TAUBERIAN THEOREMS FOR ((Ω, p, α) SUMMABILITY

Dedicated to Professor Gen-ichirô Sunouchi on his 60th birthday

Hiroshi Hirokawa

(Received Dec. 1, 1971)

1. Introduction. Professor G. Sunouchi has introduced the summability (Ω, α) and (Ω^{*}, α) in his paper [4]. Later we [3] have introduced, as generalizations of these summability, the summability (Ω, p, α) defined as follows. Throughout this paper, p denotes a positive integer and α denotes a real number, not necessarily an integer, such that $0<\alpha<p$. Let us put

$$
\begin{gather*}
C_{p, \alpha}=\int_{0}^{\infty} \frac{\sin ^{p} x}{x^{\alpha+1}} d x \\
\varphi(n, t) \equiv \varphi(n t) \equiv\left(C_{p, \alpha}\right)^{-1} \int_{n t}^{\infty} \frac{\sin ^{p} x}{x^{\alpha+1}} d x=\left(C_{p, \alpha}\right)^{-1} \int_{t}^{\infty} \frac{\sin ^{p} n u}{n^{\alpha} u^{\alpha+1}} d u \tag{1.1}
\end{gather*}
$$

Then a series $\sum_{n=0}^{\infty} a_{n}$ is said to be summable ($\left.\Re, p, \alpha\right)$ to s if the series in

$$
f(p, \alpha, t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \varphi(n t)
$$

converges for t positive and small and $f(p, \alpha, t) \rightarrow s$ as $t \rightarrow+0$. Under this definition, the summability (Ω, α) and the summability ($\left.\Omega^{*}, \alpha\right)$ are reduced to the summability $(\Omega, 1, \alpha)$ and the summability $(\Omega, 2, \alpha)$, respectively. On the other hand, for a series $\sum a_{n}$, let us write $\sigma_{n}^{\beta}=s_{n}^{\beta} / A_{n}^{\beta}$, where s_{n}^{β} and A_{n}^{β} are defined by the relations

$$
\begin{equation*}
(1-x)^{-\beta-1}=\sum_{n=0}^{\infty} A_{n}^{\beta} x^{n} \quad \text { and } \quad(1-x)^{-\beta-1} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} s_{n}^{\beta} x^{n} . \tag{1.2}
\end{equation*}
$$

Then, if $\sigma_{n}^{\beta} \rightarrow s$ as $n \rightarrow \infty$, we say that the series $\sum_{n=0}^{\infty} a_{n}$ is summable $(C, \beta), \beta>-1$, to s.

Concerning (Ω, p, α) summability, we [3] have proved the following theorems.

Theorem A. Let $0<\beta<\alpha<p$. Then, if a series $\sum_{n=0}^{\infty} a_{n}$ is summable (C, β) to s, the series $\sum_{n=0}^{\infty} a_{n}$ is summable (\Re, p, α) to s.

Theorem B. Let $0<\alpha<p, \lambda_{n}>0(n=1,2,3, \cdots)$ and the series $\sum_{n=1}^{\infty} \lambda_{n} / n$ converge. Then, if

$$
s_{n}^{\alpha}-s A_{n}^{\alpha}=o\left(n^{\alpha} \lambda_{n}\right),
$$

the series $\sum_{n=0}^{\infty} a_{n}$ is summable (Ω, p, α) to s.
In Theorem B, we may take $\lambda_{n}=1 /(\log (n+2))^{1+\delta}, \delta>0$. Then we know that if

$$
s_{n}^{1}=o\left(n /(\log (n+2))^{1+\delta}\right),
$$

the series $\sum_{n=0}^{\infty} a_{n}$ is summable ($\Omega, p, 1$), $p>1$, to 0 . However we have the following.

Theorem 1. There exists a series $\sum_{n=0}^{\infty} a_{n}$ which is not summable ($, ~ p, 1), p>1$, but satisfies the condition

$$
\begin{equation*}
s_{n}^{1}=o(n / \log (n+2)) \tag{1.3}
\end{equation*}
$$

This is proved in §3. Since the condition (1.3) implies the ($C, 1$) summability of the series $\sum_{n=0}^{\infty} a_{n}$, we see that the ($C, 1$) summability does not necessarily imply the ($\Omega, p, 1$) summability when $p>1$. One of the object of this paper is to study Tauberian condition for the ($(\Omega, p, 1)$ summability of the series which satisfies the condition (1.3). Concerning this problem we have the following.

