Tôhoku Math. Journ. 27 (1975), 103-110.

CONFORMALLY FLAT RIEMANNIAN MANIFOLDS ADMITTING A TRANSITIVE GROUP OF ISOMETRIES

HITOSHI TAKAGI

(Received March 4, 1974)

1. Introduction. In the present paper, we shall classify conformally flat Riemannian manifolds admitting a transitive group of isometries. This class of manifolds contains the homogeneous Riemannian manifolds of constant curvature classified by J. A. Wolf ([4], [5]).

Theorem A in Section 2 imposes a restriction on the local Riemannian structure of the manifold in consideration. Using Theorem A, we get Theorem B in Section 3 and Theorem C in Section 4. They give the classification together with Theorem D in Section 4.

The author wishes to express his sincere thanks to Prof. S. Tanno and Prof. T. Sakai who gave him many valuable suggestions and guidances.

2. Local structure. Let M be a C^{∞} Riemannian manifold of dimension n. On a neighborhood of a point of M, we take a field of orthonormal co-frame $\{\omega_1, \dots, \omega_n\}$. Then we have the Cartan structural equations:

(2.1)
$$d\omega_i = -\sum_j \omega_{ij} \wedge \omega_j$$
, $\omega_{ij} + \omega_{ji} = 0$

and

$$(2.2) d\omega_{ij} = -\sum_k \omega_{ik} \wedge \omega_{kj} + \Omega_{ij} ,$$

where ω_{ij} and Ω_{ij} are the connection form and the curvature form respectively.

Now, we assume that M is conformally flat, that is, each point of M has a neighborhood where there exists a conformal diffeomorphism onto an open subset in a Euclidean space. Then each point of M has a coordinate neighborhood $\{U; x_1, \dots, x_n\}$ where we can choose as a $\{\omega_1, \dots, \omega_n\}$ one satisfying $\omega_i = (1/\rho)dx_i$ for each i, with certain positive C^{∞} function ρ of x_1, \dots, x_n . Then, by (2.1), we have

(2.3)
$$\omega_{ij} = \rho_i \omega_j - \rho_j \omega_i$$
, $\rho_i = \partial \rho / \partial x_i$.

Then, by (2.2), we have

H. TAKAGI

(2.4) $\Omega_{ij} = \phi_i \wedge \omega_j + \omega_i \wedge \phi_j$,

where

(2.5)
$$\phi_i = \sum_j A_{ij} \omega_j, A_{ij} = \rho \rho_{ij} - (1/2) \delta_{ij} (\sum_k \rho_k^2), \rho_{ij} = \partial^2 \rho / \partial x_i \partial x_j.$$

And moreover, by (2.1), (2.3) and (2.5), we have

$$(2.6) d\phi_i = -\sum_j \omega_{ij} \wedge \phi_j .$$

Here we express $A = (A_{ij})$ in terms of the Ricci tensor $R = (R_{ij})$ and the scalar curvature S. That is, we have

$$(2.7) A_{ij} = [1/(n-2)](R_{ij} - [1/2(n-1)]S\delta_{ij}) .$$

This is easily seen by the following definitions of the curvature tensors (R_{ijkl}) , (R_{ij}) and S:

$$egin{aligned} arOmega_{ij} &= (1/2)\sum\limits_{k,l} R_{ijkl} arpsi_k \wedge arWeiltmathing \omega_k \wedge arWeiltmathing l_l$$
 , $R_{ijkl} &= -R_{ijlk} \;, \ R_{ij} &= \sum\limits_k R_{ikjk} \;, \qquad S &= \sum\limits_i R_{ii} \;. \end{aligned}$

Conversely, it is well known that every Riemannian manifold with 1-form $\phi_i = \sum_i A_{ij} \omega_j$ satisfying (2.4), (2.6) and (2.7) is conformally flat.

THEOREM A. Let M be a connected conformally flat Riemannian manifold. If M is homogeneous, that is, M admits a transitive group of isometries, then M is isometric to certain one of the following manifolds:

(1) A space of constant curvature.

(2) A Riemannian manifold which is locally a product of a space of constant curvature $K(\neq 0)$ and a space of constant curvature -K.

(3) A Riemannian manifold which is locally a product of a space of constant curvature $K(\neq 0)$ and a 1-dimensional space.

