THE ABSOLUTE CESÀRO SUMMABILITY AND THE LITTLEWOOD-PALEY FUNCTION

Dedicated to Professor Gen-ichirô Sunouchi on his 60th birthday

Makoto Kaneko

(Received Jan. 29, 1971)

Introduction. We denote by H^{λ} the Hardy-class. That is the totality of all the functions $F(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ which are holomorphic in the disk $|z|<1$ in complex plane and

$$
\|F\|_{2}=\sup _{0<r<1}\left(\int_{-\pi}^{\pi}\left|\boldsymbol{F}\left(r e^{i \theta}\right)\right|^{\lambda} d \theta\right)^{1 / \lambda}=\left(\int_{-\pi}^{\pi}|\boldsymbol{F}(\theta)|^{2} d \theta\right)^{1 / \lambda}<+\infty,
$$

where $F(\theta)$ is the boundary function of $F\left(r e^{i \theta}\right)$. By $\sigma_{n}^{\alpha}(\theta)=\sigma_{n}^{\alpha}(\theta ; F)$, we denote the n-th Cesàro mean of order α of the series $\sum_{n=0}^{\infty} c_{n} e^{i n \theta}$. The behavior of $h_{\alpha}(F)(\theta)=\left(\sum_{n=1}^{\infty}\left|\sigma_{n}^{\alpha}(\theta)-\sigma_{n}^{\alpha-1}(\theta)\right|^{2} / n\right)^{1 / 2}$ has been investigated by many authors. G. Sunouchi and A. Zygmund introduced

$$
g_{\alpha}^{*}(F)(\theta)=\left[\int_{0}^{1}(1-r)^{2 \alpha}\left(\int_{-\pi}^{\pi} \frac{\left|F^{\prime}\left(r e^{i(\theta+\phi)}\right)\right|^{2}}{\left|1-r e^{i \phi}\right|^{2 \alpha}} d \phi\right) d r\right]^{1 / 2}
$$

in [5] and [6], respectively. Between $h_{\alpha}(F)$ and $g_{\alpha}^{*}(F)$, there are the relations $C_{\alpha} h_{\alpha}(F)(\theta) \leqq g_{\alpha}^{*}(F)(\theta) \leqq C_{\alpha}^{\prime} h_{\alpha}(F)(\theta)$ for some constants C_{α} and C_{α}^{\prime}. The following results have been known.

Theorem A. (i) If $\alpha>\operatorname{Max}(1 / 2,1 / \lambda)$ and $0<\lambda<\infty$, then $\left\|h_{\alpha}(F)\right\|_{\lambda} \leqq$ $C_{\alpha, \lambda}\|F\|_{2}$ and $\left\|g_{\alpha}(F)\right\|_{2} \leqq C_{\alpha, 2}\|F\|_{2}$. (ii) If $\alpha=1 / \lambda$ and $0<\lambda \leqq 1$, then $\left\|h_{\alpha}(F)\right\|_{\lambda} \leqq C_{\lambda} \int_{-\pi}^{\pi}|F(\theta)|^{\lambda} \log ^{+}|F(\theta)| d \theta$ and $\left\|h_{\alpha}(F)\right\|_{\mu \lambda} \leqq C_{\lambda, \mu}\|F\|_{\lambda}$ for any $0<\mu<1$ and the same results hold for $g_{\alpha}^{*}(F)$.

The case when $\alpha=1 / \lambda$ and $1<\lambda<2$ is recently obtained by C. Fefferman [2].

Meanwhile, T. M. Flett proved the following theorem for $h_{\alpha, q}(F)(\theta)=$ $\left(\sum_{n=1}^{\infty}\left|\sigma_{n}^{\alpha}(\theta)-\sigma_{n}^{\alpha-1}(\theta)\right|^{q} / n\right)^{1 / q}$ and

$$
g_{\alpha, q}^{*}(F)(\theta)=\left[\int_{0}^{1}(1-r)^{\alpha q}\left(\int_{-\pi}^{\pi} \frac{\left|F^{\prime}\left(r e^{i(\theta+\phi}\right)\right|^{p}}{\left|1-r e^{i \phi}\right|^{\alpha p}} d\right)^{q / p} d r\right]^{1 / q},
$$

where $(1 / p)+(1 / q)=1$ in [3].
Theorem B. If $2 \leqq q<\infty, 0<\lambda<\infty$ and $\alpha>\operatorname{Max}(1 / \lambda, 1-(1 / q))$, then $\left\|h_{\alpha, q}(F)\right\|_{\lambda} \leqq C_{\alpha, \lambda, q}\|F\|_{\lambda}$ and $\left\|g_{\alpha, q}^{*}(F)\right\|_{\lambda} \leqq C_{\alpha, \lambda, q}\|F\|_{\lambda}$.

We use the letter C as a positive constant, not always the same in different occasions. The constants with indices may depend on them.

The purpose of this paper is to study a critical case $\alpha=1 / \lambda$ in theorem B with the recipe used by C. Fefferman in [2].

I wish to thank Professor G. Sunouchi for suggesting the problem and for many useful advices. I also thank Professor S. Igari for kind advices.

