Tôhoku Math. Journ. 24 (1972), 191-199.

TAUBERIAN THEOREMS FOR (\Re, p, α) SUMMABILITY

Dedicated to Professor Gen-ichirô Sunouchi on his 60th birthday

HIROSHI HIROKAWA

(Received Dec. 1, 1971)

1. Introduction. Professor G. Sunouchi has introduced the summability (\Re, α) and (\Re^*, α) in his paper [4]. Later we [3] have introduced, as generalizations of these summability, the summability (\Re, p, α) defined as follows. Throughout this paper, p denotes a positive integer and α denotes a real number, not necessarily an integer, such that $0 < \alpha < p$. Let us put

$$C_{p,lpha}=\int_{0}^{\infty}rac{\sin^{p}x}{x^{lpha+1}}\,dx$$
 ,

(1.1)
$$\varphi(n, t) \equiv \varphi(nt) \equiv (C_{p,\alpha})^{-1} \int_{nt}^{\infty} \frac{\sin^p x}{x^{\alpha+1}} dx = (C_{p,\alpha})^{-1} \int_{t}^{\infty} \frac{\sin^p nu}{n^{\alpha} u^{\alpha+1}} du$$
.

Then a series $\sum_{n=0}^{\infty} a_n$ is said to be summable (\Re, p, α) to s if the series in

$$f(p, \alpha, t) = a_0 + \sum_{n=1}^{\infty} a_n \varphi(nt)$$

converges for t positive and small and $f(p, \alpha, t) \to s$ as $t \to +0$. Under this definition, the summability (\Re, α) and the summability (\Re^*, α) are reduced to the summability $(\Re, 1, \alpha)$ and the summability $(\Re, 2, \alpha)$, respectively. On the other hand, for a series $\sum a_n$, let us write $\sigma_n^\beta = s_n^\beta/A_n^\beta$, where s_n^β and A_n^β are defined by the relations

(1.2)
$$(1-x)^{-\beta-1} = \sum_{n=0}^{\infty} A_n^{\beta} x^n$$
 and $(1-x)^{-\beta-1} \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} s_n^{\beta} x^n$.

Then, if $\sigma_n^{\beta} \to s$ as $n \to \infty$, we say that the series $\sum_{n=0}^{\infty} a_n$ is summable $(C, \beta), \beta > -1$, to s.

Concerning (\Re, p, α) summability, we [3] have proved the following theorems.

THEOREM A. Let $0 < \beta < \alpha < p$. Then, if a series $\sum_{n=0}^{\infty} a_n$ is summable (C, β) to s, the series $\sum_{n=0}^{\infty} a_n$ is summable (\Re, p, α) to s.

THEOREM B. Let $0 < \alpha < p$, $\lambda_n > 0$ $(n = 1, 2, 3, \cdots)$ and the series $\sum_{n=1}^{\infty} \lambda_n/n$ converge. Then, if

$$s_n^{lpha} - s A_n^{lpha} = o(n^{lpha} \lambda_n)$$
,

the series $\sum_{n=0}^{\infty} a_n$ is summable (\Re, p, α) to s.

In Theorem B, we may take $\lambda_n = 1/(\log(n+2))^{1+\delta}, \delta > 0$. Then we know that if

$${
m s}_n^{\scriptscriptstyle 1} = {\it o}(n/(\log(n+2))^{{\scriptscriptstyle 1+\delta}})$$
 ,

the series $\sum_{n=0}^{\infty} a_n$ is summable (\Re , p, 1), p > 1, to 0. However we have the following.

THEOREM 1. There exists a series $\sum_{n=0}^{\infty} a_n$ which is not summable $(\Re, p, 1), p > 1$, but satisfies the condition

(1.3)
$$s_n^1 = o(n/\log(n+2))$$
.

This is proved in §3. Since the condition (1.3) implies the (C, 1) summability of the series $\sum_{n=0}^{\infty} a_n$, we see that the (C, 1) summability does not necessarily imply the $(\Re, p, 1)$ summability when p > 1. One of the object of this paper is to study Tauberian condition for the $(\Re, p, 1)$ summability of the series which satisfies the condition (1.3). Concerning this problem we have the following.

