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1. The object of this paper is to give a generalization to vector-valued
functions of the Cauchy mean value theorem of the differential calculus,
together with some related results. In the classical Cauchy mean value
theorem we have

(1.1) (φ(b) - φ(aW(ζ) = (ψ(b) - +{a))φ'(ξ)

for some ξ in ]α, 6[, where φ, ψ: [α, 6] —• R are continuous functions pos-
sessing derivatives on ]α, b[. The counterpart to (1.1) when φ is vector-
valued is the mean value inequality in Theorem 1 below.

Throughout we suppose that our vector spaces are real. For any
function φ from an interval [α, 6] into a topological vector space Y, we
say that an element y of Y is a right-hand derivative value of φ at the
point t e [a, b[ if there exists a sequence (tn) of points of ]t, b] decreasing
to the limit t such that (Φ(tn) — Φ(t))/(tn — t) —>y in F a s %->oo, (In
particular, if Y = R, a right-hand derivative value is finite.)

The use of right-hand derivative values* enables us to avoid the
hypothesis that limits in Y are unique. However, if Y is a 7\-space
(and therefore Hausdorff), we can define two-sided and one-sided deriva-
tives in the usual way; for example, the right-hand derivative φ+(t) of φ
at the point t e [a, b[ is the limit

whenever this limit exists in Y (again it is finite if Y = R). Obviously
φ+(t) is a right-hand derivative value of φ at t.

A sublinear functional on a vector space 7 is a function p: Y—*R
such that for all y, ze Y and all λ > 0

(1.2) p(y + z) < p(y) + p(z) and p{Xy) = \p(y) .

We note in passing that the first of these relations implies that for all

V,ze-Y

* The name is used by McLeod [12].
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(1.3) p(y) - p(z) < p(y-z) .

Following Gal [10], we say that a property P(ί) holds for nearly all
t belonging to a set E c R, or nearly everywhere in E, if there exists a
countable subset H of E such that P(t) holds for all teE\H. The term
'nearly everywhere in E' must be distinguished from the measure-theoretic
term 'almost everywhere in E\ i.e. except in a subset of E of Lebesgue
measure 0.

With this terminology, our main result is as follows.

THEOREM 1. Let Y be a topological vector space, let p be a continuous
sublίnear functional on Y, let φ: [a, b] —• Y, ψ: [a, 6] —> R be continuous,
let ψ(a) < ψ(6), and for nearly all te[a, b[ let Φ(t), Ψ{t) be right-hand
derivative values of φ, ψ associated with the same sequence (tn) converging
to t. Then there exists a set of positive measure of points ξ such that

(1.4) p(φ(b) - φ(a))Ψ(ξ) < (ψ(b) - f(a))p(Φ(ξ)) .

Moreover, either (1.4) holds with strict inequality for all £ in some set of
positive measure, or equality holds in (1.4) for almost all ξ e [a, b[, and
in this latter case

(1.5) p(φ(b) - φ(a))(f(t) - f(a)) = (f(b) - f(a))p(φ(t) - φ(a))

for all te [a, δ]

We note explicitly the form of Theorem 1 for right-hand derivatives.

COROLLARY. Let Y be a T^topological vector space, let p be a con-
tinuous sublinear functional on Y, let φ: [a, b] —•> Y, ψ: [a, 6] —• R be con-
tinuous functions whose right-hand derivatives φ+(t), ψ+(t) exist for nearly
all te[a,b[, and let ψ(a) < ψ(b). Then there exists a set of positive
measure of points ξ e [a, b[ such that

(1.6) p(φ(b) - φ(a))f'+(ξ) < (γ(b) - ψ(a))p(φ'+(ξ)) .

Moreover, either (1.6) holds with strict inequality for all ξ in some set
of positive measure, or equality holds in (1.6) for almost all ξ e [a, b[ and
(1.5) holds for all t e [a, b].

The case of Theorem 1 in which ψ(t) = t is a known result of McLeod
[12, Theorem 5]. Both our proof and that of McLeod use Lemma 1 below,
but in other respects our proof (and indeed our formulation of the theorem)
is simpler than McLeod's.