PROOF. Assume that M is homogeneous. Then, by (2.7), the characteristic roots $\lambda_1, \dots, \lambda_n$ of the tensor field A are constant on M. Then, on some neighborhood of each point of M we can take a field of orthonormal co-frame $\{\omega_1, \dots, \omega_n\}$ satisfying $\phi_i = \lambda_i \omega_i$ for each i. Then, by (2.4), we have

(2.8)
$$\Omega_{ij} = (\lambda_i + \lambda_j)\omega_i \wedge \omega_j$$
.

Here we put

(2.9)
$$(\lambda_i - \lambda_j)\omega_{ij} = \sum_k S_{ijk} \omega_k$$

Then S_{ijk} is symmetric for all indices and hence, if $i \equiv j$, $j \equiv k$ or $k \equiv i$,

104

then $S_{ijk} = 0$, where $i \equiv j$ means $\lambda_i = \lambda_j$. In fact, by (2.1) and (2.6), we have $\sum_j (\lambda_i - \lambda_j)\omega_{ij} \wedge \omega_j = 0$, from which we have $S_{ijk} = S_{ikj}$. By (2.2), (2.8) and (2.9), we have

$$egin{aligned} &(\lambda_i+\lambda_j)oldsymbol{\omega}_i\wedgeoldsymbol{\omega}_j&=\left[1/(\lambda_i-\lambda_j)
ight]\sum\limits_k (dS_{ijk})\wedgeoldsymbol{\omega}_k\ &+\left[1/(\lambda_i-\lambda_j)
ight]\sum\limits_k S_{ijk}doldsymbol{\omega}_k\ &+\sum\limits_{\substack{k(
otin i,j)\ l,m}} [1/(\lambda_i-\lambda_k)(\lambda_k-\lambda_j)]S_{ikl}S_{kjm}oldsymbol{\omega}_l\wedgeoldsymbol{\omega}_m\ &+\sum\limits_{\substack{k(
otin i,l)\ l,m}} [1/(\lambda_k-\lambda_j)]S_{kjl}oldsymbol{\omega}_{ik}\wedgeoldsymbol{\omega}_l\ &+\sum\limits_{\substack{k(
otin i,l)\ l,m}} [1/(\lambda_i-\lambda_k)]S_{ikl}oldsymbol{\omega}_l\wedgeoldsymbol{\omega}_{kj}\ & ext{ for } i
otin j. \end{aligned}$$

Comparing the coefficients of $\omega_i \wedge \omega_j$ and taking account of the properties of S_{ijk} , we have

$$(\lambda_i + \lambda_j)/(\lambda_i - \lambda_j) = 2\sum_{k(
ot\equiv i,j)} (S_{ijk})^2/(\lambda_i - \lambda_j)(\lambda_k - \lambda_j)(\lambda_k - \lambda_i) ext{ for } i
ot\equiv j$$
 ,

from which we have

$$\sum\limits_{j(
otin i)} (\lambda_i + \lambda_j)/(\lambda_i - \lambda_j) = 0 ~~ ext{for each} ~~i$$
 .

From the last identity, we see that possible cases are only the following (a) and (b):

- (a) $\lambda_1 = \cdots = \lambda_n$.
- (b) $\lambda_1 = \cdots = \lambda_r = -\lambda_{r+1} = \cdots = -\lambda_n \neq 0, \ 1 \leq r \leq n-1$, where we assume that $\lambda_1 \geq \cdots \geq \lambda_n$.

In fact, let us assume that the case (a) does not occur. Then $\lambda_i \neq 0$ for each *i*. Let $\lambda^2(>0)$ be the minimum of $\lambda_1^2, \dots, \lambda_n^2$. Then we have

$$(\lambda+\lambda_j)/(\lambda-\lambda_j)=(\lambda^2-\lambda_j^2)/(\lambda-\lambda_j)^2\leq 0$$
 ,

which shows that $\lambda_j = \pm \lambda$ for each j.

The above fact shows that $S_{ijk} = 0$ for each *i*, *j*, *k*, which implies that, if $i \not\equiv j$, then $\omega_{ij} = 0$ by (2.9) and that, if $i \equiv j$, then $\Omega_{ij} = \pm 2\lambda \omega_i \wedge \omega_j$ by (2.8). This completes the proof (cf. [2], [3]).