THEOREM 2. Let
$$0 < \alpha < p$$
 and let $0 < \delta < \alpha$. Suppose that

(1.4)
$$s_n^{\alpha} - sA_n^{\alpha} = o(n^{\alpha}/\log(n+2))$$

and

(1.5)
$$\sum_{\nu=n}^{2n} (|a_{\nu}| - a_{\nu}) = O(n^{\alpha-\delta}) .$$

Then the series $\sum_{n=0}^{\infty} a_n$ is summable (\Re, p, α) to s.

On the other hand we have the following theorems.

THEOREM 3. Let $0 < \alpha < p$ and let $0 < \gamma < \beta \leq p - 1$. Suppose that (1.6) $s_n^{\beta} - sA_n^{\beta} = o(n^{\gamma})$

and

(1.7)
$$\sum_{\nu=n}^{\infty} \frac{|a_{\nu}|}{\nu} = O(n^{-(1-\delta)}),$$

where $0 < \delta < 1$ and $\delta = \alpha(\beta - \gamma)/(\beta + 1 - \alpha)$. Then the series $\sum_{n=0}^{\infty} a_n$ is summable (\Re, p, α) to s.

THEOREM 4. Let p be an odd integer. Then, in Theorem 3, we may

192

replace $\beta \leq p-1$ and $\delta = \alpha(\beta-\gamma)/(\beta+1-\alpha)$ by $\beta \leq p$ and $\delta = (\alpha+1)(\beta-\gamma)/(\beta-\alpha)$, respectively.

Since, for fixed α , β , γ ,

$$\alpha(\beta-\gamma)/(\beta+1-\alpha) < (\alpha+1)(\beta-\gamma)/(\beta-\alpha)$$
,

we see that Theorem 4 is better than Theorem 3. If $\gamma < \alpha$, the condition (1.6) implies $s_n^{\gamma} - s A_n^{\gamma} = o(n^{\gamma})$, that is, the series $\sum_{n=0}^{\infty} a_n$ is summable (C, γ) to s. Then, by Theorem A, the series $\sum_{n=0}^{\infty} a_n$ is summable (\Re, p, α) to s. Thus we see that Theorems 3 and 4 are significant for $\alpha \leq \gamma$. In § 6, Theorems 2, 3 and 4 are proved by means of the following theorems.

THEOREM 5. Let ω be a positive integer and let $0 < \tau < \omega$. Let $\chi(t)$ be a function defined for $t \ge 0$ such that

(1.8) $\chi(0) = \chi(+0) = 1$, $\chi(t) = O(t^{-\tau})$,

(1.9)
$$\Delta^m \chi(nt) = O(t^{m-\tau-1}n^{-\tau-1}), \quad 0 < m \leq \omega + 1,$$

and, in addition, when τ is an integer

$$(1.10) \qquad \qquad \Delta^{\tau+1}\chi(nt) = O(tn^{-\tau}) ,$$

where $\Delta^m \chi(nt)$ denotes the m-th difference of $\chi(nt)$ with respect to n and m denotes an integer. Let $0 < \delta < \tau$. Suppose that

(1.11)
$$s_n^{\tau} - sA_n^{\tau} = o(n^{\tau}/\log(n+2))$$

and

(1.12)
$$\sum_{\nu=n}^{2n} (|a_{\nu}| - a_{\nu}) = O(n^{\tau-\delta}) .$$

Then the series $\sum_{n=0}^{\infty} a_n \chi(nt)$ converges for t, positive and small, and its sum tends to s as $t \to +0$.

THEOREM 6. Let ω be a positive integer and let $0 < \tau < \omega$. Let $\chi(t)$ be a function defined for $t \ge 0$ such that

(1.13)
$$\chi(0) = \chi(+0) = 1$$
, $\chi(t) = O(t^{-\tau})$

and

(1.14)
$$\Delta^m \chi(nt) = O(t^{m-\tau}n^{-\tau}), \quad 0 < m \leq \omega ,$$

where m denotes an integer. Let $\tau - 1 < \gamma < \beta \leq \omega - 1$. Suppose that a series $\sum_{n=0}^{\infty} a_n$ satisfies the conditions (1.6) and (1.7) in which

$$0<\delta<1$$
 and $\delta= au(eta\!-\!\gamma)/(eta\!+\!1\!-\! au)$.

Then the series $\sum_{n=0}^{\infty} a_n \chi(nt)$ converges for t, positive and small, and its sum tends to s as $t \to +0$.

Theorems 5 and 6 are proved in §4 and §5, respectively.

