CONFORMALLY FLAT RIEMANNIAN MANIFOLDS ADMITTING A TRANSITIVE GROUP
 OF ISOMETRIES

Hitoshi Takagi

(Received March 4, 1974)

1. Introduction. In the present paper, we shall classify conformally flat Riemannian manifolds admitting a transitive group of isometries. This class of manifolds contains the homogeneous Riemannian manifolds of constant curvature classified by J. A. Wolf ([4], [5]).

Theorem A in Section 2 imposes a restriction on the local Riemannian structure of the manifold in consideration. Using Theorem A, we get Theorem B in Section 3 and Theorem C in Section 4. They give the classification together with Theorem D in Section 4.

The author wishes to express his sincere thanks to Prof. S. Tanno and Prof. T. Sakai who gave him many valuable suggestions and guidances.
2. Local structure. Let M be a C^{∞} Riemannian manifold of dimension n. On a neighborhood of a point of M, we take a field of orthonormal co-frame $\left\{\omega_{1}, \cdots, \omega_{n}\right\}$. Then we have the Cartan structural equations:

$$
\begin{equation*}
d \omega_{i}=-\sum_{j} \omega_{i j} \wedge \omega_{j}, \quad \omega_{i j}+\omega_{j i}=0 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
d \omega_{i j}=-\sum_{k} \omega_{i k} \wedge \omega_{k j}+\Omega_{i j} \tag{2.2}
\end{equation*}
$$

where $\omega_{i j}$ and $\Omega_{i j}$ are the connection form and the curvature form respectively.

Now, we assume that M is conformally flat, that is, each point of M has a neighborhood where there exists a conformal diffeomorphism onto an open subset in a Euclidean space. Then each point of M has a coordinate neighborhood $\left\{U ; x_{1}, \cdots, x_{n}\right\}$ where we can choose as a $\left\{\omega_{1}, \cdots, \omega_{n}\right\}$ one satisfying $\omega_{i}=(1 / \rho) d x_{i}$ for each i, with certain positive C^{∞} function ρ of x_{1}, \cdots, x_{n}. Then, by (2.1), we have

$$
\begin{equation*}
\omega_{i j}=\rho_{i} \omega_{j}-\rho_{j} \omega_{i}, \quad \rho_{i}=\partial \rho / \partial x_{i} \tag{2.3}
\end{equation*}
$$

Then, by (2.2), we have

$$
\begin{equation*}
\Omega_{i j}=\phi_{i} \wedge \omega_{j}+\omega_{i} \wedge \phi_{j}, \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{i}=\sum_{j} A_{i j} \omega_{j}, A_{i j}=\rho \rho_{i j}-(1 / 2) \delta_{i j}\left(\sum_{k} \rho_{k}^{2}\right), \rho_{i j}=\partial^{2} \rho / \partial x_{i} \partial x_{j} \tag{2.5}
\end{equation*}
$$

And moreover, by (2.1), (2.3) and (2.5), we have

$$
\begin{equation*}
d \phi_{i}=-\sum_{j} \omega_{i j} \wedge \phi_{j} \tag{2.6}
\end{equation*}
$$

Here we express $A=\left(A_{i j}\right)$ in terms of the Ricci tensor $R=\left(R_{i j}\right)$ and the scalar curvature S. That is, we have

$$
\begin{equation*}
A_{i j}=[1 /(n-2)]\left(R_{i j}-[1 / 2(n-1)] S \delta_{i j}\right) . \tag{2.7}
\end{equation*}
$$

This is easily seen by the following definitions of the curvature tensors ($R_{i j k l}$), ($R_{i j}$) and S :

$$
\begin{gathered}
\Omega_{i j}=(1 / 2) \sum_{k, l} R_{i j k l} \omega_{k} \wedge \omega_{l}, \quad R_{i j k l}=-R_{i j l k} \\
R_{i j}=\sum_{k} R_{i k j k}, \quad S=\sum_{i} R_{i i} .
\end{gathered}
$$

Conversely, it is well known that every Riemannian manifold with 1-form $\phi_{i}=\sum_{j} A_{i j} \omega_{j}$ satisfying (2.4), (2.6) and (2.7) is conformally flat.