1. Conclusions. We set as usual for holomorphic function $F(z)=$ $F\left(r e^{i \theta}\right)=\sum_{n=0}^{\infty} c_{n} z^{n}$ in $|z|<1$,

$$
\tau_{n}^{\alpha}(\theta)=\tau_{n}^{\alpha}(\theta ; F)=\sum_{\nu=0}^{n} \frac{A_{n-\omega}^{\alpha-1}}{A_{n}^{\alpha}} \nu c_{\nu} \nu^{i \nu \theta},
$$

where $A_{n}^{\alpha}=\binom{n+\alpha}{n}$. If we denote $\sigma_{n}^{\alpha}(\theta)=\sigma_{n}^{\alpha}(\theta ; F)$ the n-th Cesàro mean of degree α of the series $\sum_{n=0}^{\infty} c_{n} e^{i n \theta}$ and if $\alpha>0$, then we have

$$
\tau_{n}^{\alpha}(\theta)=\alpha\left\{\sigma_{n}^{\alpha-1}(\theta)-\sigma_{n}^{\alpha}(\theta)\right\}
$$

If we define a function $h_{\alpha, q}(F)$ on $(-\pi, \pi)$ with respect to the above function F by

$$
\begin{equation*}
h_{\alpha, q}(F)(\theta)=\left(\sum_{n=1}^{\infty} \frac{\left|\tau_{n}^{\alpha}(\theta ; F)\right|^{q}}{n}\right)^{1 / q} . \tag{1.1}
\end{equation*}
$$

Then we get the following theorem.
Theorem 1. When $2 \leqq q<\infty, 0<\lambda<2,1 / \lambda+1 / q>1$ and $\alpha=1 / \lambda$, then

$$
\left|\left\{\theta \in(-\pi, \pi) ; h_{\alpha, q}(F)(\theta)>\kappa\right\}\right| \leqq\left(\frac{C_{\lambda, q}}{\kappa}\|F\|_{\lambda}\right)^{2}
$$

for any $\kappa>0$ and $F \in H^{2}$.
In the sequel, we denote by $|E|$ the Lebesgue measure of a set E in $(-\infty, \infty)$. For $E \subset(-\pi, \pi)$, $\subset E$ will be the set $(-\pi, \pi) \backslash E$.

To prove theorem 1, we introduce an auxiliary function

$$
\begin{equation*}
g_{\alpha, q}^{*}(F)(\theta)=\left[\int_{0}^{1}(1-r)^{\alpha q}\left(\int_{-\pi}^{\pi} \frac{\mid F^{\prime}\left(\left.r e^{i(\theta+\phi)}\right|^{p}\right.}{\left|1-r e^{i \phi}\right|^{\alpha p}} d \phi\right)^{q / p} d r\right]^{1 / q} \tag{1.2}
\end{equation*}
$$

where, now and in the sequel, the relation $1 / p+1 / q=1$ is always assumed. T. M. Flett ([3; Theorem 13]) proved that if $q \geqq 2$ and $\alpha>(-1 / q)$, then

$$
\begin{equation*}
h_{\alpha, q}(F)(\theta) \leqq C_{\alpha, q} g_{\alpha, q}^{*}(F)(\theta) \tag{1.3}
\end{equation*}
$$

for every point θ. We prove in $\S 4$ that
Theorem 2. If α, q and λ satisfy the conditions of theorem 1 , then

$$
\left|\left\{\theta \in(-\pi, \pi) ; g_{\alpha, q}^{*}(F)(\theta)>\kappa\right\}\right| \leqq\left(\frac{C_{\lambda, q}}{\kappa}\|F\|_{\lambda}\right)^{\lambda}
$$

for any $\kappa>0$ and $F \in H^{2}$.
Theorem 1 follows easily from Theorem 2 and (1.3).
The proof of Theorem 2 proceeds in two steps:

$$
\begin{array}{ll}
1<\lambda<2,2 \leqq q<\lambda /(\lambda-1) & \text { and } \alpha=1 / \lambda \\
0<\lambda \leqq 1,2 \leqq q<+\infty & \text { and } \alpha=1 / \lambda \tag{1.5}
\end{array}
$$

We use also the following notations. For a function $\phi(z)=\phi\left(r e^{i \theta}\right)$ in $|z|<1$, we denote

$$
\nabla \phi(z)=\left(\frac{\partial \phi}{\partial r}(z), \frac{\partial \phi}{\partial \theta}(z)\right),|\nabla \phi(z)|^{2}=\left|\frac{\partial \phi}{\partial r}(z)\right|^{2}+\left|\frac{\partial \phi}{\partial \theta}(z)\right|^{2} .
$$

For $f \in L(-\pi, \pi)$, we introduce

$$
\begin{equation*}
S_{\alpha, q}(f)(\theta)=\left[\int_{0}^{1}(1-r)^{\alpha q}\left(\int_{-\pi}^{\pi} \frac{\left|\nabla f\left(r e^{i(\theta+\phi)}\right)\right|^{p}}{\left|1-r e^{i \phi}\right|^{\alpha p}} d \phi\right)^{q / p} d r\right]^{1 / q}, \tag{1.6}
\end{equation*}
$$

where $f(z)=f\left(r e^{i \theta}\right)$ is the Poisson integral of f. We prove in $\S 3$ the following theorem for $S_{\alpha, q}(f)$, which is equivalent to Theorem 2.

Theorem 3. If α, q and λ have the relation (1.4), then

$$
\left|\left\{\theta \in(-\pi, \pi) ; S_{\alpha, q}(f)(\theta)>\kappa\right\}\right| \leqq\left(\frac{C_{\lambda, q}}{\kappa}\|f\|_{\lambda}\right)^{2}
$$

for any $\kappa>0$ and $f \in L^{\lambda}(-\pi, \pi)$.
2. Preparations. We collect up in this section the lemmas which are used in the proofs. Some of them are well known and others are proved completely.

