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Introduction. We denote by H? the Hardy-class. That is the totality
of all the functions F(2) = X,7_,c.2" which are holomorphic in the disk
|z] < 1 in complex plane and

z . 12 x 12
11 = sup (| 1Fee) o) = (1" PO 1a6)" < + ==,
0<r<1 —_T —r
where F'(f) is the boundary function of F(re*). By c%(6) = 02(6; F'), we
denote the n-th Cesaro mean of order a of the series >.r,c.e. The
behavior of h(F)(0) = -, |02(0) — 037'(0) */n)'* has been investigated by
many authors. G. Sunouchi and A. Zygmund introduced

* _ 1 _ o 3 IF/(,rei(0+¢)) Iz ]1/2
s1)0) = | @ - (| e g Jor
in [5] and [6], respectively. Between h,(F') and g¢}(F'), there are the
relations C,h(F)(0) < g*x(F)(0) < C.h(F)(0) for some constants C, and C.,.
The following results have been known.

THEOREM A. (i) If > Max (1/2, 1/\) and 0 <\ <co, then || ho(F)|: <
CanllFllz and || gu(F)|ls = Conl[Fl (1) If @ =1/x and 0 <N =1, then
1 ha(F) [l = Czs_ylF(ﬁ)l‘logﬂF(ﬁ)ldﬁ and |[ha(F)|la = CoullFll: for any

0 < ¢ <1 and the same results hold for g*(F).

The case when a = 1/A» and 1 <A <2 is recently obtained by C.
Fefferman [2].
Meanwhile, T. M. Flett proved the following theorem for &, (F)(0) =
il os(0) — 657(0) 1) and
_ 1 e 3 ‘Fr(,rei(ﬂ+¢)|p qlp ]ilq
a0 = [ [0 - ([ DR ) ]
where (1/p) + (1/¢) = 1 in [3].

THEOREM B. If 2<q<o,0 <\ <o and a> Max 1/, 1— (1/g)),
then || he, o F)z £ Cano| F'll; and [|g2(F)|1; £ Corall Fll2e
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We use the letter C as a positive constant, not always the same in
different occasions. The constants with indices may depend on them.

The purpose of this paper is to study a ecritical case @ = 1/:x in
theorem B with the recipe used by C. Fefferman in [2].

I wish to thank Professor G. Sunouchi for suggesting the problem
and for many useful advices. I also thank Professor S. Igari for kind
advices.

1. Conclusions. We set as usual for holomorphic function F'(z) =
F(re?) = Y ,c,2" in |z2] < 1,

v=0

7(0) = 70 F) = 3, Avee

n

where AZ = (*;%). If we denote 02(f) = 0%(6; F) the n-th Cesiro mean of
degree « of the series 3,7 ,c,e'™ and if @ > 0, then we have

73:(0) = a{oi7(0) — 03(0)} -
If we define a function A,,(F) on (—=, 7) with respect to the above
function F' by
. heaP)0) = (5 1O,
n=1 n

Then we get the following theorem.
THEOREM 1. When 29 <,0 <A< 2,1/A+1/g>1 and a = 1/x,
then
2
0 € (=7, 2); koo F)O) > )] < (L2 F ;)

for any £ > 0 and Fe H.

In the sequel, we denote by |E| the Lebesgue measure of a set F in
(=00, ). For EcC(—m,n),(E will be the set (—=, m)\E.
To prove theorem 1, we introduce an auxiliary function

2 g = [| @ - (] gy e [

1
0 - |1 — re?|e?

where, now and in the sequel, the relation 1/p + 1/¢ = 1 is always assumed.
T. M. Flett ([3; Theorem 13]) proved that if ¢ = 2 and « > (—1/q), then

(1.3) ha,ol(F)(6) = C,,9%(F)(6)
for every point . We prove in §4 that

THEOREM 2. If a, q and \ satisfy the conditions of theorem 1, then
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|0 ¢ (=7, ) g2,F)0) > )| < (Lt || FJ)

for any £ >0 and Fe H.

Theorem 1 follows easily from Theorem 2 and (1.3).
The proof of Theorem 2 proceeds in two steps:

(1.4) 1<A<2,25¢<M(A—=1) and a = 1/n,
(1.5) 0<KAE1,259< + and @ = 1/\ .
We use also the following notations. For a function ¢(z) = ¢(re?’) in
|z] < 1, we denote
ro) = (2), 2.)), 175 = | 20| + | L)
For fe L(—mx, @), we introduce

(1.6) Ses$)O = [ [ @ = myeo( |” LLCC 35) 0 |,

— |1 — re¥|*®

where f(z) = f(re*) is the Poisson integral of f. We prove in §3 the fol-
lowing theorem for S, ,(f), which is equivalent to Theorem 2.

