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ON ARTIN L-FUNCTIONS
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Let k be an algebraic number field of finite degree. Let K be a
Galois extension of k of finite degree. Let G be the Galois group of this
extension. Let χ be a character of G. Then Artin L-function L(s, χ) is
defined. For some groups G, L(s, χ) is known to be an entire function
for every non-trivial irreducible character χ [2, p. 225]. These cases can
be proved through Blichfeldt's theorem [3, p. 348] reducing to abelian
cases, i.e., Hecke L-f unctions. This theorem can be applied for other
groups, i.e., for supersolvable groups. A group G is called supersolvable
if G has normal subgroups Ho, Hlf , Hr such that G = HQ ZD H± 3 Z)
Hr = {e} and every Hi.JHi is cyclic [4],

THEOREM 1. // the Galois group G is supersolvable, L(s, χ) is entire
for every non-trivial irreducible character χ.

PROOF.1* If G is abelian, L(s, χ) is a Hecke L-function which is entire.
So we assume that G is not abelian and we will prove by induction on
the order of G. Let χ be the character of a representation module (G, V).
If there exists a non-trivial normal subgroup N which operates trivially
on V, χ is a character of G/N. As G/N is also supersolvable, L(s, χ) is
entire by induction. Now we assume that there exists no such normal
subgroup. Then G is a subgroup of GL(V). Let C be the center of G.
As G/C is also supersolvable, there exists a normal subgroup A of G
such that A/C is cyclic and A Φ C. Then A is abelian because C is in
the center of A. Now Blichfeldt's theorem shows that there exists a
proper subgroup H of G such that χ = φ° for some character ψ of H,
where φσ means the induced character of G. It is easy to see that φ is
non-trivial and irreducible. As L(s, χ) = L(s, φ) and as H is also super-
solvable, our assertion is proved by induction.

REMARK. Professor M. Ishida kindly suggested this proof when G
is nilpotent. We note that every finite nilpotent group is supersolvable.

υ This proof shows that L(s, χ) is entire for every χ if the Galois group is an ikΓ-group.
Hence Theorem 1 is a special case of Huppert's Theorem [5, p. 580]. We also note that
every ikf-group is solvable [5, p. 581].
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We now give an example of a finite solvable group on which Blichfeldt's
theorem cannot be applied. In fact, the following example is of the
smallest possible order. Let G be a finite group generated by σ, τ and
p whose relations are as follows:

σ' = p = l , σ* = τ*, στσ-' = Γ-i ,

pσp~ι = τ , pτp'1 = τσ .

Then σ and τ generate the commutator subgroup G' which is isomorphic
to the quaternion group. As (G: Gr) = 3, the order of G is 24. Now G
can be represented as subgroups of GL(2, C), where C is the complex
numbers. In fact, if we put

(i 0\ / 0 1\ (1 - 1
σ = . , r = and p = a I

\0 -i) \ - l 0/

we see easily that above relations hold. In the above, a is one of the
following values:

where ω is a primitive cube root of unity. Above representations give
three 2-dimensional characters χίf χ2 and χ3 which are different with one
another, as the values of the characters at p are different. As G has no
subgroup of index 2, any 2-dimensional character cannot be induced from
a proper subgroup. Hence Blichfeldt's theorem cannot be applied in this
case. We see that G has seven conjugate classes which are represented
by 1, σ2, σ, p, ρ\ ρσ2 and ρ2σ2. Hence every character of G is determined
by values at these elements. We see that

χ4(l) - 2, χi(σ2) - - 2 and χt(σ) = 0

for every i, and

UP) = UP2) = - I , UP*2) = xAP**) = 1.
UP) = - ω , χ2(p2) = -ω2, χ2(pσ2) = ω , χ2(p2σ2) = ω2,

and χ3 = χ2 is the complex conjugate of χ2. Let H be the subgroup of
G generated by pσ2. Let φ and ψ be one-dimensional characters of H
such that φ(ρσ2) = -ω and f (pσ2) = - 1 . Let >̂σ and ^ be induced
characters of (?. As we can take 1, σ, τ, στ as representatives of G/H,
we see that

φβ(l) = 4 , φ\σ2) = - 4 , ^σ(σ) = 0

and
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φ°{μ) = φ{μ) if μ e H - {1, <72} ,

and the same for ψ.