Lemma 1. $\int_{-\pi}^{\pi} 1 /\left|1-r e^{i \theta}\right|^{\beta} d \theta \leqq C_{\beta}(1-r)^{1-\beta}$ for any $\beta>1$ and $0<r<1$.
Lemma 2. When m is an integer greater than 1 and $\beta>-1$,

$$
\int_{0}^{1}(1-r)^{\beta} r^{m-1} d r=\frac{1}{m A_{m}^{\beta}} .
$$

Lemma 3. (e.g. [4; VI. 2]) If $\Omega \subset(-\infty, \infty)$ is an open set which does not contain any infinite interval, then there exists a disjoint sequence $\left\{I_{j}\right\}$ of intervals such that $\Omega=\bigcup_{j=1}^{\infty} I_{j}$ and they have the following properties:

$$
\begin{gather*}
\text { dis. }\left(I_{j}, \complement \Omega\right)=\inf \left\{|x-y| ; x \in I_{j}, y \in \complement \Omega\right\}=\left|I_{j}\right| . \tag{2.1}\\
\bar{I}_{j} \cap \bar{I}_{i} \neq \varnothing \text { implies }\left|I_{j}\right| \leqq 2\left|I_{i}\right| \tag{2.2}
\end{gather*}
$$

(2.3) We set $I_{j}^{*}=\cup\left\{I_{i} ; \bar{I}_{i} \cap \bar{I}_{j} \neq \varnothing\right\}$. If $x \notin I_{j}^{*}$ and $y_{1}, y_{2} \in I_{j}$, then $\left|x-y_{1}\right| \leqq 3\left|x-y_{2}\right|$.

Lemma 4. For $f \in L^{2}(-\pi, \pi)$ and $\kappa>0$, we denote

$$
\begin{equation*}
\Omega=\left\{\theta \in(-\pi, \pi] ; \sup _{0<\xi, \eta \leq \pi}\left(\frac{1}{\xi+\eta} \int_{\theta-\xi}^{\theta+\eta}|f(\tau)|^{2} d \tau\right)>\kappa^{\lambda}\right\} . \tag{2.4}
\end{equation*}
$$

If $\Omega \neq(-\pi, \pi]$, then we have $\Omega=\bigcup_{j=1}^{\infty} I_{j}$ by applying lemma 3 and

$$
\begin{equation*}
|\Omega|=\sum_{j=1}^{\infty}\left|I_{j}\right| \leqq\left(\frac{C_{2}}{\kappa}\|f\|_{\lambda}\right)^{\lambda} . \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
|f(\theta)| \leqq \kappa \text { a.e. in } \subset \Omega \tag{2.6}
\end{equation*}
$$

Furthermore, if we decompose f as

$$
\begin{align*}
& g(\theta)= \begin{cases}\frac{1}{\left|I_{j}\right|} \int_{I_{j}} f(\tau) d \tau & \left(\theta \in I_{j}, j=1,2, \cdots\right) \\
f(\theta) & (\theta \notin \Omega)\end{cases} \tag{2.8}\\
& f(\theta)=g(\theta)+h(\theta), h_{j}(\theta)=h(\theta) \chi_{I_{j}}(\theta) \quad(j=1,2, \cdots)
\end{align*}
$$

where $\chi_{I_{j}}$ means the characteristic function of I_{j}, then

$$
\begin{equation*}
\int_{I_{j}}\left|h_{j}(\theta)\right| d \theta \leqq C_{\lambda} \kappa\left|I_{j}\right| \text { and }\left\|h_{j}\right\|_{\lambda} \leqq C_{\lambda} \kappa\left|I_{j}\right|^{1 / \lambda} \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
|g(\theta)| \leqq C_{\lambda} \kappa \text { a.e. and }\|g\|_{\lambda} \leqq\|f\|_{\lambda} \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
\int_{I_{j}} h_{j}(\theta) d \theta=0 \tag{2.11}
\end{equation*}
$$

Lemma 5. Let $P(z)=P\left(r e^{i \theta}\right)=\operatorname{Re} .(1+z) /(1-z)$ be the Poisson kernel, $R_{r}(\theta)=\nabla P\left(r e^{i \theta}\right)$ and $H_{1}(r, \theta)=\sum_{\left(j: \theta \& I_{j}^{*}\right)}\left(R_{r} * h_{j}\right)(\theta)$, then

$$
\left|H_{1}(r, \theta)\right| \leqq C_{\lambda} \frac{\kappa}{1-r}
$$

I_{j}^{*} and h_{j} are defined by (2.3) and (2.8), respectively.
Proof. If we set $\Phi(z)=(1+z) /(1-z)$, then $\left|R_{r}(\theta)\right| \leqq \sqrt{2}\left|\Phi^{\prime}\left(r e^{i \theta}\right)\right|=$ $2 \sqrt{2} /\left|1-r e^{i \theta}\right|^{2}$. For $\theta \notin I_{j}^{*}$ and $\tau_{1}, \tau_{2} \in I_{j}$, we have $\left|1-r e^{i\left(\theta-\tau_{1}\right)}\right| \leqq(1-r)+$ $\left|\theta-\tau_{1}\right| \leqq(1-r)+3\left|\theta-\tau_{2}\right| \leqq C\left|1-r e^{i\left(\theta-\tau_{2}\right)}\right|$ by (2.3). Hence

$$
\left|I_{j}\right| \sup _{\tau \in I_{j}}\left|1-r e^{i(\theta-\tau)}\right|^{-2} \leqq C \int_{I_{j}}\left|1-r e^{i(\theta-\tau)}\right|^{-2} d \tau
$$