THEOREM 3. If «, q and )\ have the relation (1.4), then

0 (—7, 2); S.u(£)O) > r)] = (Lo 1))

for any £ > 0 and fe L*(—m, 7).

2. Preparations. We collect up in this section the lemmas which are
used in the proofs. Some of them are well known and others are proved
completely.

LEMMA 1. S 1|1 — 76”248 < Cy(L — 7)'~* for any 8> 1 and 0 < r < 1.

LEMMA 2. When m ts an integer greater than 1 and g > —1,

! Bpam—1 1
So(l—r)r dr = Al "

LEMMA 3. (e.g.[4; VL. 2]) If QC (— o, ) is an open set which does
not contain any infinite interval, then there ewxists a disjoint sequence
{I;} of intervals such that 2 = U7, I; and they have the following pro-
perties:

2.1) dis. (I;,(9Q) = inf {|x — y|;xe ;, ycl(Q} = |I;| .
2.2) I,NnI,# @ implies |I;| < 2|I1;| .
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2.3) We set I} = U{I;L,NI;+ @} If x¢lr and y,y.€l; then
[ — 9| =3[ — Y.

LEMMA 4. For fe L*(—m, ) and k£ > 0, we denote

2.4) 0= {0e (—=, 7l; sup n(s o §H| f@) |‘dr>> /c‘} .

If Q +# (—mx, ], then we have 2 = U7, I; by applying lemma 3 and
i< (% !

(2.5) EEIARTC N

(2.6) | ()] <k a.e. in (2.

(2.7 [, 1r@ras < iz .

Furthermore, tf we decompose f as

| f@de @el,i=12)
(2.8) 9(0) = { Ll 1
1) 0¢Q)
f(0) = g(0) + h(0), hi(0) = hO)x,(0) (G =1,2---)

where Xr; means the characteristic function of I;, then

(2.9 190)] S Ck ace. and Ilglly S 1171)
(2.10) [ 11010 < Cot |I,| and [1slly S Car | I,
@.11) Sl_h,-(ﬁ)da —0.

LEMMA 5. Let P(z) = P(re’) = Re. (1 + 2)/(L — 2) be the Poisson kernel,
R.(0) = VP(re¥’) and H(r, 0) = >, ;.. ,;,,(R,*hj)(ﬁ), then

| Hy(r, 0)| < Cig K

I¥ and h; are defined by (2.3) and (2.8), respectively.

_PrOOF. If we set @(z) = (1 + 2)/(1 — 2), then |R,(6)| < V2|0 (re”)| =
2V°2/|1 — re?’. For 6 ¢ It and 7,, 7,€ I, we have |1 — re*~ | < (1 — 7)+
[0 — ] =1 —7) + 3|0 — 7| £C|1 — rei® 2| by (2.3). Hence

[I;]sup |1 — ret? |2 < CS |1 — ret®=2|~%dc .
Tel; .

1;

By (2.10), we have the estimation that
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|(Bxh;)(0)] < sup | R,(6 — f)IS |hi(z)|dT < Cik|I;| sup| 1 — re*®=" |
z‘eI]' Ij TE Ij

< C;ICS 11 — rei®= |2z
1j

for ¢ I¥. Therefore, we have

|Hr,0)| < S |(R*h)(6)] < czxg" v o Gk
(d:0e1%) — |1 — ,,.ewlz 1— 17

by lemma 1.

LEMMA 6. S:mem,@s — ) — R.(9)|dedr < C .

ProOF. A simple calculation shows that
|R($ — 7) — R($)| < 20 2]e7(1 — 7ei?=)™* — (1 — re¥)™*| .
If 2|7| £ |¢| =7, then
lem (1 — re’®=)2 — (1 — re*)*| < |1 — ref?™)™2 — (1 — rei?)7?|
+ [ — DA — re®)7| = C{z[[A — ) + [8]]17° + [zll¢]7F .
Hence

1 3 B ’m l_z_.l
Soszzwzzmer(‘t ©) = Rdlg)|dear < CSngwgzm(C lg* " |¢lz)d¢ =C.