The first result of this type, in which the classical mean value
equality is replaced by an inequality holding for some intermediate ξ, is due
to Aziz and Diaz [2, 3]. Their theorem is included in McLeod's result, as
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is also a subsequent generalization of the Aziz-Diaz theorem by Aziz, Diaz
and Mlak [4], namely that if φ is a continuous function from [a, b] into a
normed space Y whose right-hand derivative Φ+(t) exists nearly every-
where in [a, b[, then there exists ξ e ]a, b[ such that

\\Φ(b)-φ(a)\\<{b-a)\\φ'+(ξ)\\.*

None of these authors consider the question of equality.
Our arguments give also a simplified proof of the following theorem

of McLeod [12, Theorem B], which is the increment inequality correspond-
ing to Theorem 1.

THEOREM 2. Suppose that the hypotheses of Theorem 1 are satisfied,
with the omission of the condition that ψ(a) < ψ(b), and that in addition
p(Φ(t)) < Ψ{t) for almost all t e [a, b[. Then

(1.7) p(Φ(b) - φ{a)) < f (b) - f(a) .

Moreover, there is equality in (1.7) if and only if

p{φ(t) - φ{a)) = ψ(t) - f{a)

for all t e [a, b] (and there is strict inequality if p{Φ{t)) < Ψ{t) for at least
one te [a, &[).

The well-known increment inequality of Bourbaki [5, p. 22] (see also
Dieudonne [7, p. 153] and Cartan [6, p. 42]) is a special case of this result.

The proofs of Theorems 1 and 2 are given in § 3. In § 2 we note
some applications of Theorem 1 and its corollary to various versions of
Taylor's theorem. The paper concludes with a number of variants of
Theorems 1 and 2, and with a brief survey of other extensions of the
mean value theorem for vector-valued functions.

2. As might be expected, Theorem 1 and its corollary give versions
of Taylor's theorem for vector-valued functions. We consider explicitly
only results expressed in terms of derivatives, for which we employ
Theorem 1, Corollary; corresponding results in terms of derivative values
can be obtained by similar arguments from Theorem 1.

It has been pointed out by Dieudonne [7, Chapter 8] that increment
inequalities (such as Theorem 2 above) serve equally well for this purpose,
but (perhaps because of familiarity with the classical forms) the mean
value inequalities seem more suggestive.

Theorem 3 below is a generalization of a mean value equality for
real-valued functions given by the author [8, p. 169]. Its interest lies in

* Our argument has points of similarity with that of Aziz, Diaz and Mlak, but gives more
with less effort.
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the fact that it implies a Taylor theorem of W. H. Young's type for both
vector-valued functions of a real variable and for Frechet-differentiable
functions of a vector variable.

THEOREM 3. Let Y be a 2\ topological vector space, let p be a con-
tinuous sublinear functional on Y, let n be a positive integer, and let
φ: [a, b]-+Y be a function whose (n — ϊ)-th derivative ^(n"υ(ί) exists for all
te[a, b] and whose n-th (right-hand) derivative φ[n)(a) exists. Then there
exists a set of positive measure of points ξ e [α, b[ such that

(2.1) p(ώ(b) - φ(a) - (b - a)φf(a) ( 6 ~~ ̂  φ{n)(

nl v ξ - a

This is obtained by n — 1 successive applications of Theorem 1, Corol-
lary, starting with the pair of functions

t h- φ(t) - φ(a) - (t - a)φ'(a) - . . . - & ~ a^φ{n)(a)

nl

and t h-> (t — a)n/nl.

For vector-valued functions of a real variable, Theorem 3 gives
THEOREM 4. Let Y be a locally convex TΊ topological vector space,

let n be a positive integer, and let φ: [a, b] —> Y be a function whose
(n — l)-th derivative φ{n~1](t) exists for all te[a,b] and whose n-th (right-
hand) derivative φ{n)(a) exists. Then

(2.2) h~n\φ(a + h) - φ(a) - hφf(a) - - - —φ^(a)\ -»0 as h — 0+ .
I n I )

Let q(h) denote the expression on the left of (2.2). Since any neigh-
bourhood of 0 in Y contains a closed convex neighbourhood of 0, it is
enough to show that if V is a closed convex neighbourhood of 0, there
exists δ > 0 such that q(h) 6 V whenever 0 < h < δ.

Let p be the Minkowski functional of V. Then p is a continuous
sublinear functional on Y, and y e V if and only if p(y) < 1 (see, for
example, Taylor [15, p. 135]). Since φ{n)(a) exists, we can find δ > 0 such
that

nl I ζ- a

whenever a < ξ < a + δ. It then follows from (2.1) that q(h) e V, as
required.
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The corresponding result for Frechet-differentiable functions of a
vector variable is as follows. We use the terminology and notation of
Dieudonne [7, Chapter 8].