By (2.10), we have the estimation that

$$
\begin{aligned}
\left|\left(R_{r} * h_{j}\right)(\theta)\right| & \leqq \sup _{\tau \in I_{j}}\left|R_{r}(\theta-\tau)\right| \int_{I_{j}}\left|h_{j}(\tau)\right| d \tau \leqq C_{\lambda} \kappa\left|I_{j}\right| \sup _{\tau \in I_{j}}\left|1-r e^{i(\theta-\tau)}\right|^{-2} \\
& \leqq C_{\lambda} \kappa \int_{I_{j}}\left|1-r e^{i(\theta-\tau)}\right|^{-2} d \tau
\end{aligned}
$$

for $\theta \notin I_{j}^{*}$. Therefore, we have

$$
\left|H_{1}(r, \theta)\right| \leqq \sum_{\left|j: \theta \neq\left|I_{j}^{*}\right|\right.}\left|\left(R_{r} * h_{j}\right)(\theta)\right| \leqq C_{\lambda} \kappa \int_{-\pi}^{\pi} \frac{d \tau}{\left|1-r e^{i \theta}\right|^{2}} \leqq \frac{C_{\lambda} \kappa}{1-r}
$$

by lemma 1 .

$$
\text { LEMMA 6. } \quad \int_{0}^{1} \int_{\pi \geqq|\phi| \geq 2|\tau|}\left|R_{r}(\phi-\tau)-R_{r}(\phi)\right| d \phi d r \leqq C .
$$

Proof. A simple calculation shows that

$$
\left|R_{r}(\phi-\tau)-R_{r}(\phi)\right| \leqq 2 \sqrt{2}\left|e^{-i \tau}\left(1-r e^{i(\phi-\tau)}\right)^{-2}-\left(1-r e^{i \phi}\right)^{-2}\right|
$$

If $2|\tau| \leqq|\phi| \leqq \pi$, then

$$
\begin{aligned}
& \left|e^{-i \tau}\left(1-r e^{i(\phi-\tau)}\right)^{-2}-\left(1-r e^{i \phi}\right)^{-2}\right| \leqq\left|\left(1-r e^{i(\phi-\tau)}\right)^{-2}-\left(1-r e^{i \phi}\right)^{-2}\right| \\
& \quad+\left|\left(e^{-i \tau}-1\right)\left(1-r e^{i \phi}\right)^{-2}\right| \leqq C\left\{|\tau|[(1-r)+|\phi|]^{-3}+|\tau||\phi|^{-2}\right\}
\end{aligned}
$$

Hence

$$
\int_{0}^{1} \int_{\pi \leqq|\phi| \geqq 2|\tau|}\left|R_{r}(\phi-\tau)-R_{r}(\phi)\right| d \phi d r \leqq C \int_{\pi \geqq|\phi| \geqq 2|\tau|}\left(C^{\prime} \frac{|\tau|}{|\phi|^{2}}+\frac{|\tau|}{|\phi|^{2}}\right) d \phi \leqq C .
$$

Lemma 7. $\int_{0}^{1} \int_{C_{r_{j}^{r}}}\left|\left(R_{r} * h_{j}\right)(\phi)\right| d \phi d r \leqq C_{\lambda} \kappa\left|I_{j}\right| \quad(j=1,2, \cdots)$
Proof. Let τ_{j} be the center of I_{j}. Using the properties (2.11), (2.2), lemma 6 and (2.10) step by step

$$
\begin{aligned}
& \int_{0}^{1} \int_{\mathrm{Cr}_{j}^{*}}\left|\left(R_{r} * h_{j}\right)(\phi)\right| d \phi d r \\
& \quad \leqq \int_{I_{j}}\left|h_{j}(\tau)\right| d \tau \int_{0}^{1} \int_{\mathrm{Cr}_{j}^{*}}\left|R_{r}(\phi-\tau)-R_{r}\left(\phi-\tau_{j}\right)\right| d \phi d r \\
& \quad \leqq \int_{I_{j}}\left|h_{j}(\tau)\right| d \tau \int_{0}^{1} \int_{\left|\phi-\tau_{j}\right| \geqq 2\left|\tau-\tau_{j}\right|}\left|R_{r}(\phi-\tau)-R_{r}\left(\phi-\tau_{j}\right)\right| d \phi d r \\
& \quad \leqq C \int_{I_{j}}\left|h_{j}(\tau)\right| d \tau \leqq C_{2} \kappa\left|I_{j}\right|
\end{aligned}
$$

Lemma 8. (T. M. Flett [3; Theorem 7]) If $F \in H^{\mu}, \mu>0$, and $k \geqq 2$, then

$$
\left\{\int_{-\pi}^{\pi}\left(\int_{0}^{1}(1-r)^{k-1}\left|F^{\prime}\left(r e^{i \theta}\right)\right|^{k} d r\right)^{\mu / k} d \theta\right\}^{1 / \mu} \leqq C_{\mu, k}\|F\|_{\mu}
$$

Lemma 9. We define $G_{\alpha, q}(f)(\theta)$ for a real-valued function f in L $(-\pi, \pi)$ by

$$
G_{\alpha, q}(f)(\theta)=\left(\int_{0}^{1}(1-r)^{\alpha q}\left|\nabla f\left(r e^{i \theta}\right)\right|^{q} d r\right)^{1 / q}=\left(\int_{0}^{1}(1-r)^{\alpha q}\left|\left(R_{r} * f\right)(\theta)\right|^{q} d r\right)^{1 / q}
$$