Theorem 2. Let $0<\alpha<p$ and let $0<\delta<\alpha$. Suppose that

$$
\begin{equation*}
s_{n}^{\alpha}-s A_{n}^{\alpha}=o\left(n^{\alpha} / \log (n+2)\right) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\nu=n}^{2 n}\left(\left|a_{\nu}\right|-a_{\nu}\right)=O\left(n^{\alpha-\delta}\right) \tag{1.5}
\end{equation*}
$$

Then the series $\sum_{n=0}^{\infty} a_{n}$ is summable ((\mathbb{R}, α) to s.
On the other hand we have the following theorems.
Theorem 3. Let $0<\alpha<p$ and let $0<\gamma<\beta \leqq p-1$. Suppose that

$$
\begin{equation*}
s_{n}^{\beta}-s A_{n}^{\beta}=o\left(n^{\gamma}\right) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\nu=n}^{\infty} \frac{\left|a_{\nu}\right|}{\nu}=O\left(n^{-(1-\delta)}\right) \tag{1.7}
\end{equation*}
$$

where $0<\delta<1$ and $\delta=\alpha(\beta-\gamma) /(\beta+1-\alpha)$. Then the series $\sum_{n=0}^{\infty} a_{n}$ is summable (Ω, p, α) to s.

Theorem 4. Let p be an odd integer. Then, in Theorem 3, we may
replace $\beta \leqq p-1$ and $\delta=\alpha(\beta-\gamma) /(\beta+1-\alpha) \quad$ by $\beta \leqq p$ and $\delta=$ $(\alpha+1)(\beta-\gamma) /(\beta-\alpha)$, respectively.

Since, for fixed α, β, γ,

$$
\alpha(\beta-\gamma) /(\beta+1-\alpha)<(\alpha+1)(\beta-\gamma) /(\beta-\alpha)
$$

we see that Theorem 4 is better than Theorem 3. If $\gamma<\alpha$, the condition (1.6) implies $s_{n}^{\gamma}-s A_{n}^{\gamma}=o\left(n^{\gamma}\right)$, that is, the series $\sum_{n=0}^{\infty} a_{n}$ is summable (C, γ) to s. Then, by Theorem A, the series $\sum_{n=0}^{\infty} a_{n}$ is summable (Ω, p, α) to s. Thus we see that Theorems 3 and 4 are significant for $\alpha \leqq \gamma$. In $\S 6$, Theorems 2,3 and 4 are proved by means of the following theorems.

Theorem 5. Let ω be a positive integer and let $0<\tau<\omega$. Let $\chi(t)$ be a function defined for $t \geqq 0$ such that

$$
\begin{align*}
\chi(0)=\chi(+0)=1, & \chi(t)=O\left(t^{-\tau}\right) \tag{1.8}\\
\Delta^{m} \chi(n t)=O\left(t^{m-\tau-1} n^{-\tau-1}\right), & 0<m \leqq \omega+1 \tag{1.9}
\end{align*}
$$

and, in addition, when τ is an integer

$$
\begin{equation*}
\Delta^{\tau+1} \chi(n t)=O\left(t n^{-\tau}\right), \tag{1.10}
\end{equation*}
$$

where $\Delta^{m} \chi(n t)$ denotes the m-th difference of $\chi(n t)$ with respect to n and m denotes an integer. Let $0<\delta<\tau$. Suppose that

$$
\begin{equation*}
s_{n}^{\tau}-s A_{n}^{\tau}=o\left(n^{\tau} / \log (n+2)\right) \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\nu=n}^{2 n}\left(\left|a_{\nu}\right|-a_{\nu}\right)=O\left(n^{\tau-\delta}\right) . \tag{1.12}
\end{equation*}
$$

Then the series $\sum_{n=0}^{\infty} a_{n} \chi(n t)$ converges for t, positive and small, and its sum tends to s as $t \rightarrow+0$.