Theorem A. Let M be a connected conformally flat Riemannian manifold. If M is homogeneous, that is, M admits a transitive group of isometries, then M is isometric to certain one of the following manifolds:
(1) A space of constant curvature.
(2) A Riemannian manifold which is locally a product of a space of constant curvature $K(\neq 0)$ and a space of constant curvature $-K$.
(3) A Riemannian manifold which is locally a product of a space of constant curvature $K(\neq 0)$ and a 1-dimensional space.

Proof. Assume that M is homogeneous. Then, by (2.7), the characteristic roots $\lambda_{1}, \cdots, \lambda_{n}$ of the tensor field A are constant on M. Then, on some neighborhood of each point of M we can take a field of orthonormal co-frame $\left\{\omega_{1}, \cdots, \omega_{n}\right\}$ satisfying $\phi_{i}=\lambda_{i} \omega_{i}$ for each i. Then, by (2.4), we have

$$
\begin{equation*}
\Omega_{i j}=\left(\lambda_{i}+\lambda_{j}\right) \omega_{i} \wedge \omega_{j} \tag{2.8}
\end{equation*}
$$

Here we put

$$
\begin{equation*}
\left(\lambda_{i}-\lambda_{j}\right) \omega_{i j}=\sum_{k} S_{i j k} \omega_{k} \tag{2.9}
\end{equation*}
$$

Then $S_{i j k}$ is symmetric for all indices and hence, if $i \equiv j, j \equiv k$ or $k \equiv i$,
then $S_{i j k}=0$, where $i \equiv j$ means $\lambda_{i}=\lambda_{j}$. In fact, by (2.1) and (2.6), we have $\sum_{j}\left(\lambda_{i}-\lambda_{j}\right) \omega_{i j} \wedge \omega_{j}=0$, from which we have $S_{i j k}=S_{i k j}$. By (2.2), (2.8) and (2.9), we have

$$
\begin{aligned}
\left(\lambda_{i}+\lambda_{j}\right) \omega_{i} \wedge \omega_{j}= & {\left[1 /\left(\lambda_{i}-\lambda_{j}\right)\right] \sum_{k}\left(d S_{i j_{k}}\right) \wedge \omega_{k} } \\
& +\left[1 /\left(\lambda_{i}-\lambda_{j}\right)\right] \sum_{k} S_{i j_{k}} d \omega_{k} \\
& +\sum_{k(i, i, j)}\left[1 /\left(\lambda_{i}-\lambda_{k}\right)\left(\lambda_{k}-\lambda_{j}\right)\right] S_{i k l} S_{k j m} \omega_{l} \wedge \omega_{m} \\
& +\sum_{k\left(\sum_{i j i)}, l\right.}\left[1 /\left(\lambda_{k}-\lambda_{j}\right)\right] S_{k j l} \omega_{i k} \wedge \omega_{l} \\
& +\sum_{k(\equiv j), l}\left[1 /\left(\lambda_{i}-\lambda_{k}\right)\right] S_{i k l} \omega_{l} \wedge \omega_{k j} \quad \text { for } \quad i \not \equiv j .
\end{aligned}
$$

Comparing the coefficients of $\omega_{i} \wedge \omega_{j}$ and taking account of the properties of $S_{i j k}$, we have

$$
\left(\lambda_{i}+\lambda_{j}\right) /\left(\lambda_{i}-\lambda_{j}\right)=2 \sum_{k(\neq i, j)}\left(S_{i j_{k}}\right)^{2} /\left(\lambda_{i}-\lambda_{j}\right)\left(\lambda_{k}-\lambda_{j}\right)\left(\lambda_{k}-\lambda_{i}\right) \text { for } i \not \equiv j,
$$

from which we have

$$
\sum_{j(\neq i)}\left(\lambda_{i}+\lambda_{j}\right) /\left(\lambda_{i}-\lambda_{j}\right)=0 \quad \text { for each } i
$$

From the last identity, we see that possible cases are only the following (a) and (b):
(a) $\lambda_{1}=\cdots=\lambda_{n}$.
(b) $\lambda_{1}=\cdots=\lambda_{r}=-\lambda_{r+1}=\cdots=-\lambda_{n} \neq 0,1 \leqq r \leqq n-1$, where we assume that $\lambda_{1} \geqq \cdots \geqq \lambda_{n}$.
In fact, let us assume that the case (a) does not occur. Then $\lambda_{i} \neq 0$ for each i. Let $\lambda^{2}(>0)$ be the minimum of $\lambda_{1}^{2}, \cdots, \lambda_{n}^{2}$. Then we have