If α, q and λ satisfy the condition (1.4), then

$$
\left\|G_{\alpha, q}(f)\right\|_{p} \leqq C_{\lambda, q}\|f\|_{\lambda}
$$

Proof. For f in $L^{1}(-\pi, \pi)$, we define a function $T(f)$ on the product measure space $\{1,2\} \times(0,1) \times(-\pi, \pi)$ by

$$
T(f)(\nu, r, \theta)= \begin{cases}(1-r)^{\alpha} \frac{\partial}{\partial r} f\left(r e^{i \theta}\right) & (\nu=1) \\ (1-r)^{\alpha} \frac{\partial}{\partial \theta} f\left(r e^{i \theta}\right) & (\nu=2)\end{cases}
$$

Then we have

$$
\begin{align*}
& \|T(f)\|_{2,2,2} \leqq C_{\lambda}\|f\|_{\lambda} \tag{2.12}\\
& \|T(f)\|_{2, \lambda^{\prime}, \lambda} \leqq C_{\lambda}\|f\|_{2} \quad\left(1 / \lambda+1 / \lambda^{\prime}=1\right) \tag{2.13}
\end{align*}
$$

where $\|T(f)\|_{r, s, t}=\left\{\int_{-\pi}^{\pi}\left[\int_{0}^{1}\left(\sum_{u=1}^{2}|T(f)(\nu, \rho, \theta)|^{r}\right)^{s / r} d \rho\right]^{t / s} d \theta\right\}^{1 / t}$. To prove the inequality (2.12), we use the Parseval's theorem and fractional integral theorem. Let $\left\{c_{n} ; n=0, \pm 1, \pm 2, \cdots\right\}$ be the Fourier coefficients of f. We may assume $c_{0}=0$ without loss of generality. Then, by virtue of lemma 2 and the relation $\alpha-1 / 2=1 / \lambda-1 / 2$, we have

$$
\begin{aligned}
\|T(f)\|_{2,2,2} & =\left(\int_{-\pi}^{\pi} \int_{0}^{1}(1-r)^{2 \alpha}\left|\nabla f\left(r e^{i \theta}\right)\right|^{2} d r d \theta\right)^{1 / 2} \\
& \leqq C\left(\sum_{n \neq 0} n^{2}\left|c_{n}\right|^{2} \int_{0}^{1}(1-r)^{2 \alpha} r^{(2|n|-1)-1} d r\right)^{1 / 2} \\
& =C\left(\sum_{n \neq 0} \frac{n^{2}\left|c_{n}\right|^{2}}{(2|n|-1) A_{2|n|-1}^{2 \alpha}}\right)^{1 / 2} \leqq C\left(\sum_{n \neq 0}\left|\frac{c_{n}}{n^{\alpha-(1 / 2)}}\right|^{2}\right)^{1 / 2} \\
& \leqq C_{\lambda}\|f\|_{\lambda} .
\end{aligned}
$$

To prove (2.13), consider $F(z)=f(z)+i \tilde{f}(z)$ where $\tilde{f}(z)$ is the conjugate harmonic function of $f(z)$ with $\tilde{f}(0)=0$. Then $F \in H^{\lambda}$ and $|\nabla f| \leqq \sqrt{2}\left|F^{\prime}\right|$. Hence
$\|T(f)\|_{2, \lambda^{\prime}, \lambda} \leqq \sqrt{2}\left\{\int_{-\pi}^{\pi}\left(\int_{0}^{1}(1-r)^{\lambda^{\prime}-1}\left|F^{\prime}\left(r e^{i \theta}\right)\right|^{\lambda^{\prime}} d r\right)^{\lambda / \lambda^{\prime}} d \theta\right\}^{1 / \lambda} \leqq C_{\lambda}\|F\|_{\lambda} \leqq C_{\lambda}\|f\|_{\lambda}$ by lemma 8 and M. Riesz theorem.

We apply the interpolation theorem of A. Benedek and R. Panzone ($[1$; Theorem 2, p. 316]) to the relations (2.12) and (2.13). Since $1 / q=$
$(1-t) / 2+t / \lambda^{\prime}$ and $1 / p=(1-t) / 2+t / \lambda$ for $0 \leqq t<1$, we have $\|T(f)\|_{2, q, p} \leqq$ $C_{\lambda, q}\|f\|_{\lambda}$. The equation $\|T(f)\|_{2, q, p}=\left\|G_{\alpha, q}(f)\right\|_{q}$ conclude the lemma 9.
3. Proof of theorem 3. It suffices to prove for real-valued functions. Let $f \in L^{\lambda}(-\pi, \pi)$ be a real-valued function and define Ω by (2.4). First we consider the case $\Omega \neq(-\pi, \pi]$. Decomposing f as $f=g+h$ by (2.8), we have

$$
\begin{equation*}
S_{\alpha, q}(f)(\theta) \leqq S_{\alpha, q}(g)(\theta)+S_{\alpha, q}(h)(\theta) \tag{3.1}
\end{equation*}
$$