3. Some lemmas and Theorem B. Let M be a conformally flat homogeneous Riemannian manifold and \tilde{M} be the universal covering manifold of M with the metric induced from the projection $p: \tilde{M} \to M$. Since M is complete, so is \tilde{M} . Then, by Theorem A and the decomposition theorem of de Rham, \tilde{M} is isometric to one of the following manifolds: (1) $M^{*}(K)$,

- (2) $M^{r}(K) \times M^{n-r}(-K), K \neq 0, 2 \leq r \leq n-2,$
- (3) $M^{n-1}(K) \times E^1, K \neq 0,$

where $M^m(K)$ denotes an ordinary sphere S^m of radius $K^{-1/2}$, a Euclidean space E^m or a hyperbolic space H^m with sectional curvature K according as K is positive, zero or negative. And M is isometric to a quotient \tilde{M}/Γ , where Γ is a certain group of isometries of \tilde{M} acting freely and properly discontinuously (cf. Wolf [6]). Thus the classification is reduced to analyze the structure of Γ . So, we prepare some lemmas.

LEMMA 1. Let M_i (i = 1, 2) be a connected Einstein Riemannian manifold with the metric tensor g_i , that is, the Ricci tensor R_i is written as $R_i = c_i g_i$ over M_i with constant c_i . If $c_1 \neq c_2$, then $I(M_1 \times M_2) =$ $I(M_1) \times I(M_2)$, where $I(M_1 \times M_2)$, $I(M_1)$ and $I(M_2)$ denote the groups of all isometries of $M_1 \times M_2$, M_1 and M_2 respectively.

PROOF. If we put $\widetilde{M} = M_1 \times M_2$, then the tangent space $T_z(\widetilde{M})$ at a point $z = (x, y) \in \widetilde{M}$ is identified with direct sum $T_x(M_1) + T_y(M_2)$. Let R^1 be a field of symmetric endomorphism which corresponds to the Ricci tensor R of \widetilde{M} , that is, $R(X, Y) = g(R^1X, Y)$ for any tangent vectors Xand Y, where g is the metric tensor of the direct product \widetilde{M} . Then, $X \in T_z(\widetilde{M})$ is contained in $T_x(M_1)$ (resp. $T_y(M_2)$) if and only if $R^1X = c_1X$ (resp. $R^1X = c_2X$).

Now, let $f \in I(\tilde{M})$. Then we have

$$df_{z}\circ R_{z}^{\scriptscriptstyle 1}=R_{f(z)}^{\scriptscriptstyle 1}\circ df_{z}$$
 for each $z\in \widetilde{M}$,

which shows that df_x maps $T_x(M_1)$ (resp. $T_y(M_2)$) into $T_{f_1(x,y)}(M_1)$ (resp. $T_{f_2(x,y)}(M_2)$), where we put $f(z) = f(x, y) = (f_1(x, y), f_2(x, y))$. Making use of this fact, we shall show that $f_1(x, y)$ (resp. $f_2(x, y)$) does not depend on y (resp. x) which completes the proof. Let $\{x_1, \dots, x_r, y_1, \dots, y_s\}$ be a coordinate system on a neighborhood $U_x \times V_y$ of \tilde{M} at z = (x, y) such that $\{x_1, \dots, x_r\}$ and $\{y_1, \dots, y_s\}$ are coordinate systems on U_x and V_y respectively. Let $\{u_1, \dots, u_r, v_1, \dots, v_s\}$ be a coordinate system on a neighborhood $U_{f_1(x,y)} \times V_{f_2(x,y)}$ of \tilde{M} at $f(z) = [(f_1(x, y), f_2(x, y))$ such that $\{u_1, \dots, u_r\}$ and $\{v_1, \dots, v_s\}$ are coordinate systems on $U_{f_1(x,y)}$ respectively. Let f be represented locally by the functions,

$$\begin{cases} u_i = f_{1i}(x_1, \dots, x_r, y_1, \dots, y_s) & (i = 1, \dots, r) \\ v_i = f_{2i}(x_1, \dots, x_r, y_1, \dots, y_s) & (i = 1, \dots, s) . \end{cases}$$

Since $df(\partial/\partial x_i) \in T(M_1)$ and $df(\partial/\partial y_i) \in T(M_2)$, we have

$$\partial f_{1i}/\partial y_j=0 \quad ext{for} \quad i=1,\ \cdots,\ r;\ j=1,\ \cdots,\ s$$

and

$$\partial f_{2i}/\partial x_j=0 \quad ext{for} \quad i=1,\ \cdots,\ s;\ j=1,\ \cdots,\ r$$
 ,

106

that is,

$$\begin{cases} u_i = f_{1i}(x_1, \dots, x_r) & \text{for } i = 1, \dots, r \\ v_i = f_{2i}(y_1, \dots, y_s) & \text{for } i = 1, \dots, s \end{cases}$$

This means that $f_1(x, y) = f_1(x, y')$ (resp. $f_2(x, y) = f_2(x', y)$), if y is sufficiently near to y' (resp. x is sufficiently near to x'). Since M_2 (resp. M_1) is connected, $f_1(x, y) = f_1(x, y')$ (resp. $f_2(x, y) = f_2(x', y)$) for any pair y and y' of M_2 (resp. for any pair x and x' of M_1). q.e.d.