$$
\left(\lambda+\lambda_{j}\right) /\left(\lambda-\lambda_{j}\right)=\left(\lambda^{2}-\lambda_{i}^{2}\right) /\left(\lambda-\lambda_{j}\right)^{2} \leqq 0
$$

which shows that $\lambda_{j}= \pm \lambda$ for each j.
The above fact shows that $S_{i j_{k}}=0$ for each i, j, k, which implies that, if $i \not \equiv j$, then $\omega_{i j}=0$ by (2.9) and that, if $i \equiv j$, then $\Omega_{i j}= \pm 2 \lambda \omega_{i} \wedge \omega_{j}$ by (2.8). This completes the proof (cf. [2], [3]).
3. Some lemmas and Theorem B. Let M be a conformally flat homogeneous Riemannian manifold and \tilde{M} be the universal covering manifold of M with the metric induced from the projection $p: \widetilde{M} \rightarrow M$. Since M is complete, so is \widetilde{M}. Then, by Theorem A and the decomposition theorem of de Rham, \tilde{M} is isometric to one of the following manifolds:
(1) $M^{n}(K)$,
(2) $M^{r}(K) \times M^{n-r}(-K), K \neq 0,2 \leqq r \leqq n-2$,
(3) $M^{n-1}(K) \times E^{1}, K \neq 0$,
where $M^{m}(K)$ denotes an ordinary sphere S^{m} of radius $K^{-1 / 2}$, a Euclidean space E^{m} or a hyperbolic space H^{m} with sectional curvature K according as K is positive, zero or negative. And M is isometric to a quotient \tilde{M} / Γ, where Γ is a certain group of isometries of \tilde{M} acting freely and properly discontinuously (cf. Wolf [6]). Thus the classification is reduced to analyze the structure of Γ. So, we prepare some lemmas.

Lemma 1. Let $M_{i}(i=1,2)$ be a connected Einstein Riemannian manifold with the metric tensor g_{i}, that is, the Ricci tensor R_{i} is written as $R_{i}=c_{i} g_{i}$ over M_{i} with constant c_{i}. If $c_{1} \neq c_{2}$, then $I\left(M_{1} \times M_{2}\right)=$ $I\left(M_{1}\right) \times I\left(M_{2}\right)$, where $I\left(M_{1} \times M_{2}\right), I\left(M_{1}\right)$ and $I\left(M_{2}\right)$ denote the groups of all isometries of $M_{1} \times M_{2}, M_{1}$ and M_{2} respectively.

Proof. If we put $\tilde{M}=M_{1} \times M_{2}$, then the tangent space $T_{z}(\tilde{M})$ at a point $z=(x, y) \in \widetilde{M}$ is identified with direct $\operatorname{sum} T_{x}\left(M_{1}\right)+T_{y}\left(M_{2}\right)$. Let R^{1} be a field of symmetric endomorphism which corresponds to the Ricci tensor R of \tilde{M}, that is, $R(X, Y)=g\left(R^{1} X, Y\right)$ for any tangent vectors X and Y, where g is the metric tensor of the direct product \widetilde{M}. Then, $X \in T_{z}(\widetilde{M})$ is contained in $T_{x}\left(M_{1}\right)$ (resp. $T_{y}\left(M_{2}\right)$) if and only if $R^{1} X=c_{1} X$ (resp. $R^{1} X=c_{2} X$).

Now, let $f \in I(\widetilde{M})$. Then we have

$$
d f_{z} \circ R_{z}^{1}=R_{f(z)}^{1} \circ d f_{z} \quad \text { for each } \quad z \in \tilde{M}
$$