THEOREM 2. Let K and k be algebraic number fields of finite degrees.
We assume that K is a Galois extension of k with Galois group G defined
above. Then

L(s, χ,)2 = L(s, φ)L(s, φ)/L(s, ψ)

L(s, χ2)
2 = L(s, φ)L(s, ψ)/L(s, φ)

and

L(s, χzγ = L(s, φ)L{s, ψ)/L(s, φ)

hold.

PROOF. It is easy to see that

and

- φσ + tσ - φ°

- φG

This shows above equalities.

REMARK. Let λ be a one-dimensional character of the subgroup gen-
erated by a such that λ(σ) = i. Then

Z l = qft + φ° - X° ,

χ2 = χ° _ φG

and
χ3 = λ ^ _ ψo

hold.

We now assume that k is the field of the rational numbers. Let F
be the intermediate field of K/k corresponding to H. Then L(s, φ), L(s, φ)
and L(s, ψ) are different L-functions corresponding to an abelian extension
K/F. Moreover they are multiplicatively independent because L(s, χ*)
are multiplicatively independent [1]. If we can show that different L-
functions of an abelian extension have independent distributions of zero
points, L(s, %i) have poles by Theorem 2. Following example seems to
show that it is not absurd to think so, though Artin's conjecture asserts
that L(s, %i) has no pole.

EXAMPLE. Let F be an algebraic number field of finite degree. Let
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L{s, φ) and L(s, ψ) be different Hecke L-f unctions over F. Let Fψ and
i*V be cyclic extensions of F corresponding to φ and ψ, respectively. If
the numbers of real places ramified at Fψ and F+ are the same, and if
the conductors of φ and ψ are the same, L(s, φ)/L(s, ψ) has poles.

PROOF. Let

Φ(s, Ψ) =

as usual, where \Ψ is the conductor of φ and v is the number of real
places ramified at Fφ/F. Above assumptions show that L(s, φ)/L(s, ψ) =
Φ(s, φ)/Φ(s, ψ). First we consider the case L(s, ψ) = L{s, φ). If
L{s, φ)/L(s, φ) has a zero point p, p is a pole of this function. Hence if
L(s, φ)/L(s, ψ) has no pole, the zero points of L(s, φ) and L(s, ψ) are the
same counting the multiplicities. It is known [6] that

Φ(8, ψ) = α β δ 8 π f l - — )e8

9 \ pi
8lp

for constants a and b depending on φ, where p runs over the zeros of
L(s, φ) such that 0 < ίϋp < 1. Therefore

L(s, φ)/L(s, φ) = Φ(s, <p)/Φ(s, ψ) = aeh*laeh8 .

Let aγ = a/a and let b^ = b — b. Let s = reί(? for some 0 such that
— π/2 < θ < π/2. The left hand side of the above equation goes to 1
when r goes to infinity. If bL Φ 0, the right hand side goes to zero or
to infinity for suitable θ. Hence it must be δx = 0. Then αx must be 1,
as the left hand side goes to 1 when r goes to infinity. This shows
L(s, φ) = L(s, φ) which is a contradiction. Now let L{s, ψ) Φ L(S, φ).
We put M(s) = L(s, φ)L{s, φ)/L(s, ψ)L(s, f). If M(s) has a pole p, p or
p is a pole of L(s, φ)/L(s, ψ). We assume that M(s) has no pole. Now

Φ(s, <p)Φ{s, φ) = Π ( ) (
\ pI \ p

- aae{h+ϊ)8 Π (l - — V l - 4r) Π

as the products converge absolutely. Now Landau shows [6]

Hence
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Φ(8, φ)Φ(s, ψ) = ad Π ( l - - ) ( l - 4 ) .
p \ p I \ p 1

As we assume that M(s) = Φ(s, <p)Φ(s, φ)/Φ(s, ψ)Φ(s, ψ) has no pole, it
must be

for some constant c, where Π' means the product over the zero points
of M(s). As 0 < 3tρ < 1,

for real s > 2, and (1 — s/p)(l — s/p) goes to infinity as s goes to infinity.
Hence if M(s) has at least one zero point, the absolute value of the right
hand side goes to infinity, which is a contradiction because the left hand
side goes to 1. Hence it must be M(s) = 1. If L(s, <p)/L(s, ψ) has a zero
point p, it is a pole of L(s, φ)/L(s, ψ). Then p is a pole of L(s, φ)/L($, ψ)
which contradicts to our assumption. Hence the zero points of L(s, φ)
must coincide to those of L(s, ψ). Then it must be

L(s, φ)/L(8, f) = Φ(s, <p)IΦ(s, ψ) = a^'/aj"

for some constants a19 a2, δj. and δ2. But this shows L(s, φ) = L(s, ψ) as
in the case ψ = φ.