Theorem 6. Let ω be a positive integer and let $0<\tau<\omega$. Let $\chi(t)$ be a function defined for $t \geqq 0$ such that

$$
\begin{equation*}
\chi(0)=\chi(+0)=1, \quad \chi(t)=O\left(t^{-\tau}\right) \tag{1.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{m} \chi(n t)=O\left(t^{m-\tau} n^{-\tau}\right), \quad 0<m \leqq \omega, \tag{1.14}
\end{equation*}
$$

where m denotes an integer. Let $\tau-1<\gamma<\beta \leqq \omega-1$. Suppose that a series $\sum_{n=0}^{\infty} a_{n}$ satisfies the conditions (1.6) and (1.7) in which

$$
0<\delta<1 \quad \text { and } \quad \delta=\tau(\beta-\gamma) /(\beta+1-\tau)
$$

Then the series $\sum_{n=0}^{\infty} a_{n} \chi(n t)$ converges for t, positive and small, and its sum tends to s as $t \rightarrow+0$.

Theorems 5 and 6 are proved in $\S 4$ and $\S 5$, respectively.

2. Some Lemmas.

Lemma 1. Let $0<\delta<\tau$ and let $s_{n}^{\beta}=o\left(n^{\beta}\right), \beta>0$. Then the condition (1.12) implies

$$
\begin{equation*}
\sum_{\nu=n}^{\infty} \frac{\left|a_{\nu}\right|}{\nu^{\tau}}=O\left(n^{-\delta}\right) \quad \text { and } \quad s_{n} \equiv s_{n}^{0}=O\left(n^{\tau-\delta}\right) \tag{2.1}
\end{equation*}
$$

Proof is similar to the proof of Lemma 3 in [2], so we omit it.
Lemma 2. Let $0<\delta<\tau$. Then the condition (1.7) implies

$$
\begin{equation*}
\sum_{\nu=n}^{\infty} \frac{\left|a_{\nu}\right|}{\nu^{\tau}}=O\left(n^{\delta-\tau}\right) \quad \text { and } \quad s_{n} \equiv s_{n}^{0}=O\left(n^{\delta}\right) . \tag{2.2}
\end{equation*}
$$

Proof. Let $r_{n}=\sum_{\nu=n}^{\infty}\left|a_{\nu}\right| / \nu$. Then

$$
\sum_{\nu=n}^{2 n}\left|a_{\nu}\right|=\sum_{\nu=n}^{2 n} \nu\left(r_{\nu}-r_{\nu+1}\right)=\sum_{\nu=n+1}^{2 n} r_{\nu}+n r_{n}-2 n r_{2 n+1}=O\left(n^{\delta}\right)
$$

Hence we have

$$
\begin{aligned}
\sum_{\nu=n}^{\infty} \frac{\left|a_{\nu}\right|}{\nu^{\tau}}=\sum_{\mu=0}^{\infty} \sum_{\nu=2^{\mu_{n}}}^{2^{\mu+1} n-1} \frac{\left|a_{\nu}\right|}{\nu^{\tau}} & \leqq n^{-\tau} \sum_{\mu=0}^{\infty} 2^{-\mu \tau} \sum_{\nu=2^{\mu_{n}}}^{2^{\mu+1}+1 n-1}\left|a_{\nu}\right| \\
& =O\left(n^{-\tau} \sum_{\mu=0}^{\infty} 2^{-(\tau-\delta) \mu} n^{\delta}\right)=O\left(n^{\delta-\tau}\right)
\end{aligned}
$$

which proves the required result. $s_{n}=O\left(n^{\delta}\right)$ is similarly proved.
Lemma 3. Let $0<\alpha<p$ and let m be an integer. Then, for $\varphi(t)$ in (1.1),

$$
\begin{array}{lr}
\Delta^{m} \varphi(n t)=O\left(t^{m-\alpha} n^{-\alpha}\right) & \text { when } 0 \leqq m \leqq p \\
\Delta^{m} \varphi(n t)=O\left(t^{m-\alpha-1} n^{-\alpha-1}\right) \quad \text { when } 0<m \leqq p+1 \tag{2.4}
\end{array}
$$

and, for an odd integer p,

$$
\begin{equation*}
\varphi(n t)=O\left(t^{-\alpha-1} n^{-\alpha-1}\right) \tag{2.5}
\end{equation*}
$$