which shows that $d f_{z}$ maps $T_{x}\left(M_{1}\right)$ (resp. $T_{y}\left(M_{2}\right)$) into $T_{f_{1}(x, y)}\left(M_{1}\right)$ (resp. $T_{f_{2}(x, y)}\left(M_{2}\right)$), where we put $f(z)=f(x, y)=\left(f_{1}(x, y), f_{2}(x, y)\right)$. Making use of this fact, we shall show that $f_{1}(x, y)$ (resp. $f_{2}(x, y)$) does not depend on y (resp. x) which completes the proof. Let $\left\{x_{1}, \cdots, x_{r}, y_{1}, \cdots, y_{s}\right\}$ be a coordinate system on a neighborhood $U_{x} \times V_{y}$ of \widetilde{M} at $z=(x, y)$ such that $\left\{x_{1}, \cdots, x_{r}\right\}$ and $\left\{y_{1}, \cdots, y_{s}\right\}$ are coordinate systems on U_{x} and V_{y} respectively. Let $\left\{u_{1}, \cdots, u_{r}, v_{1}, \cdots, v_{s}\right\}$ be a coordinate system on a neighborhood $U_{f_{1}(x, y)} \times V_{f_{2}(x, y)}$ of \widetilde{M} at $f(z)=\tilde{i}\left(f_{1}(x, y), f_{2}(x, y)\right)$ such that $\left\{u_{1}, \cdots, u_{r}\right\}$ and $\left\{v_{1}, \cdots, v_{s}\right\}$ are coordinate systems on $U_{f_{1}(x, y)}$ and $V_{f_{2}(x, y)}$ respectively. Let f be represented locally by the functions,

$$
\begin{cases}u_{i}=f_{1 i}\left(x_{1}, \cdots, x_{r}, y_{1}, \cdots, y_{s}\right) & (i=1, \cdots, r) \\ v_{i}=f_{2 i}\left(x_{1}, \cdots, x_{r}, y_{1}, \cdots, y_{s}\right) & (i=1, \cdots, s) .\end{cases}
$$

Since $d f\left(\partial / \partial x_{i}\right) \in T\left(M_{1}\right)$ and $d f\left(\partial / \partial y_{i}\right) \in T\left(M_{2}\right)$, we have

$$
\partial f_{1 i} / \partial y_{j}=0 \quad \text { for } \quad i=1, \cdots, r ; j=1, \cdots, s
$$

and

$$
\partial f_{2 i} / \partial x_{j}=0 \quad \text { for } \quad i=1, \cdots, s ; j=1, \cdots, r,
$$

that is,

$$
\left\{\begin{array}{l}
u_{i}=f_{1 i}\left(x_{1}, \cdots, x_{r}\right) \quad \text { for } \quad i=1, \cdots, r \\
v_{i}=f_{2 i}\left(y_{1}, \cdots, y_{s}\right) \quad \text { for } \quad i=1, \cdots, s .
\end{array}\right.
$$

This means that $f_{1}(x, y)=f_{1}\left(x, y^{\prime}\right)$ (resp. $f_{2}(x, y)=f_{2}\left(x^{\prime}, y\right)$), if y is sufficiently near to y^{\prime} (resp. x is sufficiently near to x^{\prime}). Since M_{2} (resp. M_{1}) is connected, $f_{1}(x, y)=f_{1}\left(x, y^{\prime}\right)$ (resp. $f_{2}(x, y)=f_{2}\left(x^{\prime}, y\right)$) for any pair y and y^{\prime} of M_{2} (resp. for any pair x and x^{\prime} of M_{1}).
q.e.d.

Let γ be an isometry of a metric space N with distance function d. We say that γ is a Clifford translation if $d(x, \gamma(x))=d(y, \gamma(y))$ for each pair of points x and y of N.

Lemma 2. Let M_{1} and M_{2} be complete Riemannian manifolds. Let α and β be isometries of M_{1} and M_{2} respectively. Then $\gamma=(\alpha, \beta)$ is a Clifford translation on $M_{1} \times M_{2}$ if and only if α and β are Clifford translations on M_{1} and M_{2} respectively.

Proof. Let (x, y) and (u, v) be points of $M_{1} \times M_{2}$. Then, as easily seen, the following identity of Pythagoras is valid:

$$
[d((x, y),(u, v))]^{2}=[d(x, u)]^{2}+[d(y, v)]^{2},
$$

where d denotes the distance functions of M_{1}, M_{2} and $M_{1} \times M_{2}$. Now the lemma is evident.

Lemma 3. (cf. Wolf [6]) Let M and \tilde{M} be Riemannian manifolds and let $M=\tilde{M} / \Gamma$, where Γ is a group of isometries of \widetilde{M} acting freely and properly discontinuously. Let G be the centralizer of Γ in the group $I(\widetilde{M})$ of all isometries of \widetilde{M}. Then M is homogeneous if and only if G is transitive on \widetilde{M}. And if M is homogeneous, then every element of Γ is a Clifford translation of \tilde{M}.