2. Some Lemmas.

LEMMA 1. Let $0 < \delta < \tau$ and let $s_n^{\beta} = o(n^{\beta})$, $\beta > 0$. Then the condition (1.12) implies

(2.1)
$$\sum_{\nu=n}^{\infty} \frac{|a_{\nu}|}{\nu^{\tau}} = O(n^{-\delta}) \quad and \quad s_n \equiv s_n^0 = O(n^{\tau-\delta}) .$$

Proof is similar to the proof of Lemma 3 in [2], so we omit it.

LEMMA 2. Let $0 < \delta < \tau$. Then the condition (1.7) implies

(2.2)
$$\sum_{\nu=n}^{\infty} \frac{|a_{\nu}|}{\nu^{\tau}} = O(n^{\delta-\tau}) \quad and \quad s_n \equiv s_n^0 = O(n^{\delta}) .$$

PROOF. Let $r_n = \sum_{\nu=n}^{\infty} |a_{\nu}|/\nu$. Then

$$\sum_{
u=n}^{2^n} |a_
u| = \sum_{
u=n}^{2^n}
u(r_
u - r_{
u+1}) = \sum_{
u=n+1}^{2^n} r_
u + nr_n - 2nr_{2n+1} = O(n^\delta)$$

Hence we have

$$\sum_{
u=n}^{\infty} rac{|a_{
u}|}{
u^{ au}} = \sum_{\mu=0}^{\infty} \sum_{
u=2^{\mu}n}^{2^{\mu+1n-1}} rac{|a_{
u}|}{
u^{ au}} \le n^{- au} \sum_{\mu=0}^{\infty} 2^{-\mu au} \sum_{
u=2^{\mu}n}^{2^{\mu+1n-1}} |a_{
u}|
onumber \ = O\Big(n^{- au} \sum_{\mu=0}^{\infty} 2^{-(au-\delta)\mu} n^{\delta}\Big) = O(n^{\delta- au}) \ ,$$

which proves the required result. $s_n = O(n^{\delta})$ is similarly proved.

LEMMA 3. Let $0 < \alpha < p$ and let m be an integer. Then, for $\varphi(t)$ in (1.1),

(2.3)
$$\Delta^m \varphi(nt) = O(t^{m-\alpha} n^{-\alpha}) \qquad \text{when } 0 \leq m \leq p ,$$

and, for an odd integer p,

(2.5)
$$\varphi(nt) = O(t^{-\alpha-1}n^{-\alpha-1})$$
.

PROOF. This lemma for $m \ge 1$ is Lemma 1 in [3] and (2.3) for m = 0 is trivial. (2.5) is proved by means of the identity

$$(-1)^{(p-1)/2} 2^{p-1} (\sin t)^p \\ = \sin pt - \binom{p}{1} \sin(p-2)t + \cdots + (-1)^{(p-1)/2} \binom{p}{(p-1)/2} \sin t$$

and, for a constant $k \neq 0$,

TAUBERIAN THEOREMS FOR (\Re, p, α) SUMMABILITY

$$\int_u^\infty \frac{\sin kx}{x^{\alpha+1}} dx = \frac{\cos ku}{ku^{\alpha+1}} - \frac{\alpha+1}{k} \int_u^\infty \frac{\cos kx}{x^{\alpha+2}} dx = O(u^{-\alpha-1}) \cdot$$

3. Proof of Theorem 1. Omitting the constant factor in (1.1), let

$$arphi_0(n,t)\equiv arphi_0(nt)=\int_{nt}^\infty rac{\sin^p x}{x^2}\,dx\;.$$

By the Abel transformation two times, we have, by (1.3) and (2.3),

$$\sum_{n=1}^{\infty} a_n \varphi_0(nt) = \sum_{n=1}^{\infty} s_n^{\scriptscriptstyle 1} \varDelta^2 \varphi_0(nt) = \sum_{n=1}^{\infty} \varepsilon_n c_n(t)$$
 ,

where $\varepsilon_n = s_n^1 \log (n+2)/n$ and $c_n(t) = n \varDelta^2 \varphi_0(nt)/\log(n+2)$ when $n \ge 1$. For the proof of Theorem, it is sufficient to prove that the sequence-to-function transformation $\sum \varepsilon_n c_n(t)$ is not convergence-preserving. In order that the transformation is convergence-preserving, $\sum_{n=1}^{\infty} |c_n(t)|$ must be bounded in $0 < t < t_0$. But this series is divergent at some point in an arbitrary neighbourhood of origin. The proof of this is as follows.