Proof. This lemma for $m \geqq 1$ is Lemma 1 in [3] and (2.3) for $m=0$ is trivial. (2.5) is proved by means of the identity

$$
\begin{aligned}
& (-1)^{(p-1) / 2} 2^{p-1}(\sin t)^{p} \\
& \quad=\sin p t-\binom{p}{1} \sin (p-2) t+\cdots+(-1)^{(p-1) / 2}\binom{p}{(p-1) / 2} \sin t
\end{aligned}
$$

and, for a constant $k \neq 0$,

$$
\int_{u}^{\infty} \frac{\sin k x}{x^{\alpha+1}} d x=\frac{\cos k u}{k u^{\alpha+1}}-\frac{\alpha+1}{k} \int_{u}^{\infty} \frac{\cos k x}{x^{\alpha+2}} d x=O\left(u^{-\alpha-1}\right) .
$$

3. Proof of Theorem 1. Omitting the constant factor in (1.1), let

$$
\varphi_{0}(n, t) \equiv \varphi_{0}(n t)=\int_{n t}^{\infty} \frac{\sin ^{p} x}{x^{2}} d x
$$

By the Abel transformation two times, we have, by (1.3) and (2.3),

$$
\sum_{n=1}^{\infty} a_{n} \varphi_{0}(n t)=\sum_{n=1}^{\infty} s_{n}^{1} \Delta^{2} \varphi_{0}(n t)=\sum_{n=1}^{\infty} \varepsilon_{n} c_{n}(t),
$$

where $\varepsilon_{n}=s_{n}^{1} \log (n+2) / n$ and $c_{n}(t)=n \Delta^{2} \varphi_{0}(n t) / \log (n+2)$ when $n \geqq 1$. For the proof of Theorem, it is sufficient to prove that the sequence-to-function transformation $\sum \varepsilon_{n} c_{n}(t)$ is not convergence-preserving. In order that the transformation is convergence-preserving, $\sum_{n=1}^{\infty}\left|c_{n}(t)\right|$ must be bounded in $0<t<t_{0}$. But this series is divergent at some point in an arbitrary neighbourhood of origin. The proof of this is as follows.

$$
\begin{aligned}
\Delta^{2} \varphi_{0}(n t) & =\Delta\left(\int_{n t}^{(n+1) t} \frac{\sin ^{p} x}{x^{2}} d x\right) \\
& =\int_{0}^{t}\left\{\frac{\sin ^{p}(n t+x)}{(n t+x)^{2}}-\frac{\sin ^{p}((n+1) t+x)}{((n+1) t+x)^{2}}\right\} d x
\end{aligned}
$$

We now take $t=2 \pi / k, k=8,9,10, \cdots$, and $n=k m, m=1,2,3, \cdots$. Then

$$
\begin{aligned}
\Delta^{2} \varphi_{0}\left(k m, \frac{2 \pi}{k}\right) & =\int_{0}^{t}\left\{\frac{\sin ^{p} x}{(2 m \pi+x)^{2}}-\frac{\sin ^{p}(x+t)}{(2 m \pi+x+t)^{2}}\right\} d x \\
& =\int_{0}^{t} \frac{\left(t^{2}+2 x t+4 m \pi t\right) \sin ^{p} x}{(2 m \pi+x)^{2}(2 m \pi+x+t)^{2}} d x-\int_{0}^{t} \frac{\sin ^{p}(x+t)-\sin ^{p} x}{(2 m \pi+x+t)^{2}} d x \\
& =b_{1}(m)-b_{2}(m), \text { say . }
\end{aligned}
$$

Hence

$$
\left|\Delta^{2} \varphi_{0}(k m, 2 \pi / k)\right| \geqq b_{2}(m)-b_{1}(m) .
$$