Theorem B. Let M be a connected conformally flat homogeneous Riemannian manifold. Then M is isometric to one of the following manifolds:
(I) A homogeneous space of constant curvature.
(II) A direct product of a homogeneous space of constant curvature $K(>0)$ and a homogeneous space of constant curvature $-K$.
(III) A direct product of a homogeneous space of constant curvature $-K(<0)$ and a 1-dimensional homogeneous space.
(IV) A homogeneous Riemannian manifold which is locally a product of a space of constant curvature $K(>0)$ and a 1-dimensional space.
Proof. Since the only Clifford translation of H^{m} is the identity
transformation 1 (cf. Wolf [6]), every Clifford translation of $H^{n-r} \times S^{r}$ or $H^{n-1} \times E^{1}$ must be of the form ($1, \beta$), by Lemma 1 and Lemma 2. Now this proves the theorem by Lemma 3. q.e.d.

Thus the only problem left to us is to check up the space of the form $\left(S^{n-1} \times E^{1}\right) / \Gamma$.
4. $\quad\left(\boldsymbol{S}^{n-1} \times \boldsymbol{E}^{1}\right) / \boldsymbol{\Gamma} . \quad \boldsymbol{S}^{n-1}$ is considered as the set of vectors of norm $K^{-1 / 2}$ in a Euclidean vector space \boldsymbol{R}^{n}. Then $I\left(S^{n-1}\right)$ is the orthogonal group $O(n)$. The group of all Clifford translations of E^{1} is identified with the additive group \boldsymbol{R}. The natural projections $I\left(S^{n-1}\right) \times I\left(E^{1}\right) \rightarrow I\left(S^{n-1}\right)$ and $I\left(S^{n-1}\right) \times I\left(E^{1}\right) \rightarrow I\left(E^{1}\right)$ are denoted by p and q respectively.

Lemma 4. Let $\left(S^{n-1} \times E^{1}\right) / \Gamma$ be homogeneous. Then $p(\Gamma)$ is contained in one of the following closed subgroups (1), (2) and (3) of $O(n)$, according as $n=2 m+1, n=2 m(m:$ odd $)$ or $n=4 m$:
(1) $\{ \pm E\}$,
(2) $\left\{a E+b I ; a^{2}+b^{2}=1, a, b \in \boldsymbol{R}\right\}$,
(3) $\left\{a E+b I+c J+d K ; a^{2}+b^{2}+c^{2}+d^{2}=1, a, b, c, d \in \boldsymbol{R}\right\}$,
where E is the identity transformation of \boldsymbol{R}^{n} and I, J, K are elements of $O(n)$ satisfying the conditions, $I^{2}=J^{2}=K^{2}=-E, I J=-J I=K$, $J K=-K J=I, K I=-I K=J$.

Proof. Let $\left(S^{n-1} \times E^{1}\right) / \Gamma$ be homogeneous. Then by Lemma 3, the centralizer G of Γ in $I\left(S^{n-1} \times E^{1}\right)=I\left(S^{n-1}\right) \times I\left(E^{1}\right)$ is transitive on $S^{n-1} \times E^{1}$. Then the group $p(G)$ is the centralizer of $p(\Gamma)$ in $O(n)$ and it is transitive on S^{n-1}. In particular, \boldsymbol{R}^{n} has no $p(G)$-invariant linear subspace. Then, every element A of the centralizer \boldsymbol{F} of $p(G)$ in the algebra of all linear transformations of R^{n} is written as $A=a E$ or $A=a E+b I$, where $b \neq 0$ and I is a linear transformations of \boldsymbol{R}^{n} satisfying $I^{2}=-E$ (cf. p. 277 [1]). It should be noted that, if an element of the form $a E+b I(b \neq 0)$ is contained in $O(n)$, then $a^{2}+b^{2}=1$ and $I \in O(n)$. In fact, let $a E+b I \in O(n)$. Then we have $a E-b I=\left(a^{2}+b^{2}\right)\left(a E+b^{t} I\right)$ and $a E-b^{t} I=\left(a^{2}+b^{2}\right)(a E+b I)$, which implies that $a^{2}+b^{2}=1$ and ${ }^{t} I=-I$.

By definition of $\boldsymbol{F}, p(\Gamma) \subset \boldsymbol{F}$. Thus, if n is odd, then $\boldsymbol{F}=\{a E ; a \in \boldsymbol{R}\}$ and hence $p(\Gamma) \subset\{ \pm E\}$.