Let γ be an isometry of a metric space N with distance function d. We say that γ is a Clifford translation if $d(x, \gamma(x)) = d(y, \gamma(y))$ for each pair of points x and y of N.

LEMMA 2. Let M_1 and M_2 be complete Riemannian manifolds. Let α and β be isometries of M_1 and M_2 respectively. Then $\gamma = (\alpha, \beta)$ is a Clifford translation on $M_1 \times M_2$ if and only if α and β are Clifford translations on M_1 and M_2 respectively.

PROOF. Let (x, y) and (u, v) be points of $M_1 \times M_2$. Then, as easily seen, the following identity of Pythagoras is valid:

$$[d((x, y), (u, v))]^2 = [d(x, u)]^2 + [d(y, v)]^2$$
,

where d denotes the distance functions of M_1 , M_2 and $M_1 \times M_2$. Now the lemma is evident.

LEMMA 3. (cf. Wolf [6]) Let M and \tilde{M} be Riemannian manifolds and let $M = \tilde{M}/\Gamma$, where Γ is a group of isometries of \tilde{M} acting freely and properly discontinuously. Let G be the centralizer of Γ in the group $I(\tilde{M})$ of all isometries of \tilde{M} . Then M is homogeneous if and only if G is transitive on \tilde{M} . And if M is homogeneous, then every element of Γ is a Clifford translation of \tilde{M} .

THEOREM B. Let M be a connected conformally flat homogeneous Riemannian manifold. Then M is isometric to one of the following manifolds:

- (I) A homogeneous space of constant curvature.
- (II) A direct product of a homogeneous space of constant curvature K(>0) and a homogeneous space of constant curvature -K.
- (III) A direct product of a homogeneous space of constant curvature -K(<0) and a 1-dimensional homogeneous space.
- (IV) A homogeneous Riemannian manifold which is locally a product of a space of constant curvature K(>0) and a 1-dimensional space.

PROOF. Since the only Clifford translation of H^m is the identity

transformation 1 (cf. Wolf [6]), every Clifford translation of $H^{n-r} \times S^r$ or $H^{n-1} \times E^1$ must be of the form $(1, \beta)$, by Lemma 1 and Lemma 2. Now this proves the theorem by Lemma 3. q.e.d.

Thus the only problem left to us is to check up the space of the form $(S^{n-1} \times E^1)/\Gamma$.

4. $(S^{n-1} \times E^1)/\Gamma$. S^{n-1} is considered as the set of vectors of norm $K^{-1/2}$ in a Euclidean vector space \mathbb{R}^n . Then $I(S^{n-1})$ is the orthogonal group O(n). The group of all Clifford translations of E^1 is identified with the additive group \mathbb{R} . The natural projections $I(S^{n-1}) \times I(E^1) \to I(S^{n-1})$ and $I(S^{n-1}) \times I(E^1) \to I(E^1)$ are denoted by p and q respectively.

LEMMA 4. Let $(S^{n-1} \times E^1)/\Gamma$ be homogeneous. Then $p(\Gamma)$ is contained in one of the following closed subgroups (1), (2) and (3) of O(n), according as n = 2m + 1, n = 2m (m: odd) or n = 4m:

 $(1) \{\pm E\},\$

(2) $\{aE + bI; a^2 + b^2 = 1, a, b \in R\},\$

(3) $\{aE + bI + cJ + dK; a^2 + b^2 + c^2 + d^2 = 1, a, b, c, d \in R\},\$

where E is the identity transformation of \mathbb{R}^n and I, J, K are elements of O(n) satisfying the conditions, $I^2 = J^2 = K^2 = -E$, IJ = -JI = K, JK = -KJ = I, KI = -IK = J.