THEOREM 5. Let X, Y be normed spaces, let n be a positive integer,
and let f be a function from a subset of X into Y that is n-times
Frechet-differentiable at the point x. Then

h) - f(x) - f\x)-h - -Lf"(x).v2) J L /<»>(s).fc(4 -> o
2! n\ )

as h—>0.
By hypothesis, we can find an open ball B in X with centre x and

radius η such that f{n~1]{z) exists for all zeB. Let x + heB. Then
x + th e B for 0 < t < 1, and we define

φ(t) = f(χ + th) (0 < t < 1) .

By the chain rule (cf. Dieudonne [7, p. 186]),

φM(t) = f{r)(x + th) h{r)

for r = 1, , n, and hence, by Theorem 3 with a = 0, b = 1, there exists
ξ e]0, 1[ such that

(2.3) n\ f(x + h) - f(x) - f'(x).h
n\

But since / is n-times differentiate at x, given ε > 0 we can find 3
satisfying 0 < d < η such that

|| /(-ι)(α? + k) - f{n~ι){x) - f{n)(x) k || < ε || A: ||

whenever ||&||<<5 (where the norm on the left is now that of
£f(X, F(w~υ)) This in turn implies that the expression on the right
of (2.3) does not exceed ε||fe||w whenever \\h\\<δ, and this is the
required result.

An alternative proof of Theorem 4 for a normed space Y, using induc-
tion, is given by Bourbaki [5, p. 33]. An alternative proof of Theorem 5,
making use of this same induction argument, has been given by Cartan
[6, p. 78] (see also [8, p. 379]). The result of Theorem 5 for Euclidean
spaces was proved by W. H. Young himself, employing a very similar
induction argument [19, p. 27].

A Taylor theorem with a remainder of Lagrange-Cauchy-Schlomilch
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form is more easily obtained. Thus for functions of a real variable we
have

THEOREM 6. Let Y be a TΊ topologίcal vector space, let p be a con-
tinuous sublίnear functional on Y, let n be a positive integer, let r > 0,
and let φ: [a, b\—*Y be a function whose (n — l)-th derivative φ{n~1}(t) exists
for all te[a, b] and whose n-th derivative φ{n)(t) exists nearly everywhere
in [a, b[. Then there exists a set of positive measure of points ζ e [a, b[
such that

(2.4) p(φ(b) - φ(a) - (b - a)φ'{a) %^\)[ φt%~^

r(n — 1) !

Moreover, either (2.4) holds with strict inequality for all ξ in some set of
positive measure, or equality holds in (2.4) for almost all ξ e [a, δ[.

Here we simply apply Theorem 1, Corollary, to the pair of functions

t H> -φ(b) + φ(t) + (b- t)φ'{t)
(n - 1)!

and t^ -{b - t)r.

The corresponding result for Frechet-diίferentiable functions follows
from (2.4) applied to φ(t) = f(x + th), as in Theorem 5.

3. We consider now the proof of Theorems 1 and 2, and for these
we require the following two lemmas. As usual, D+ denotes the lower
right-hand Dini derivative, infinite values being allowed.

LEMMA 1. Let σ: [a, 6] —• R be a continuous function such that
D+σ(t) < 0 almost everywhere and D+σ(t) < oo nearly everywhere in [a, b[.
Then σ is decreasing.

This result is well-known (see, for example, Saks [14, p. 204, Theorem
(7.3)]; a proof using only basic ideas of elementary analysis is given by
Gal [10]).

LEMMA 2. Let p be continuous sublinear functional on a topological
vector space Y, let φ: [a, b\—>Ybea given function, and suppose that y
is a right-hand derivative value of φ at t associated with the sequence (tn).
Then

(3.1) lim inf p(φ(t^ " *<α» ~ *><*(*> ~ ^ α » < p(y) .
n-~ t — t
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By (1.3) and (1.2),

p(φ(tn) - φ(a)) - p(Φ(t) - φ(a)) < p(φ(tn) - φ(t)) = (φ(tn) - φ(t)\
t n - t ^ t n - t V t n - t J'

and this implies (3.1), since p is continuous.
Suppose now that p, φ, ψ satisfy the hypotheses of Theorem 1, and

let σ: [a, b] —* R be given by

σ(t) = (ψ(b) - ψ(a))p(φ(t) - φ(d)) - p(φ(b) - Φ(a))(ψ(t) - ψ(a)) .