Now, let n be even. If $p(\Gamma)$ contains an element of the form $a E+b I(b \neq 0)$, then $I \in O(n)$ and $\boldsymbol{F} \supset \boldsymbol{C}$, where $\boldsymbol{C}=\{a E+b I ; a, b \in \boldsymbol{R}\}$. \boldsymbol{C} is written as follows; $\boldsymbol{C}=\{A \in \boldsymbol{F} ; A I=I A\}$. In fact, let A be an element of \boldsymbol{F} satisfying $A I=I A$. Since $A \in \boldsymbol{F}, A$ is of the form $a E+b L$, where $L^{2}=-E$. Hence, if $b \neq 0$, then $I L=L I$. It is sufficient to show
that $L=I$ or $L=-I$. So we show that $\boldsymbol{R}^{n}=W_{1}+W_{2}$ (direct sum), where $W_{1}=\left\{v \in \boldsymbol{R}^{n} ; I v=L v\right\}$ and $W_{2}=\left\{v \in \boldsymbol{R}^{n} ; I v=-L v\right\}$. Clearly, $W_{1} \cap$ $W_{2}=\{0\}$. Every $v \in \boldsymbol{R}^{n}$ is of the form $w_{1}+w_{2}$ with $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$ by setting $w_{1}=(1 / 2)(v-I L v)$ and $w_{2}=(1 / 2)(v+I L v)$. Since $I, L \in \boldsymbol{F}, W_{1}$ and W_{2} are invariant by $p(\Gamma)$, which implies that $L=I$ or $-I$.

Next we assume that $p(\Gamma) \not \subset C$. And we take an element A of $p(\Gamma)$ such that $A \notin C$. If we put $B=A+I A I$, then $B \notin C$ and $B^{2} \in C$, because $B I=-I B, B^{2} I=I B^{2}$ and $A I \neq I A$. On the other hand, B may be written as $B=c E+d J$, where $J^{2}=-E$, because $B \in \boldsymbol{F}$. Since $B \notin \boldsymbol{C}$ and $B^{2} \in C$, then $c=0$ and $d \neq 0$. We show that $J \in O(n)$. Since $A \in$ $\boldsymbol{F} \cap O(n), A$ is of the form $a E+b L$, where $L^{2}=-E$ and ${ }^{t} L=-L$. Then $B=b(L+I L I)$, which implies that ${ }^{t} B=-B$ and hence ${ }^{t} J=-J$. Here, we put $\boldsymbol{D}=\{(a E+b I) J ; a, b \in \boldsymbol{R}\}$. Then $\boldsymbol{D}=\{A \in \boldsymbol{F} ; A I=-I A\}$. For, if $A \in \boldsymbol{F}$ satisfies $A I=-I A$, then $A J \in \boldsymbol{C}$, that is, $A J$ is written as $A J=-a E-b I$ and hence $A=(a E+b I) J$. Now we show that $\boldsymbol{F}=\boldsymbol{C}+\boldsymbol{D}$ (direct sum). Clearly, $\boldsymbol{C} \cap \boldsymbol{D}=\{0\}$. Every $A \in \boldsymbol{F}$ is of the form $C+D$ with $C \in C$ and $D \in D$ by setting $C=(1 / 2)(A-I A I)$ and $D=(1 / 2)(A+I A I)$.

If we put $K=I J$, then $K \in O(n)$ and the I, J and K satisfy the conditions stated in this lemma. And $p(\Gamma) \subset(\boldsymbol{C}+\boldsymbol{D}) \cap O(n)$. Of course, if $p(\Gamma) \not \subset C$, then $n=4 m$. q.e.d.

The groups (1), (2) and (3) in Lemma 4 are isomorphic to $\{ \pm 1\}, S^{1}$ and Spin (3) respectively. Hereafter, we mean these groups as closed subgroups of $O(n)$ acting S^{n-1} by the above fashion.

Theorem C. $\left(S^{n-1} \times E^{1}\right) / \Gamma$ is homogeneous if and only if Γ is a discrete subgroup of $\{ \pm 1\} \times \boldsymbol{R}, \quad \boldsymbol{S}^{1} \times \boldsymbol{R}$ or $\operatorname{Spin}(3) \times \boldsymbol{R}$ according as $n=2 m+1, n=2 m(m: o d d)$ or $n=4 m$.