$$egin{aligned} arphi^2 arphi_0(nt) &= arphi \Big(\int_{nt}^{(n+1)t} rac{\sin^p x}{x^2} dx \Big) \ &= \int_0^t &igg\{ rac{\sin^p (nt\!+\!x)}{(nt\!+\!x)^2} - rac{\sin^p ((n\!+\!1)t\!+\!x)}{((n\!+\!1)t\!+\!x)^2} igg\} dx \;. \end{aligned}$$

We now take $t = 2\pi/k$, $k = 8, 9, 10, \dots$, and $n = km, m = 1, 2, 3, \dots$. Then

Hence

$$| arDelta^2 arphi_{\scriptscriptstyle 0}(km,\,2\pi/k) | \geq b_{\scriptscriptstyle 2}(m) \, - \, b_{\scriptscriptstyle 1}(m)$$
 .

On the other hand, when $t = 2\pi/k$,

$$egin{aligned} b_2(m) &= \int_0^t rac{\sin^p(x+t)\,-\,\sin^p x}{(2m\pi+x+t)^2} \,dx &\geq rac{\sin^{p-1} t}{4(m\pi+t)^2} \int_0^t (\sin(x+t)\,-\,\sin x) dx \ &= rac{\sin^{p-1} t \cdot \cos t \cdot (1-\cos t)}{2(m\pi+t)^2} &\geq rac{\sin^{p-1} t \cdot \cos t \cdot (1-\cos t)}{8\pi^2} \cdot rac{1}{m^2} \end{aligned}$$

and

$$b_1(m) = \int_0^t \frac{(t^2 + 2xt + 4m\pi t)\sin^p x}{(2m\pi + x)^2(2m\pi + x + t)^2} dx < \frac{1}{m^3}$$
.

Thus we have, for $t = 2\pi/k$, $k = 8, 9, 10, \cdots$,

$$\begin{split} \sum_{n=1}^{\infty} |c_n(t)| &= \sum_{n=1}^{\infty} \frac{n}{\log(n+2)} |\Delta^2 \varphi_0(n, 2\pi/k)| \\ &\geq \sum_{m=1}^{\infty} \frac{km}{\log(km+2)} |\Delta^2 \varphi_0(km, 2\pi/k)| \\ &\geq \sum_{m=1}^{\infty} \left(\frac{\sin^{p-1}t \cdot \cos t \cdot (1 - \cos t)}{8\pi^2} \cdot \frac{k}{m \log(km+2)} - \frac{km}{\log(km)} \cdot \frac{1}{m^3} \right) \\ &= \infty \end{split}$$

and the proof is completed.

4. Proof of Theorem 5. We shall first prove Theorem when τ is not an integer. For the proof, we may assume, without loss of generality, that s = 0 and $a_0 = 0$. We now take r such that $r\delta - \tau > 0$ and $(2\tau + 1 - [\tau])r > 2\tau + 1^{*}$ and we put $\xi = [t^{-r}], 0 < t < 1$. Let us write

$$\sum_{n=1}^{\infty} a_n \chi(nt) = \left(\sum_{n=1}^{\xi+1} + \sum_{n=\xi+2}^{\infty}\right) = U(t) + V(t) ,$$

where, by (1.8) and (2.1),

$$V(t) = \sum_{n=\xi+2}^{\infty} a_n \chi(nt) = O\left(t^{-\tau} \sum_{n=\xi}^{\infty} |a_n|/n^{\tau}\right) = O(t^{-\tau} \xi^{-\delta}) = O(t^{\tau\delta-\tau}) = o(1) ,$$

which proves the convergence of the series $\sum_{n=0}^{\infty} a_n \chi(nt)$ for t positive.

We shall next consider U(t). Using Abel's transformation

$$U(t) = \sum_{n=1}^{\xi+1} a_n \chi(nt) = \sum_{n=1}^{\xi} s_n \Delta \chi(nt) + s_{\xi+1} \chi((\xi+1)t) ,$$

where, by (1.8) and (2.1),

$$s_{\xi+1}\chi((\xi+1)t) = O(\xi^{\tau-\delta}\cdot\xi^{-\tau}t^{-\tau}) = O(t^{r\delta-\tau}) = o(1)$$
.