LEMMA 7. §:§915|<R,*hj)<¢)|d¢drgczxu,-i G=1,2 )

Proor. Let 7; be the center of I;. Using the properties (2.11), (2.2),
lemma 6 and (2.10) step by step

S:Swi (B, *hy)(9) | dpdr
= Slj[hj(f)ldfg gcz;.l R.(6 — 7) — Ru(p — ;)| dgdr

< Sljlhj(f)ldfg

S IR.(3 — ©) — Ry(¢ — ;) |dgdr
0 l¢-—2'j|§2lf—rj|
< c§ |hy(2)|de < Ce| I -

I;

LeEmMA 8. (T.M. Flett [3; Theorem 7]) If Fe H*, 1> 0, and k = 2,
then

{S_(S:(l — r)F7HF(re®) |’“dr>md0}”ﬂ < CoillFll
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LEMMA 9. We define G, (f)(©0) for a real-valued function f in L
(_77"’ 77:) by
~1 . 1 1/q
GeaNO) = (| 0 = (7 rren parye = (| @ = n| @D Oar) " .
If a, q and ) satisfy the condition (1.4), then

1Gao s = Cooll fla -

Proor. For f in L'(—m, w), we define a function T(f) on the product
measure space {1,2} x (0,1) x (—x, ©) by

D fre) =1
;

a a 10 —
a-r7 —a—é—f(re ) v=2.

1—-r

T(f)(u, r, 0) =

Then we have

(2.12) I T() ez = Call f Iz
(2.13) NT( ora = Gllflla - @A/A+ 1N =1),

where (| 7()llrs = {{_ [ [ )@, 0, )17dp] “a0} ™. To prove the
inequality (2.12), we use ‘ghe Parseval’s theorem and fractional integral
theorem. Let {c¢,;n = o, =1, £2, --+} be the Fourier coefficients of f.
We may assume ¢, = 0 without loss of generality. Then, by virtue of
lemma 2 and the relation & — 1/2 = 1/» — 1/2, we have

| T(A) 222 = (S S:(l — )|V f(re”) Fdrdd)'?

< o(Zwle ] @ - neremar)
nF#0 0
___C n2|0n|2 112SC
Gam-na) =9I

2\ 1/2
2|m|—1 >
=Gl

To prove (2.13), consider F(z) = f(2) + if(z) where f(z) is the conjugate
harmonic function of f(2) with 7(0) = 0. Then Fe H*and |Ff| <V 2|F’|.
Hence

12

Cn
P2

—((" 1 . 22 1/2
1T s < VE{[” (@ = =1 P 0oy prar) " a0} " il Fl= Gl 21
by lemma 8 and M. Riesz theorem.

We apply the interpolation theorem of A. Benedek and R. Panzone

([1; Theorem 2, p. 316]) to the relations (2.12) and (2.13). Since 1/q =
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L —%/2+ /N and 1/p = (1 — ¢)/2 + t/x for 0 =t <1, we have || T(f)[lo,0, =
Cioll fllze The equation || T(f)|lsep = || Garo(f) ||, conclude the lemma 9.

3. Proof of theorem 3. It suffices to prove for real-valued functions.
Let fe L*(—m, w) be a real-valued function and define 2 by (2.4). First
we consider the case 2 # (—=x, #]. Decomposing f as f = g + h by (2.8),
we have

(3.1) Se,o(/)(0) = Sao(9)(0) + S o(R)(O) -
Further we define H(r, 0) = Z(,-:“,;,(Rr*hj)(é’) and Hy(r,0) = Zu:oe,;,(Rr*hj)
@) = Fh(re®y — H(r, ). By definition (1.6),

Sua®)@) 5 [ [0 — e[ L0 £ D gy

= |1 — reid|er

+ [S:a - r)a«(S" | Hy(r, 0 + 6) " d¢>mdr]”q = Q,(6) + @.(0), say .

- |1 — re?|*”

Hence, replacing S, ,(h)(6) by Q.(0) + @Q,6) in (3.1), we get
(3.2) S, o(£)(6) = Sea(9)(0) + Qu(0) + Q:(6) -

We estimate the each terms in the right hand side.
The estimation for S, ,(g). For any g, # > X, we see that ge L*(—m, «)
and [|g|lZ = C,, .7 g]li < Chu* || f1Ii by (2.9). In particular, if we take

A< p<p, then [[S, (9l = Coppollglli = Couot” || 1} by theorem B
in the introduction. Therefore

2
(3.9 {oe (=7, 2 8.0 > £}| < (S 11)
K
The estimation for @Q,. Note that »p < q. Then we have

| @uoeas = " [(1" 2= Hr, 0 + 9)ds) " drdo

— - |1 — re*?|*®

R o

-z |1 — re*|*?