PROOF. Let $(S^{n-1} \times E^1)/\Gamma$ be homogeneous. Then by Lemma 3, the centralizer G of Γ in $I(S^{n-1} \times E^1) = I(S^{n-1}) \times I(E^1)$ is transitive on $S^{n-1} \times E^1$. Then the group p(G) is the centralizer of $p(\Gamma)$ in O(n) and it is transitive on S^{n-1} . In particular, \mathbb{R}^n has no p(G)-invariant linear subspace. Then, every element A of the centralizer F of p(G) in the algebra of all linear transformations of \mathbb{R}^n is written as A = aE or A = aE + bI, where $b \neq 0$ and I is a linear transformations of \mathbb{R}^n satisfying $I^2 = -E$ (cf. p. 277 [1]). It should be noted that, if an element of the form aE + bI ($b \neq 0$) is contained in O(n), then $a^2 + b^2 = 1$ and $I \in O(n)$. In fact, let $aE + bI \in O(n)$. Then we have $aE - bI = (a^2 + b^2)(aE + bI)$ and $aE - b^tI = (a^2 + b^2)(aE + bI)$, which implies that $a^2 + b^2 = 1$ and $^tI = -I$.

By definition of F, $p(\Gamma) \subset F$. Thus, if n is odd, then $F = \{aE; a \in R\}$ and hence $p(\Gamma) \subset \{\pm E\}$.

Now, let *n* be even. If $p(\Gamma)$ contains an element of the form aE + bI ($b \neq 0$), then $I \in O(n)$ and $F \supset C$, where $C = \{aE + bI; a, b \in R\}$. *C* is written as follows; $C = \{A \in F; AI = IA\}$. In fact, let *A* be an element of *F* satisfying AI = IA. Since $A \in F$, *A* is of the form aE + bL, where $L^2 = -E$. Hence, if $b \neq 0$, then IL = LI. It is sufficient to show

108

that L = I or L = -I. So we show that $\mathbb{R}^n = W_1 + W_2$ (direct sum), where $W_1 = \{v \in \mathbb{R}^n; Iv = Lv\}$ and $W_2 = \{v \in \mathbb{R}^n; Iv = -Lv\}$. Clearly, $W_1 \cap W_2 = \{0\}$. Every $v \in \mathbb{R}^n$ is of the form $w_1 + w_2$ with $w_1 \in W_1$ and $w_2 \in W_2$ by setting $w_1 = (1/2)(v - ILv)$ and $w_2 = (1/2)(v + ILv)$. Since $I, L \in \mathbb{F}, W_1$ and W_2 are invariant by $p(\Gamma)$, which implies that L = I or -I.

Next we assume that $p(\Gamma) \not\subset C$. And we take an element A of $p(\Gamma)$ such that $A \notin C$. If we put B = A + IAI, then $B \notin C$ and $B^2 \in C$, because BI = -IB, $B^2I = IB^2$ and $AI \neq IA$. On the other hand, B may be written as B = cE + dJ, where $J^2 = -E$, because $B \in F$. Since $B \notin C$ and $B^2 \in C$, then c = 0 and $d \neq 0$. We show that $J \in O(n)$. Since $A \in F \cap O(n)$, A is of the form aE + bL, where $L^2 = -E$ and ${}^{t}L = -L$. Then B = b(L + ILI), which implies that ${}^{t}B = -B$ and hence ${}^{t}J = -J$. Here, we put $D = \{(aE + bI)J; a, b \in R\}$. Then $D = \{A \in F; AI = -IA\}$. For, if $A \in F$ satisfies AI = -IA, then $AJ \in C$, that is, AJ is written as AJ = -aE - bI and hence A = (aE + bI)J. Now we show that F = C + D (direct sum). Clearly, $C \cap D = \{0\}$. Every $A \in F$ is of the form C + D with $C \in C$ and $D \in D$ by setting C = (1/2)(A - IAI) and D = (1/2)(A + IAI).

If we put K = IJ, then $K \in O(n)$ and the I, J and K satisfy the conditions stated in this lemma. And $p(\Gamma) \subset (C + D) \cap O(n)$. Of course, if $p(\Gamma) \not\subset C$, then n = 4m. q.e.d.

The groups (1), (2) and (3) in Lemma 4 are isomorphic to $\{\pm 1\}$, S^1 and Spin (3) respectively. Hereafter, we mean these groups as closed subgroups of O(n) acting S^{n-1} by the above fashion.

THEOREM C. $(S^{n-1} \times E^1)/\Gamma$ is homogeneous if and only if Γ is a discrete subgroup of $\{\pm 1\} \times R$, $S^1 \times R$ or $Spin(3) \times R$ according as n = 2m + 1, n = 2m (m: odd) or n = 4m.