Now, by the well-known formula

$$s_n = \sum_{\nu=1}^n A_{n-\nu}^{-\tau-1} s_{\nu}^{\tau} ,$$
$$\sum_{n=1}^{\xi} s_n \Delta \chi(nt) = \sum_{\nu=1}^{\xi} s_{\nu}^{\tau} \sum_{n=\nu}^{\xi} A_{n-\nu}^{-\tau-1} \Delta \chi(nt) = \sum_{\nu=1}^{\xi} s_{\nu}^{\tau} G(\nu, \xi, t)$$

$$=\left(\sum\limits_{
u=1}^{\eta}+\sum\limits_{
u=\eta+1}^{\xi}
ight)=~U_{1}(t)+~U_{2}(t),~~{
m say}$$
 ,

*) Throughout this paper, [x] denotes the greatest integer less than x.

196

where $G(\nu, \xi, t) = \sum_{n=\nu}^{\xi} A_{n-\nu}^{-\tau-1} \Delta \chi(nt)$ and $\eta = [1/t]$. Then we have, by the method similar to that of the proof of Lemma 2 in [3], for ν , ξ and t,

$$G(\boldsymbol{\nu},\,\boldsymbol{\xi},\,t)\,=\,O(\boldsymbol{\nu}^{-\tau-1})$$

and

(4.1)
$$G(\nu, \xi, t) = O(\nu^{[\tau]-2\tau}t^{[\tau]-\tau+1}) + O(\xi^{[\tau]-2\tau-1}t^{-\tau}) .$$

Hence

$$\begin{split} U_{1}(t) &= o\Big(\sum_{\nu=1}^{\eta} \frac{\nu^{\tau}}{\log(\nu+2)} \cdot \nu^{[\tau]-2\tau} t^{[\tau]-\tau+1}\Big) + o\Big(\sum_{\nu=1}^{\eta} \frac{\nu^{\tau}}{\log(\nu+2)} \cdot \xi^{[\tau]-2\tau-1} t^{-\tau}\Big) \\ &= o\Big(t^{[\tau]-\tau+1} \sum_{\nu=1}^{\eta} \nu^{[\tau]-\tau}\Big) + o\Big(\xi^{[\tau]-2\tau-1} t^{-\tau} \sum_{\nu=1}^{\eta} \nu^{\tau}\Big) \\ &= o(1) \end{split}$$

because $(2\tau - [\tau] + 1) r > 2\tau + 1$, by the our assumption, and

$$egin{aligned} U_2(t) &= o\Big(\sum_{
u=\eta+1}^{\xi} rac{
u^{ au}}{\log
u} \cdot rac{1}{
u^{ au+1}}\Big) = o(\log\log \xi - \log\log \eta) \ &= o(\log r) = o(1) \ . \end{aligned}$$

Summing up the above estimates, we obtain

$$\sum_{n=1}^{\infty} a_n \chi(nt) \to 0 \quad \text{as} \quad t \to +0 \ ,$$

which is the required result.

Next we shall prove Theorem when τ is an integr. The method of the proof runs similarly to that of the proof when τ is not an integer. So we shall remark some of different points and omit the proof in detail. In this case we take r such that $r\delta - \tau > 0$ and $r > \tau$ and use (1.10) in place of (4.1) in the estimation of $U_1(t)$ above. Then the remaining part is similarly proved.

5. Proof of Theorem 6. We shall prove Theorem when β is not an integer, the case in which β is an integer being easily proved by the method analogous to the following argument. For the proof we may assume, without loss of generality, that s = 0. We first remark that

$$\tau - \delta = \tau (\gamma + 1 - \tau)/(\beta + 1 - \tau) > 0$$
.

Hence, by Lemma 2, we have (2.2). Let $k = [\beta] + 1$. Then, by $\beta < \omega - 1$, we get $k + 1 \leq w$. Let us now write

$$\sum_{n=0}^{\infty} a_n \chi(nt) = \left(\sum_{n=0}^{\varepsilon+k+1} + \sum_{n=\varepsilon+k+2}^{\infty}\right) = U(t) + V(t) ,$$

where $\xi = [(\varepsilon t)^{-\rho}]$, ε being an arbitrary fixed positive number, and

$$ho = rac{ au}{ au - \delta} = rac{eta + 1 - au}{\gamma + 1 - au} \; .$$

Then, by (1.13) and (2.2),

$$V(t) = \sum_{n=\xi+k+2}^{\infty} a_n \chi(nt) = O\left(t^{-\tau} \sum_{n=\xi}^{\infty} \frac{|a_n|}{n^{\tau}}\right) = O(\xi^{\xi-\tau} t^{-\tau}) = O(\varepsilon^{\tau}) .$$