On the other hand, when $t=2 \pi / k$,

$$
\begin{aligned}
b_{2}(m) & =\int_{0}^{t} \frac{\sin ^{p}(x+t)-\sin ^{p} x}{(2 m \pi+x+t)^{2}} d x \geqq \frac{\sin ^{p-1} t}{4(m \pi+t)^{2}} \int_{0}^{t}(\sin (x+t)-\sin x) d x \\
& =\frac{\sin ^{p-1} t \cdot \cos t \cdot(1-\cos t)}{2(m \pi+t)^{2}} \geqq \frac{\sin ^{p-1} t \cdot \cos t \cdot(1-\cos t)}{8 \pi^{2}} \cdot \frac{1}{m^{2}}
\end{aligned}
$$

and

$$
b_{1}(m)=\int_{0}^{t} \frac{\left(t^{2}+2 x t+4 m \pi t\right) \sin ^{p} x}{(2 m \pi+x)^{2}(2 m \pi+x+t)^{2}} d x<\frac{1}{m^{s}}
$$

Thus we have, for $t=2 \pi / k, k=8,9,10, \cdots$,

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|c_{n}(t)\right| & =\sum_{n=1}^{\infty} \frac{n}{\log (n+2)}\left|\Delta^{2} \varphi_{0}(n, 2 \pi / k)\right| \\
& \geqq \sum_{m=1}^{\infty} \frac{k m}{\log (k m+2)}\left|\Delta^{2} \varphi_{0}(k m, 2 \pi / k)\right| \\
& \geqq \sum_{m=1}^{\infty}\left(\frac{\sin ^{p-1} t \cdot \cos t \cdot(1-\cos t)}{8 \pi^{2}} \cdot \frac{k}{m \log (k m+2)}-\frac{k m}{\log (k m)} \cdot \frac{1}{m^{3}}\right) \\
& =\infty,
\end{aligned}
$$

and the proof is completed.
4. Proof of Theorem 5. We shall first prove Theorem when τ is not an integer. For the proof, we may assume, without loss of generality, that $s=0$ and $a_{0}=0$. We now take r such that $r \delta-\tau>0$ and $(2 \tau+1-[\tau]) r>2 \tau+1^{*}$ and we put $\xi=\left[t^{-r}\right], 0<t<1$. Let us write

$$
\sum_{n=1}^{\infty} a_{n} \chi(n t)=\left(\sum_{n=1}^{\xi+1}+\sum_{n=\xi+2}^{\infty}\right)=U(t)+V(t),
$$

where, by (1.8) and (2.1),

$$
V(t)=\sum_{n=\xi+2}^{\infty} a_{n} \chi(n t)=O\left(t^{-\tau} \sum_{n=\xi}^{\infty}\left|a_{n}\right| / n^{\tau}\right)=O\left(t^{-\tau} \xi^{-\delta}\right)=O\left(t^{r \delta-\tau}\right)=o(1)
$$

which proves the convergence of the series $\sum_{n=0}^{\infty} a_{n} \chi(n t)$ for t positive.
We shall next consider $U(t)$. Using Abel's transformation

$$
U(t)=\sum_{n=1}^{\xi+1} a_{n} \chi(n t)=\sum_{n=1}^{\xi} s_{n} \Delta \chi(n t)+s_{\xi+1} \chi((\xi+1) t)
$$

where, by (1.8) and (2.1),

$$
s_{\xi+1} \chi((\xi+1) t)=O\left(\xi^{\tau-\delta} \cdot \xi^{-\tau} t^{-\tau}\right)=O\left(t^{r \delta-\tau}\right)=o(1) .
$$

Now, by the well-known formula

$$
\begin{gathered}
s_{n}=\sum_{\nu=1}^{n} A_{n-\nu}^{-\tau-1} s_{\nu}^{\tau}, \\
\sum_{n=1}^{\xi} s_{n} \Delta \chi(n t)=\sum_{\nu=1}^{\xi} s_{\nu}^{\tau} \sum_{n=\nu}^{\xi} A_{n-\nu}^{-\tau-1} \Delta \chi(n t)=\sum_{\nu=1}^{\xi} s_{\nu}^{\tau} G(\nu, \xi, t) \\
=\left(\sum_{\nu=1}^{n}+\sum_{\nu=\eta+1}^{\xi}\right)=U_{1}(t)+U_{2}(t), \quad \text { say }
\end{gathered}
$$