IA

(by Minkowski’s inequality)
< Ca,,,S:(l — r)‘””(S | Hr, 0)|"d0)dr (by lemma 1)

T
—n

< Co,_,,S:(l — r)wg;( 10_2"7 )H]Hl(fr, 9) | dodr (by lemma 5)

< C;,,,/cq—lgls; 5 [(R,=hy)(0)|dodr

*
0 {i:0e1%)
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= G B[ | 1Bk 0 [d0ar
ji=1Jo |:1;-
oo C P
s Gt 3, 1] < er( a1 1)) (by lemma 7 and (2.5)).
7=1
Therefore we can conclude that

(3.4 |{oe(-m ma.0 > £} < (Sepsi) -

The estimation for @,. We set A’ = Xi.;,cmh; for every i. Then
Hy(r, ¢)= (R, = h¥)(¢) for ¢ € I;. I* contains only three intervals I; for each 7.
Therefore,

Rl = 3 Gkl Ck 3 Q2L) = 3.2MCk| L[ = Ck | L[
{4:15C13) (5:15C1})

by (2.10) and (2.2). We also have |1 — r¢¥~?| = C|0 — 7;| for ¢ 2,¢6€ I,
and the center 7; of I, by the relation (2.3). Now we shall estimate
[Q.(0)]” at 8¢ 2. Since Hy(r,¢) = 0 for ¢¢ 2,
1/ o _ a q/p ple
@or =[] =07 _ime, 9)rds) dr|

o\i=1 J1; {1 _ /rec(¢—0} |ap

[So<i . I"”S (1 — 7| Hy(r, §)|? d¢>md'r]p/q

iz1 l

II/\

0 —
o ple
oLt (@ - nime, oar) " de
— T [*" I\ Jo
(by Minkowski’s inequality)

<C, i _ix (by lemma 9)
= |0 — T

<c, S _£ILP"
= z,qé |¢9 — T,,-Iap
Since S 16 — 7,]~*d8 < Cy,|L,~*™*+, we have
7]
P, < ? < k? Czq
[ [@Ord < 6. 3 0o Ll < e (Sl £11)

Hence

{oete Qo) > £} < (Soysin)

The measure |2| is estimated by (2.5). Therefore we get
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. K C;,q 2
(3.5 [{re(=m mi @0 = £}| = (L
From the estimates (3.3), (8.4) and (3.5), it follows the required estimate:
. Cl,q 2
(3.6) {oe (=7 @3 8.0 > o} = (S2iis11)
When Q2 = (-7, 7], we have easily

. G, g

3.7 {oe (=m 2 8.0 > o}| < 121 = (11111

by a property of the maximal function of Hardy-Littlewood. Consequently
we have the theorem with a constant greater than C,, in (3.6) and C; in
3.7).

4. Proof of theorem 2. In the case (1.4), theorem 2 is deduced from
theorem 3, so that we prove the case (1.5). Without loss of generality,
we may assume that Fe H? is free from zero. We set G(z) = [F(z)]** for
some 1 < p<p. Then Ge H* and the boundary function G(f) is in
L#*(—m, ). Furthermore, if we set

0<l|h|=n

Gx(d) = sup (%S:IG((i + r)l/‘dr)”" :

then |G(re'"+?)| < C.GE(O)[1 + |8|/L — r)]'/*. (See e.g. G. Sunouchi [4;
Lemma 3]) Applying this relation and F'(2) = (#/M)[G(2)]*“/*~'G'(z), we have

gx (F)(6) = {S(l T)aq(g—zl[G(/re"(0+¢))]([1l2) G (re o) [ ¢> dr}llq

|1 — re'é|or
. < - 1 _ . l G’(/'-et(0+¢)) |p qa/p i/q
(4 1) = me{G:(e)} (ki {So(l 7) “‘(S__: Il — ,,-ei¢]1’//‘ ¢> dr}

= CLuGEO}*7g5,(G)(©)

where @ = 1/p¢. Since B, ¢ and p satisfy the relation (1.4) replaced « and
A by B and p, respectively, we have from the above argument

Ho € (=, @); g5.(G)(6) > (C},.£)"""}|

= (rgml6h) = (Pl i)

By a property of the maximal function of Hardy-Littlewood,
{0 e (—7r m); Gi(0) > (C},.k)"H} |

(4.3) v _ {Cau !
< G )lllGH (221 P11

(4.2)
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The relation (4.1) and the estimates (4.2) and (4.3) give

2
’

{0e (=, m; g2, F)0) > 1) < (L | )

and this completes the proof.
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