Clearly σ is continuous, and σ(b) = σ(a) = 0. Also, if t is a point of
[α, b[ for which Φ(t), Ψ(t) exist, and (tn) is the associated sequence, then,
by Lemma 2.

(3.2) D+σ(t) = Mm inf σ ( s ) ~ σ{t) < Mm inf σ ^ ~ σ{t).
s->ί+ S — t w^°° tn — t

< (^(6) - ψ(a))p(Φ(t)) - p(φ(b) - φ(a))W(t) .

In particular, this implies that D+σ{t) < oo nearly everywhere.
Now let A, B be respectively the sets of points ζ e [α, b[ for which

p(φ(b) - φ(a))Ψ(ξ) < (ψ(b) - ψ(a))p(Φ(ζ))

and

p(φ(b) - φ(a))Ψ(ξ) > (f (6) - ψ(a))p(Φ(ξ)) .

If A has positive measure, the first alternative of Theorem 1 holds. If A
has measure 0, so has [α, b]\B. Also, by (3.2),

(3.3) D+σ(U < (ΊK&) - Ψ(a))p(Φ(ζ)) - p(Φ(b) - Φ(a))W(ξ) < 0

for all ξeB, and therefore for almost all ξe[a,b[. By Lemma 1, σ is
decreasing, and since σ(b) = σ(ά) = 0, it follows that σ(t) = 0 for all
te[a, 6], and that D+σ(t) = 0 for all te[a,b[. Hence equality holds in
(3.3) for all ξ e B, i.e. for almost all ζ, and therefore the second alterna-
tive of Theorem 1 holds.

The proof of Theorem 2 is simpler. We set

σ(t) - p(φ(t) - φ(ά)) - M i ) - Ψ(a)) .

By Lemma 2,

D+σ(t) < p(Φ(t)) - Ψ(t)

whenever Φ{t), Ψ{t) exist, and therefore D+σ(t) < ô nearly everywhere
and D+σ(t) < 0 almost everywhere in [α, b[. By Lemma 1, σ is decreasing,
and σ(b) = 0 if and only if σ is identically 0.



148 T. M. FLETT

4. The known proofs of Lemma 1 are not easy, and it is worth while
to see what can be obtained by easier means. For instance, we can use
in place of Lemma 1 the following well-known lemma of Zygmund (see
Saks [14, p. 204]), which has an elegantly simple proof.

LEMMA 3. Let σ: [a, b]—>R be a continuous function such that
D+σ(t) < 0 nearly everywhere in [α, b[. Then σ is decreasing.

Arguing as in § 3, we then obtain a theorem with the hypotheses of
Theorem 1, but with the conclusion that there exists an uncountable set
of points ξ e [a, b[ such that (1.4) holds, and, moreover, either (1.4) holds
with strict inequality for uncountably many ξ, or equality holds in (1.4)
nearly everywhere and φ, ψ satisfy (1.5) for all t.

This result suffices for most applications. The case in which Y is
normed, p is the norm function on Y, and ψ(t) — t, contains the mean
value theorems of Aziz and Diaz [2, 3] and Aziz, Diaz and Mlak [4] men-
tioned in § 1.

We also obtain a simpler analogue of Theorem 2, in which the hy-
pothesis that p(Φ(t)) < Ψ(t) is now supposed to hold nearly everywhere,
and in which the conclusion remains as before. The case of this result
in which Y is normed and p is the norm function on Y contains the
increment inequality of Bourbaki [5, p. 22].

These weaker versions of Theorems 1 and 2 avoid measure-theoretic
ideas. We may also go to the opposite extreme and introduce further
measure-theoretic ideas, by replacing Lemma 1 by the following familiar
result (a proof independent of integration theory is given by Gal [10]).

LEMMA 4. Let σ: [a, b]—>R be an absolutely continuous function such
that D+σ(t) < 0 almost everywhere in [α, b[. Then σ is decreasing.