We shall next prove $U(t) = o(1) + O(\varepsilon^{\tau})$. By the Abel transformation (k + 1) times, we have

$$\begin{split} U(t) &= \sum_{n=0}^{\xi+k+1} a_n \chi(nt) = \sum_{n=0}^{\xi} s_n^k \varDelta^{k+1} \chi(nt) + \sum_{\nu=0}^k s_{\xi+k-\nu+1}^\nu \varDelta^{\nu} \chi((\xi+k-\nu+1)t) \\ &= U_0(t) + \sum_{\nu=0}^k W_\nu(t), \quad \text{say} \ . \end{split}$$

Using the Dixon and Ferrar convexity theorem [1], we have, by (1.6) and (2.2),

$$s_n^
u = o(n^{(\delta(eta-
u)+\gamma
u)/eta})$$
 , $0 <
u < eta$.

Hence, by (1.13), (1.14) and (2.2),

$$\begin{split} W_{0}(t) &= O(\xi^{\delta} \cdot \xi^{-\tau} t^{-\tau}) = O(\xi^{\delta-\tau} t^{-\tau}) = O(\xi^{\tau}) ,\\ W_{\nu}(t) &= O(\xi^{(\delta(\beta-\nu)+\gamma\nu)/\beta} \cdot \xi^{-\tau} t^{\nu-\tau}) \\ &= o(t^{\nu-\tau-\tau(\delta(\beta-\nu)+\gamma\nu-\beta\tau)/\beta(\tau-\delta)}) \\ &= o(t^{(\tau\nu/\beta(\tau-\delta))\cdot(\beta-\gamma)/(\beta+1-\tau)}) = o(1) , \end{split}$$
 for $\nu = 1, 2, \cdots, k-1$,

and, since $s_n^k = o(n^{k-\beta+\gamma})$,

$$egin{aligned} W_k(t) &= o(\xi^{k-eta+ au}\cdot\xi^{- au}t^{k- au}) = o(\xi^{k+ au- au}t^{k- au}) \ &= o(t^{k- au- au}\cdot(k+ au- au- au)) = o(1) \ . \end{aligned}$$

It remains to prove that $U_0(t) = o(1)$. But this is proved by the method analogous to that of the proof of $U_0(t) = o(1)$ in the proof of Theorem 1 in [2]. Thus, summing up the above estimates, we obtain

$$\lim_{t\to+0} \sup_{n\to\infty} \left| \sum_{n=0}^{\infty} a_n \chi(nt) \right| = 0(\varepsilon^{r}) .$$

Since ε is an arbitrary positive number, we have

$$\lim_{t\to+0}\sum_{n=0}^{\infty}a_n\chi(nt)=0,$$

and Theorem is completely proved.

6. Proofs of Theorems 2, 3 and 4. Under the assumptions of

198

TAUBERIAN THEOREMS FOR (\Re, p, α) SUMMABILITY

Theorem 2, by Lemma 3, we can take $\chi(t) = \varphi(t)$, $\tau = \alpha$ and w = p, in Theorem 5. Then Theorem 2 is proved by means of Theorem 5. On the other hand, if we take $\chi(t) = \varphi(t)$, $\tau = \alpha$ and w = p, in Theorem 6, then, combining the remark to Theorem 3 given in §1, we have Theorem 3. Similarly, by (2.4) and (2.5), if we take $\chi(t) = \varphi(t)$, $\tau = \alpha + 1$ and $\omega = p + 1$, in Theorem 6, then we have Theorem 4.

References

- A. L. DIXON AND W. L. FERRAR, On Cesàro sums, J. London Math. Soc., 7 (1932), 87-93.
- [2] H. HIROKAWA, Riemann-Cesàro methods of summability II, Tôhoku Math. J., 9 (1957), 13-26.
- [3] H. HIROKAWA, (ℜ, p, α) methods of summability, Tôhoku Math. J., 16 (1964), 374-383.
- [4] G. SUNOUCHI, Characterization of certain classes of functions, Tôhoku Math. J., 14 (1962), 127-134.

DEPARTMENT OF MATHEMATICS CHIBA UNIVERSITY CHIBA, JAPAN