PROOF. Let $(S^{n-1} \times E^1)/\Gamma$ be homogeneous. Then $p(\Gamma)$ is contained in $\{\pm 1\}$, S^1 or Spin(3) by Lemma 4 and $q(\Gamma) \subset \mathbb{R}$ by Lemma 2 and Lemma 3. And moreover Γ is discrete in $O(n) \times I(E^1)$, since the action of Γ is free and discontinuous (cf. [1]). Conversely, let Γ be a discrete subgroup of $\{\pm 1\} \times \mathbb{R}$, $S^1 \times \mathbb{R}$ or $Spin(3) \times \mathbb{R}$. Then the centralizer Gof Γ in $O(n) \times I(E^1)$ actually contains $O(n) \times \mathbb{R}$, $U(m) \times \mathbb{R}$ or $Sp(m) \times \mathbb{R}$. In particular G is transitive on $S^{n-1} \times E^1$. By the way of action, Γ acts freely. Since $S^{n-1} \times E^1$ is a homogeneous space and the isotropy group is compact, the discrete subgroup Γ of $I(S^{n-1} \times E^1)$ acts on $S^{n-1} \times E^1$ properly discontinuously (cf. [1]).

THEOREM D. Let H be one of the groups $\{\pm 1\}$, S¹ and Spin (3). Then a discrete subgroup Γ of $H \times R$ is one of the following forms: (1) $\Gamma_{1} \times \{0\},\$

(2) A group which is semi-direct product of the infinite cyclic group $\langle (\alpha, \beta) \rangle$ generated by (α, β) and $\Gamma_1 \times \{0\}$,

where Γ_1 is a finite subgroup of H, α an element of the normalizer of Γ_1 in H and $\beta \neq 0 \in \mathbf{R}$.

PROOF. First, the projection $q(\Gamma)$ is a discrete subgroup of R and hence it is the infinite cyclic group $\langle \beta \rangle$ generated by an element $\beta (\neq 0) \in R$ or $\{0\}$. If $q(\Gamma) = \{0\}$, then Γ is a discrete subgroup of compact group $H \times \{0\}$ and hence Γ is of the form (1). If $q(\Gamma) = \langle \beta \rangle$, then $q^{-1}(k\beta) \cap$ Γ $(k \in \mathbb{Z})$ is a finite set and the number of elements of the set does not depend on k. In fact, we have a one to one correspondence between the finite group $q^{-1}(0) \cap \Gamma$ and the set $q^{-1}(k\beta) \cap \Gamma$, that is, $(\gamma, k\beta)$ maps $(\alpha_i, 0) \in$ $q^{-1}(0) \cap \Gamma$ to $(\gamma \alpha_i, k\beta) \in q^{-1}(k\beta) \cap \Gamma$, where $(\gamma, k\beta)$ is an arbitrary fixed element of $q^{-1}(k\beta) \cap \Gamma$. Thus, taking an element $(\alpha, \beta) \in q^{-1}(\beta) \cap \Gamma$, Γ may be written as $\Gamma = \bigcup_{k \in \mathbb{Z}} (\alpha^k, k\beta)(\Gamma_1 \times \{0\})$. For Γ to be closed with respect to the compositions of $H \times R$, α must be contained in the normalizer of Γ_1 in H.

REMARK 1. The finite subgroups of H are completely classified by Wolf ([4], [5]).

REMARK 2. The classification for the case that the dimension of M is equal to 1 or 2 is well known.

References

- S. KOBAYASHI AND K. NOMIZU, Foundations of Differential Geometry, Vol. I, Interscience Publishers, New York, 1963.
- [2] M. KURITA, On the holonomy group of the conformally flat Riemannian manifold, Nagoya Math. J., 9 (1955), 161-171.
- [3] K. SEKIGAWA AND H. TAKAGI, On conformally flat spaces satisfying a certain condition on the Ricci tensor, Tôhoku Math. J., 23 (1971), 1-11.
- [4] J. A. WOLF, Sur la classification des variétés riemanniennes homogènes à courbure constante, C. R. Acad. Sci. Paris, 250 (1960), 3443-3445.
- [5] J. A. WOLF, Vincent's conjecture of Clifford translations of the sphere, Comm. Math. Helv., 36 (1961), 33-41.
- [6] J. A. WOLF, Spaces of Constant Curvature, McGraw-Hill, New York, 1967.

College of General Education Tôhoku University Sendai, Japan