Proof. Let $\left(S^{n-1} \times E^{1}\right) / \Gamma$ be homogeneous. Then $p(\Gamma)$ is contained in $\{ \pm 1\}, S^{1}$ or $S p i n(3)$ by Lemma 4 and $q(\Gamma) \subset \boldsymbol{R}$ by Lemma 2 and Lemma 3. And moreover Γ is discrete in $O(n) \times I\left(E^{1}\right)$, since the action of Γ is free and discontinuous (cf. [1]). Conversely, let Γ be a discrete subgroup of $\{ \pm 1\} \times \boldsymbol{R}, S^{1} \times \boldsymbol{R}$ or $\operatorname{Spin}(3) \times \boldsymbol{R}$. Then the centralizer G of Γ in $O(n) \times I\left(E^{1}\right)$ actually contains $O(n) \times \boldsymbol{R}, U(m) \times \boldsymbol{R}$ or $S p(m) \times \boldsymbol{R}$. In particular G is transitive on $S^{n-1} \times E^{1}$. By the way of action, Γ acts freely. Since $S^{n-1} \times E^{1}$ is a homogeneous space and the isotropy group is compact, the discrete subgroup Γ of $I\left(S^{n-1} \times E^{1}\right)$ acts on $S^{n-1} \times E^{1}$ properly discontinuously (cf. [1]).
q.e.d.

Theorem D. Let H be one of the groups $\{ \pm 1\}, S^{1}$ and Spin (3). Then a discrete subgroup Γ of $H \times \boldsymbol{R}$ is one of the following forms:
(1) $\Gamma_{1} \times\{0\}$,
(2) A group which is semi-direct product of the infinite cyclic group $\langle(\alpha, \beta)\rangle$ generated by (α, β) and $\Gamma_{1} \times\{0\}$, where Γ_{1} is a finite subgroup of H, α an element of the normalizer of Γ_{1} in H and $\beta(\neq 0) \in \boldsymbol{R}$.

Proof. First, the projection $q(\Gamma)$ is a discrete subgroup of \boldsymbol{R} and hence it is the infinite cyclic group $\langle\beta\rangle$ generated by an element $\beta(\neq 0) \in \boldsymbol{R}$ or $\{0\}$. If $q(\Gamma)=\{0\}$, then Γ is a discrete subgroup of compact group $H \times\{0\}$ and hence Γ is of the form (1). If $q(\Gamma)=\langle\beta\rangle$, then $q^{-1}(k \beta) \cap$ $\Gamma(k \in Z)$ is a finite set and the number of elements of the set does not depend on k. In fact, we have a one to one correspondence between the finite group $q^{-1}(0) \cap \Gamma$ and the set $q^{-1}(k \beta) \cap \Gamma$, that is, $(\gamma, k \beta)$ maps $\left(\alpha_{i}, 0\right) \in$ $q^{-1}(0) \cap \Gamma$ to $\left(\gamma \alpha_{i}, k \beta\right) \in q^{-1}(k \beta) \cap \Gamma$, where $(\gamma, k \beta)$ is an arbitrary fixed element of $q^{-1}(k \beta) \cap \Gamma$. Thus, taking an element $(\alpha, \beta) \in q^{-1}(\beta) \cap \Gamma, \Gamma$ may be written as $\Gamma=\mathbf{U}_{k \in Z}\left(\alpha^{k}, k \beta\right)\left(\Gamma_{1} \times\{0\}\right)$. For Γ to be closed with respect to the compositions of $H \times \boldsymbol{R}, \alpha$ must be contained in the normalizer of Γ_{1} in H.
q.e.d.

Remark 1. The finite subgroups of H are completely classified by Wolf ([4], [5]).

Remark 2. The classification for the case that the dimension of M is equal to 1 or 2 is well known.

References

[1] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience Publishers, New York, 1963.
[2] M. Kurita, On the holonomy group of the conformally flat Riemannian manifold, Nagoya Math. J., 9 (1955), 161-171.
[3] K. Sekigawa and H. Takagi, On conformally flat spaces satisfying a certain condition on the Ricci tensor, Tôhoku Math. J., 23 (1971), 1-11.
[4] J. A. Wolf, Sur la classification des variétés riemanniennes homogènes à courbure constante, C. R. Acad. Sci. Paris, 250 (1960), 3443-3445.
[5] J. A. Wolf, Vincent's conjecture of Clifford translations of the sphere, Comm. Math. Helv., 36 (1961), 33-41.
[6] J. A. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York, 1967.
College of General Education
Tôhoku University
Sendai, Japan