[^0]where $G(\nu, \xi, t)=\sum_{n=\nu}^{\xi} A_{n-\nu}^{-\tau-1} \Delta \chi(n t)$ and $\eta=[1 / t]$. Then we have, by the method similar to that of the proof of Lemma 2 in [3], for ν, ξ and t,
$$
G(\nu, \xi, t)=O\left(\nu^{-\tau-1}\right)
$$
and
\[

$$
\begin{equation*}
G(\nu, \xi, t)=O\left(\nu^{[\tau]-2 \tau} t^{[\tau]-\tau+1}\right)+O\left(\xi^{[\tau]-2 \tau-1} t^{-\tau}\right) . \tag{4.1}
\end{equation*}
$$

\]

Hence

$$
\begin{aligned}
U_{1}(t) & =o\left(\sum_{\nu=1}^{\eta} \frac{\nu^{\tau}}{\log (\nu+2)} \cdot \nu^{[\tau]-2 \tau} t^{[\tau]-\tau+1}\right)+o\left(\sum_{\nu=1}^{\eta} \frac{\nu^{\tau}}{\log (\nu+2)} \cdot \xi^{[\tau]-2 \tau-1} t^{-\tau}\right) \\
& =o\left(t^{[\tau]-\tau+1} \sum_{\nu=1}^{\eta} \nu^{[\tau]-\tau}\right)+o\left(\xi^{[\tau]-2 \tau-1} t^{-\tau} \sum_{\nu=1}^{\eta} \nu^{\tau}\right) \\
& =o(1),
\end{aligned}
$$

because $(2 \tau-[\tau]+1) r>2 \tau+1$, by the our assumption, and

$$
\begin{aligned}
U_{2}(t) & =o\left(\sum_{\nu=\eta+1}^{\xi} \frac{\nu^{\tau}}{\log \nu} \cdot \frac{1}{\nu^{\tau+1}}\right)=o(\log \log \xi-\log \log \eta) \\
& =o(\log r)=o(1) .
\end{aligned}
$$

Summing up the above estimates, we obtain

$$
\sum_{n=1}^{\infty} a_{n} \chi(n t) \rightarrow 0 \quad \text { as } \quad t \rightarrow+0
$$

which is the required result.
Next we shall prove Theorem when τ is an integr. The method of the proof runs similarly to that of the proof when τ is not an integer. So we shall remark some of different points and omit the proof in detail. In this case we take r such that $r \delta-\tau>0$ and $r>\tau$ and use (1.10) in place of (4.1) in the estimation of $U_{1}(t)$ above. Then the remaining part is similarly proved.
5. Proof of Theorem 6. We shall prove Theorem when β is not an integer, the case in which β is an integer being easily proved by the method analogous to the following argument. For the proof we may assume, without loss of generality, that $s=0$. We first remark that

$$
\tau-\delta=\tau(\gamma+1-\tau) /(\beta+1-\tau)>0
$$

Hence, by Lemma 2, we have (2.2). Let $k=[\beta]+1$. Then, by $\beta<\omega-1$, we get $k+1 \leqq w$. Let us now write

$$
\sum_{n=0}^{\infty} a_{n} \chi(n t)=\left(\sum_{n=0}^{\xi+k+1}+\sum_{n=\xi+k+2}^{\infty}\right)=U(t)+V(t),
$$

where $\xi=\left[(\varepsilon t)^{-\rho}\right], \varepsilon$ being an arbitrary fixed positive number, and

$$
\rho=\frac{\tau}{\tau-\delta}=\frac{\beta+1-\tau}{\gamma+1-\tau} .
$$

Then, by (1.13) and (2.2),

$$
V(t)=\sum_{n=\xi+k+2}^{\infty} a_{n} \chi(n t)=O\left(t^{-\tau} \sum_{n=\xi}^{\infty} \frac{\left|a_{n}\right|}{n^{\tau}}\right)=O\left(\xi^{\xi-\tau} t^{-\tau}\right)=O\left(\varepsilon^{\tau}\right) .
$$