Further we define $H_{1}(r, \theta)=\sum_{\left|j: \theta \not I_{j}^{*}\right\rangle}\left(R_{r} * h_{j}\right)(\theta)$ and $H_{2}(r, \theta)=\sum_{\left|j: \theta \in I_{j}^{*}\right\rangle}\left(R_{r} * h_{j}\right)$ $(\theta)=\nabla h\left(r e^{i \theta}\right)-H_{1}(r, \theta) . \quad$ By definition (1.6),

$$
\begin{aligned}
& S_{\alpha, q}(h)(\theta) \leqq\left[\int_{0}^{1}(1-r)^{\alpha q}\left(\int_{-\pi}^{\pi} \frac{\left|H_{1}(r, \theta+\phi)\right|^{p}}{\left|1-r e^{i \phi}\right|^{\alpha p}} d \phi\right)^{q / p}\right]^{1 / q} \\
& \quad+\left[\int_{0}^{1}(1-r)^{\alpha q}\left(\int_{-\pi}^{\pi} \frac{\left|H_{2}(r, \theta+\phi)\right|^{p}}{\left|1-r e^{i \phi}\right|^{\alpha p}} d \phi\right)^{q / p} d r\right]^{1 / q} \equiv Q_{1}(\theta)+Q_{2}(\theta), \text { say } .
\end{aligned}
$$

Hence, replacing $S_{\alpha, q}(h)(\theta)$ by $Q_{1}(\theta)+Q_{2}(\theta)$ in (3.1), we get

$$
\begin{equation*}
S_{\alpha, q}(f)(\theta) \leqq S_{\alpha, q}(g)(\theta)+Q_{1}(\theta)+Q_{2}(\theta) \tag{3.2}
\end{equation*}
$$

We estimate the each terms in the right hand side.
The estimation for $S_{\alpha, q}(g)$. For any $\mu, \mu>\lambda$, we see that $g \in L^{\mu}(-\pi, \pi)$ and $\|g\|_{\mu}^{\mu} \leqq C_{\lambda, \mu} \kappa^{\mu-\lambda}\|g\|_{\lambda}^{\lambda} \leqq C_{\lambda, \mu} \kappa^{\mu-\lambda}\|f\|_{\lambda}^{\lambda}$ by (2.9). In particular, if we take $\mu, \lambda<\mu<p$, then $\left\|S_{\alpha, q}(g)\right\|_{\mu}^{\mu} \leqq C_{\alpha, \mu, q}\|g\|_{\mu}^{\mu} \leqq C_{\lambda, \mu, q} \kappa^{\mu-\lambda}\|f\|_{\lambda}^{\lambda}$ by theorem B in the introduction. Therefore

$$
\begin{equation*}
\left|\left\{\theta \in(-\pi, \pi) ; S_{\alpha, q}(g)(\theta)>\frac{\kappa}{3}\right\}\right| \leqq\left(\frac{C_{\lambda, q}}{\kappa}\|f\|_{\lambda}\right)^{2} \tag{3.3}
\end{equation*}
$$

The estimation for Q_{1}. Note that $p \leqq q$. Then we have

$$
\begin{aligned}
& \int_{-\pi}^{\pi}\left[Q_{1}(\theta)\right]^{q} d \theta=\int_{-\pi}^{\pi} \int_{0}^{1}\left(\int_{-\pi}^{\pi} \frac{(1-r)^{\alpha p}}{\left|1-r e^{i \phi}\right|^{\alpha p}}\left|H_{1}(r, \theta+\phi)\right|^{p} d \phi\right)^{q / p} d r d \theta \\
& \quad \leqq \int_{0}^{1}\left[\int_{-\pi}^{\pi} \frac{(1-r)^{\alpha p}}{\left|1-r e^{i \phi}\right|^{\alpha p}}\left(\int_{-\pi}^{\pi}\left|H_{1}(r, \theta+\phi)\right|^{q} d \theta\right)^{p / q} d \phi d r\right]^{q / p}
\end{aligned}
$$

(by Minkowski's inequality)

$$
\left.\leqq C_{\alpha, p} \int_{0}^{1}(1-r)^{q / p}\left(\int_{-\pi}^{\pi}\left|H_{1}(r, \theta)\right|^{q} d \theta\right) d r \quad \quad \text { (by lemma } 1\right)
$$

$$
\leqq C_{\alpha, p} \int_{0}^{1}(1-r)^{q-1} \int_{-\pi}^{\pi}\left(\frac{C_{\lambda} \kappa}{1-r}\right)^{q-1}\left|H_{1}(r, \theta)\right| d \theta d r \quad \quad \text { (by lemma } 5 \text {) }
$$

$$
\leqq C_{\lambda, q} \kappa^{q-1} \int_{0}^{1} \int_{-\pi\left\{j: \theta \in I_{j}^{*} \mid\right.}^{\pi} \sum_{r}\left|\left(R_{r} * h_{j}\right)(\theta)\right| d \theta d r
$$

$$
=C_{\lambda, q} \kappa^{q-1} \sum_{j=1}^{\infty} \int_{0}^{1} \int_{C r_{j}^{*}}\left|\left(R_{r} * h_{j}\right)(\theta)\right| d \theta d r
$$

$$
\left.\leqq C_{\lambda, q} \kappa^{q} \sum_{j=1}^{\infty}\left|I_{j}\right| \leqq \kappa^{q}\left(\frac{C_{\lambda . q}}{\kappa}\|f\|_{\lambda}\right)^{2} \quad \text { (by lemma } 7 \text { and }(2.5)\right)
$$

Therefore we can conclude that

$$
\begin{equation*}
\left|\left\{\theta \in(-\pi, \pi) ; Q_{1}(\theta)>\frac{\kappa}{3}\right\}\right| \leqq\left(\frac{C_{\lambda, q}}{\kappa}\|f\|_{\lambda}\right)^{\lambda} \tag{3.4}
\end{equation*}
$$