Using Lemma 4 in place of Lemma 1, we see easily that if Y is
normed and p is either the norm function or a continuous linear functional
on Y, and if φ, ψ are absolute continuous,* f(a) < ψ{b), and Φ{t), Ψ(t)
are assumed to exist only almost everywhere, then the conclusion of
Theorem 1 holds.

6. If in addition to the hypotheses of Theorem 1 we suppose that ψ
is strictly increasing and that Ψ{t) > 0 almost everywhere, we can write
the inequality (1.4) in the form

ΦΦ) - Φ(a) \ < β (Φ{t)\
- ψ(a) ' \ ψ(t)'

* The absolute continuity of φ is denned in terms of Σ | | φ(U)—φ(U-i) \\, exactly as for
real-valued functions.
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However, when Theorem 1 is cast in this form, it can be strengthened
by the use of relative derivatives. For this purpose we use the following
analogue of Lemma 1, which can be proved by a straightforward adapta-
tion of Gal's proof of Lemma 1.

LEMMA 5. Let ψ: [a, b] —> R be a strictly increasing continuous func-
tion, and let μ be the Lebesgue-Stίeltjes measure induced on [a, b] by ψ.*
Let also σ: [a, b\—> R be continuous, let

i n f °® ~ °® (α < ί < 6) ,

where infinite values are allowed, and suppose that Dψ+σ(t) < 0 μ-almost
everywhere and Df+σ(t) < oo nearly everywhere in [a, b]. Then σ is
decreasing.

Using Lemma 5 in place of Lemma 1, we obtain:

THEOREM 7. Suppose that ψ, μ satisfy the conditions of Lemma 5,
that Y is a topological vector space, that p is a continuous sublίnear
functional on Y, and that φ: [a, b] —> Y is continuous. Suppose also that,
for nearly all t e [a, b[, Φψ{t) is a right-hand derivative value of φ relative
to ψ, i.e. there exists a sequence (tn) of points of ]t, b] decreasing to the
limit t such that (φ(tn) — Φ(t))/(ψ(tn) — ψ(t)) —> Φγ(t) in Y. Then there exists
a set of positive μ-measure of points ξ e [α, b[ such that

(6.1) p(d) < p(ΦΨ(ζ)) ,

where d = (Φ(b) — φ(a))/(ψ(b) — ψ(a)). Moreover, either (6.1) holds with strict
inequality in some set of positive μ-measure, or equality holds in (6.1)
μ-almost everywhere, and in the latter case φ, ψ satisfy (1.5) for all
te[a,b].

If in addition p(Φψ(t)) < M μ-almost everywhere, then p(d) < M,
with equality if and only if p{(φ(t) — Φ(a))/(ψ(t) — ̂ (α))} = M for all
te [α, b].

7. We remark in conclusion that a number of authors (Wazewski
[16, 17, 18], Mlak [13], McLeod [12], Averbukh and Smolyanov [1], and
Frolicher and Bucher [9]) have proved more geometrical versions of the
mean value theorem involving closed convex sets. The most complete
results are those of McLeod, who proves that if 7 is a locally convex
topological space, φ: [a, b] —• Y is a continuous function that has nearly
everywhere a right-hand derivative value Φ(t), and Φ(t) belongs to a
closed convex set E c Y for almost all te [a, b], then

** See, for example, Halmos [11, p. 67].
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( i ) q = (φ(b) - φ(a))/(b -a)eE,
(ii) either the interior E° of E is empty, or qe E°, or there exists

a proper closed subspace X of Y such that φ(t) — φ(a) — (t — a)q e X for
all t e [a, 6], and that Φ(t) e q + X whenever Φ(t) exists.

The first part of this result implies trivially that q belongs to the closed
convex hull of the set of values of Φ. The second part leads to McLeod's
striking theorem that if Y is finite-dimensional, then q belongs to the
convex hull of the set of values of Φ.

The other authors mentioned confine their attention to a result of
type (i). Averbukh and Smolyanov are concerned with ordinary deriva-
tives, while Wazewski and Mlak use derivative values relative to a func-
tion ψ, as in Theorem 7.

The increment inequality of Theorem 7 gives a comprehensive result
that includes most of the results mentioned; we have only to replace Φ(t)
in McLeod's result by Φψ(t), replace 'almost all' by 'μ-almost all', and
write ψ(b) — ψ(a) and ψ(t) — ψ(a) instead of 6 — a and t — α. The proof
uses the Hahn-Banach theorem, and is essentially the same as that of
McLeod.
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