We shall next prove $U(t)=o(1)+O\left(\varepsilon^{\tau}\right)$. By the Abel transformation $(k+1)$ times, we have

$$
\begin{aligned}
U(t)=\sum_{n=0}^{\xi+k+1} a_{n} \chi(n t) & =\sum_{n=0}^{\xi} s_{n}^{k} \Delta^{k+1} \chi(n t)+\sum_{\nu=0}^{k} s_{\xi+k-\nu+1}^{\nu} \Delta^{\nu} \chi((\xi+k-\nu+1) t) \\
& =U_{0}(t)+\sum_{\nu=0}^{k} W_{\nu}(t), \quad \text { say }
\end{aligned}
$$

Using the Dixon and Ferrar convexity theorem [1], we have, by (1.6) and (2.2),

$$
s_{n}^{\nu}=o\left(n^{(\delta(\beta-\nu)+\gamma \nu) / \beta}\right), \quad 0<\nu<\beta .
$$

Hence, by (1.13), (1.14) and (2.2),

$$
\begin{aligned}
W_{0}(t) & =O\left(\xi^{\delta} \cdot \xi^{-\tau} t^{-\tau}\right)=O\left(\xi^{\delta-\tau} t^{-\tau}\right)=O\left(\varepsilon^{\tau}\right), \\
W_{\nu}(t) & =O\left(\xi^{(0(\beta-\nu)+\gamma \nu) / \beta} \cdot \xi^{-\tau} t^{\nu-\tau}\right) \\
& =o\left(t^{\nu-\tau-\tau(\delta(\beta-\nu)+\tau \nu-\beta \tau) / \beta(\tau-\delta)}\right) \\
& =o\left(t^{(\tau \nu / \beta(\tau-\delta)) \cdot(\beta-\gamma) /(\beta+1-\tau)}\right)=o(1), \quad \text { for } \nu=1,2, \cdots, k-1,
\end{aligned}
$$

and, since $s_{n}^{k}=o\left(n^{k-\beta+\gamma}\right)$,

$$
\begin{aligned}
W_{k}(t) & =o\left(\xi^{k-\beta+\gamma} \cdot \xi^{-\tau} t^{k-\tau}\right)=o\left(\xi^{k+\gamma-\beta-\tau} t^{k-\tau}\right) \\
& =o\left(t^{k-\tau-(k+\gamma-\beta-\tau) \tau /(\tau-\delta)}\right)=o(1) .
\end{aligned}
$$

It remains to prove that $U_{0}(t)=o(1)$. But this is proved by the method analogous to that of the proof of $U_{0}(t)=o(1)$ in the proof of Theorem 1 in [2]. Thus, summing up the above estimates, we obtain

$$
\limsup _{t \rightarrow+0}\left|\sum_{n=0}^{\infty} a_{n} \chi(n t)\right|=0\left(\varepsilon^{\tau}\right) .
$$

Since ε is an arbitrary positive number, we have

$$
\lim _{t \rightarrow+0} \sum_{n=0}^{\infty} a_{n} \chi(n t)=0
$$

and Theorem is completely proved.
6. Proofs of Theorems 2, 3 and 4. Under the assumptions of

Theorem 2, by Lemma 3, we can take $\chi(t)=\varphi(t), \tau=\alpha$ and $w=p$, in Theorem 5. Then Theorem 2 is proved by means of Theorem 5. On the other hand, if we take $\chi(t)=\varphi(t), \tau=\alpha$ and $w=p$, in Theorem 6, then, combining the remark to Theorem 3 given in $\S 1$, we have Theorem 3. Similarly, by (2.4) and (2.5), if we take $\chi(t)=\varphi(t), \tau=\alpha+1$ and $\omega=$ $p+1$, in Theorem 6, then we have Theorem 4.

References

[1] A. L. Dixon and W. L. Ferrar, On Cesàro sums, J. London Math. Soc., 7 (1932), 8793.
[2] H. Hirokawa, Riemann-Cesàro methods of summability II, Tôhoku Math. J., 9 (1957), 13-26.
[3] H. Hirokawa, (Ω, p, α) methods of summability, Tôhoku Math. J., 16 (1964), 374-383.
[4] G. Sunouchi, Characterization of certain classes of functions, Tôhoku Math. J., 14 (1962), 127-134.

Department of Mathematics
Chiba University
Chiba, Japan

[^0]: *) Throughout this paper, $[x]$ denotes the greatest integer less than x.