The estimation for Q_{2}. We set $h^{i}=\sum_{\left(j: I_{j} \subset T_{i}^{*}\right)} h_{j}$ for every i. Then $H_{2}(r, \phi)=\left(R_{r} * h^{i}\right)(\phi)$ for $\phi \in I_{i} . I_{i}^{*}$ contains only three intervals I_{j} for each i. Therefore,

$$
\left\|h^{i}\right\|_{\lambda} \leqq \sum_{\left|j: I_{j} \subset I_{i}^{*}\right\rangle} C_{\lambda} \kappa\left|I_{j}\right|^{1 / \lambda} \leqq C_{\lambda} \kappa \sum_{\left(j: I I_{j} \subset I_{i}^{*}\right)}\left(2\left|I_{i}\right|\right)^{1 / \lambda}=3.2^{1 / \lambda} C_{\lambda} \kappa\left|I_{i}\right|^{1 / \lambda}=C_{\lambda} \kappa\left|I_{i}\right|^{1 / \lambda}
$$

by (2.10) and (2.2). We also have $\left|1-r e^{i(\phi-\theta)}\right| \geqq C\left|\theta-\tau_{i}\right|$ for $\theta \notin \Omega, \phi \in I_{i}$ and the center τ_{i} of I_{i} by the relation (2.3). Now we shall estimate $\left[Q_{2}(\theta)\right]^{p}$ at $\theta \notin \Omega$. Since $H_{2}(r, \phi)=0$ for $\phi \notin \Omega$,

$$
\begin{align*}
{\left[Q_{2}(\theta)\right]^{p} } & =\left[\int_{0}^{1}\left(\sum_{i=1}^{\infty} \int_{I_{i}} \frac{(1-r)^{\alpha p}}{\left|1-r e^{i(\phi-\theta)}\right|^{\alpha p}}\left|H_{2}(r, \phi)\right|^{p} d \phi\right)^{q / p} d r\right]^{p / q} \\
& \leqq C\left[\int_{0}^{1}\left(\sum_{i=1}^{\infty} \frac{1}{\left|\theta-\tau_{i}\right|^{\alpha p}} \int_{I_{i}}(1-r)^{\alpha p}\left|H_{2}(r, \phi)\right|^{p} d \phi\right)^{q / p} d r\right]^{p / q} \\
& \leqq C \sum_{i=1}^{\infty} \frac{1}{\left|\theta-\tau_{i}\right|^{\alpha p}} \int_{I_{i}}\left(\int_{0}^{1}(1-r)^{\alpha q}\left|H_{2}(r, \phi)\right|^{q} d r\right)^{p / q} d \phi \\
& \leqq C \sum_{i=1}^{\infty} \frac{\left\|G_{\alpha, q}\left(h^{i}\right)\right\|_{p}^{p}}{\left|\theta-\tau_{i}\right|^{\alpha p}} \quad \quad \text { (by Minkowski's inequality) } \\
& \leqq C_{\lambda, q} \sum_{i=1}^{\infty} \frac{\left\|h^{i}\right\|_{2}^{p}}{\left|\theta-\tau_{i}\right|^{\alpha p}} \quad \text { (by lemma 9) } \\
& \leqq C_{\lambda, q} \sum_{i=1}^{\infty} \frac{\kappa^{p}\left|I_{i}\right|^{p / \lambda}}{\left|\theta-\tau_{i}\right|^{\alpha p}} . \tag{bylemma9}
\end{align*}
$$

Since $\int_{\Omega \Omega}\left|\theta-\tau_{i}\right|^{-\alpha p} d \theta \leqq C_{\lambda, q}\left|I_{i}\right|^{-(p / \lambda)+1}$, we have

$$
\int_{C^{2}}\left[Q_{2}(\theta)\right]^{p} d \theta \leqq C_{\lambda, q} \sum_{i=1}^{\infty} \kappa^{p}\left|I_{i}\right| \leqq \kappa^{p}\left(\frac{C_{\lambda, q}}{\kappa}\|f\|_{2}\right)^{\lambda}
$$

Hence

$$
\left|\left\{\theta \in C \Omega ; Q_{2}(\theta)>\frac{\kappa}{3}\right\}\right| \leqq\left(\frac{C_{2, q}}{\kappa}\|f\|_{2}\right)^{\lambda}
$$

The measure $|\Omega|$ is estimated by (2.5). Therefore we get

$$
\begin{equation*}
\left|\left\{\theta \in(-\pi, \pi) ; Q_{2}(\theta) \geqq \frac{\kappa}{3}\right\}\right| \leqq\left(\frac{C_{\lambda, q}}{\kappa}\|f\|_{\lambda}\right)^{2} \tag{3.5}
\end{equation*}
$$

From the estimates (3.3), (3.4) and (3.5), it follows the required estimate:

$$
\begin{equation*}
\left|\left\{\theta \in(-\pi, \pi) ; S_{\alpha, q}(f)(\theta)>\kappa\right\}\right| \leqq\left(\frac{C_{\lambda, q}}{\kappa}\|f\|_{\lambda}\right)^{2} \tag{3.6}
\end{equation*}
$$

