclude that

(3.4)

The estimation for Q2. We set hι = Σίi. jjc/j}̂ / for every i. Then
r, 0) = (22r * h^iφ) for 0 e I{. It contains only three intervals I3 for each i.

Therefore,

Ί I ^ Σ CxK\I0\
m^Cxtc Σ (211,1)^ = 3.2^02^17, l/λ

by (2.10) and (2.2). We also have 11 - reiι*~9) \ ̂  C\ θ - τ41 for θ g 12, ̂  € I,
and the center τ< of I{ by the relation (2.3). Now we shall estimate
[Q*{θ)\p at θ g β. Since ίZ2(r, ^) = 0 for ^ g β,

l/oo r /-I \ap \qlp ~\vlq

(S F - r ) " i H (r

(by Minkowski's inequality)

£ j^r

Since ( \θ - τt\-"dθ ^ C, J ^ Γ * ' ^ 1 , we have

( [Qt(θ)]'dθ ^ Chq

Jco ί

Hence

The measure \Q\ is estimated by (2.5). Therefore we get
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(3.5) |{*e (-JΓ, π); Qt(θ) ̂  γ}\ ^ (-%^H/H^

From the estimates (3.3), (3.4) and (3.5), it follows the required estimate:

(3.6) |{<?e (-7Γ, π); Sa,,(f)(θ) >

When Ω = (—π, π], we have easily

(3.7) \{θe(-π, π); &„(/)(<?) >

by a property of the maximal function of Hardy-Littlewood. Consequently
we have the theorem with a constant greater than Cλ,q in (3.6) and Cλ in
(3.7).

4. Proof of theorem 2. In the case (1.4), theorem 2 is deduced from
theorem 3, so that we prove the case (1.5). Without loss of generality,
we may assume that FeHλ is free from zero. We set G(z) = [F(z)]λlμ for
some 1 < μ < p. Then G e Hμ and the boundary function G(θ) is in
Lμ(—π,π). Furthermore, if we set

( 1 Pli \llμ

i-\ \G(Θ + τ)\"dτ) ,
. ._ h Jo /

then IG(re i {9+^)\ £CμGΐ(θ)[l+ \φ\/(l - r)]1*". (See e.g. G. Sunouchi [4;

Lemma 3]) Applying this relation and F\z) = (μl\)[G(z)Yμlλ)~ιG'(z)9 we have

: \l — re

(4.D ^ cj^w}"' {[ {

where β ='l/μ. Since /3, g and // satisfy the relation (1.4) replaced a and
λ by /3 and μ, respectively, we have from the above argument

\{θe(-π, π); gU
(4 2>

By a property of the maximal function of Hardy-Littlewood,

|{ί6(-jr,i
(4 3) s σ



232 M. KANEKO

The relation (4.1) and the estimates (4.2) and (4.3) give

\{θe (-7Γ, π); g*.q(F)(θ) >tc}\

and this completes the proof.
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