When $\Omega=(-\pi, \pi$], we have easily

$$
\begin{equation*}
\left|\left\{\theta \in(-\pi, \pi) ; S_{\alpha, q}(f)(\theta)>\kappa\right\}\right| \leqq|\Omega| \leqq\left(\frac{C_{\lambda}}{\kappa}\|f\|_{2}\right)^{\lambda} \tag{3.7}
\end{equation*}
$$

by a property of the maximal function of Hardy-Littlewood. Consequently we have the theorem with a constant greater than $C_{\lambda, q}$ in (3.6) and C_{λ} in (3.7).
4. Proof of theorem 2. In the case (1.4), theorem 2 is deduced from theorem 3, so that we prove the case (1.5). Without loss of generality, we may assume that $F \in H^{2}$ is free from zero. We set $G(z)=[F(z)]^{\lambda / \mu}$ for some $1<\mu<p$. Then $G \in H^{\mu}$ and the boundary function $G(\theta)$ is in $L^{\mu}(-\pi, \pi)$. Furthermore, if we set

$$
G_{\mu}^{*}(\theta)=\sup _{0<|h| \leq \pi}\left(\frac{1}{h} \int_{0}^{h}|G(\theta+\tau)|^{\mu} d \tau\right)^{1 / \mu}
$$

then $\left|G\left(r e^{i(\theta+\phi)}\right)\right| \leqq C_{\mu} G_{\mu}^{*}(\theta)[1+|\phi| /(1-r)]^{1 / \mu}$. (See e.g. G. Sunouchi [4; Lemma 3]) Applying this relation and $F^{\prime \prime}(z)=(\mu / \lambda)[G(z)]^{(\mu / \lambda)-1} G^{\prime}(z)$, we have

$$
\begin{align*}
g_{\alpha, q}^{*}(F)(\theta) & =\frac{\mu}{\lambda}\left\{\int_{0}^{1}(1-r)^{\alpha q}\left(\int_{-\pi}^{\pi} \frac{\left|\left[G\left(r e^{i(\theta+\phi)}\right)\right]^{(\mu / \lambda)-1} G^{\prime}\left(r e^{i(\theta+\phi)}\right)\right|^{p}}{\left|1-r e^{i \phi}\right|^{\alpha p}} d \phi\right)^{q / p} d r\right\}^{1 / q} \\
& \leqq C_{\lambda, \mu}^{\prime}\left\{G_{\mu}^{*}(\theta)\right\}^{(\mu / \lambda)-1}\left\{\int_{0}^{1}(1-r)^{q / \mu}\left(\int_{-\pi}^{\pi} \frac{\left|G^{\prime}\left(r e^{i(\theta+\phi)}\right)\right|^{p}}{\left|1-r e^{i \phi}\right|^{p / \mu}} d \phi\right)^{q / p} d r\right\}^{1 / q} \tag{4.1}\\
& =C_{\lambda, \mu}^{\prime}\left\{G_{\mu}^{*}(\theta)\right\}^{(\mu / \lambda)-1} g_{\beta, q}^{*}(G)(\theta),
\end{align*}
$$

where $\beta=1 / \mu$. Since β, q and μ satisfy the relation (1.4) replaced α and λ by β and μ, respectively, we have from the above argument

$$
\begin{align*}
& \left|\left\{\theta \in(-\pi, \pi) ; g_{\beta, q}^{*}(G)(\theta)>\left(C_{\lambda, \mu}^{\prime} \kappa\right)^{\lambda / \mu}\right\}\right| \\
& \quad \leqq\left(\frac{C_{\mu, q}}{\left(C_{\lambda, \mu}^{\prime} \kappa\right)^{\lambda / \mu}}\|G\|_{\mu}\right)^{\mu}=\left(\frac{C_{\lambda, \mu, q}}{\kappa}\|F\|_{\lambda}\right)^{\lambda} . \tag{4.2}
\end{align*}
$$

By a property of the maximal function of Hardy-Littlewood,

$$
\begin{align*}
& \left|\left\{\theta \in(-\pi, \pi) ; G_{\mu}^{*}(\theta)>\left(C_{\lambda, \mu}^{\prime} \kappa\right)^{\lambda / \mu}\right\}\right| \\
& \quad \leqq \frac{C}{\left(C_{\lambda, \mu}^{\prime} \kappa\right)^{\lambda}}\|G\|_{\mu}^{\mu}=\left(\frac{C_{\lambda, \mu}}{\kappa}\|F\|_{2}\right)^{\lambda} . \tag{4.3}
\end{align*}
$$

The relation (4.1) and the estimates (4.2) and (4.3) give

$$
\left|\left\{\theta \in(-\pi, \pi) ; g_{\alpha, q}^{*}(F)(\theta)>\kappa\right\}\right| \leqq\left(\frac{C_{\lambda, q}}{\kappa}\|F\|_{2}\right)^{\lambda}
$$

and this completes the proof.

References

[1] A. Benedek and R. Panzone, The space L^{P}, with mixed norm. Duke Math. J. 28 (1961) 301-324.
[2] C. Fefferman, Inequalities for strongly singular convolution operators. Acta Math. 124 (1970) 9-36.
[3] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley. Proc. London Math. Soc. 7 (1957) 113-141.
[4] E. M. Stein, Intégrales singulieres et fonctions différentiables de plusieurs variables. Lecture notes, Faculté des Sciences d'Orsay.
[5] G. Sunouchi, Theorems on power series of the class H^{p}. Tôhoku Math. J. 8 (1956) 125-146.
[6] A. Zygmund, On the Littlewood-Paley function $g^{*}(\theta)$. Proc. Nat. Acad. U.S.A. 42 (1956) 208-212.

Mathematical Institute
Yamagata University
Yamagata, Japan