Above theorem shows that it is difficult to know whether L(s, χ) is
entire or not, even if the Galois group is solvable. Following theorem
is in contrast with this.

THEOREM 3. Let k be an algebraic number field of finite degree.
Let F be an algebraic extension of k of finite degree. Let K be the
normal closure of this extension, i.e., the smallest Galois extension ofk
containing F. If the Galois group G = G(K/k) is solvable, ζF(s)/ζk(s) is
an entire function.

PROOF. If there exists an intermediate field E of F/k, entireness of
ζF(s)/ζk(s) follows from entireness of ζF(s)/ζE(s) and ζE(s)/ζk(s). So we
may assume that F/k has no intermediate field. Let H be the subgroup
of G corresponding to F. H contains no non-trivial normal subgroup of
G because K is the normal closure of F/k. Hence G can be considered as
a permutation group of Ω = G/H. As H itself is the stabilizer of HeΩ
and as H is a maximal subgroup of G by our assumption, G is a primitive
permutation group of Ω [5, p. 147]. As G is solvable, Galois' theorem
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[5, p. 159] shows that there exists an abelian normal subgroup JV such
that

G = HN and HnN = (e) .

Let χ0 and φ0 be trivial characters of G and H, respectively. If we put

Φ$ = Xθ + Xl + + lr ,

χif i ^ 1, are non-trivial. As C*(e)/C*(e) = L(s, φ$)/L(s, χ0) = Πί=i L(s, χ,),
it suffices to show that every L(s, χέ), % ^ 1, is entire. First we show
that every χif i ^> 1, is non-trivial over JV. Let χ be an irreducible char-
acter of G which is trivial over JV. Then χ can be considered as an
irreducible character of G/N. As H ~ G/iV, χ | H is irreducible, where
χ I i ϊ means the restriction of χ to £Γ. As

χ appears as a component of φ? if and only if χ\H = φ0. But χ\H=φ0

means % = %o- Now let χ be an irreducible character of G which is non-
trivial over N. Let (G, V) be a representation module of G whose char-
acter is equal to χ. Then there exists a non-trivial irreducible character
λ of N which appears as a component of % | JV. That is, the subspace
W of V defined by

W — {we V\nw = X(n)w for every neN}

is not trivial. Let Gx be the subgroup of G which consists of the elements
g1 of G such that g^W — W. Let ψ be the character of the representa-
tion module (Glf W). Then φ is irreducible and it is known [3, § 50] that
χ = φG. Let Nι be the kernel of λ. Then Gx is contained in the nor-
malizer NG(N^) of Nι in G. It holds that

for any neN, g1eG1 and we.TΓ. This shows that Ĝ JVi is contained
in the centralizer of .N/-Ni in NJ^N^IN^ It is also easy to show
that every element in the centralizer of NjNx is contained in GJNlm

That is, GJ^ is the centralizer of N/N, in NoiN^/N,. Especially, Gi
depends only on λ, not on χ. As GA contains JV, there exists a subgroup
Hi of i ϊ such that Gx = ί^iV. Hence G ĴVi is isomorphic to a direct product
of Hi and JV/JV̂  because N/Nj_ is in the center of GJNj.. Let α̂ o, Ψif ,
τ/r, be the irreducible characters of J3i, where ψ0 is a trivial character.
Let fi ® λ be a character of Gx defined by ψt (g) λ(A^) = Ψi{h^\{n) for
every hλeH and neN. Then it is a character of GJN19 and it is irre-
ducible because Gi/-Wi = JE?i x JV/iVi. And ^ defined above is one of the
ψ. (g) λ. As (ψi (x) λ)σ I JV contains λ as an irreducible component, above



ON ARTIN L-FUNCTIONS 81

G is an irreducible character of G. It holds that

= 0 if neN- (e)

argument shows (φi

and

φt(β) = (N: 1) .

Hence

« X% = (?>? \N,X)N = 1.

Therefore there exists only one component of Xσ which appears as a com-
ponent of φ%. It is easy to see that Xβl = ψieg (x) λ, where ^ r θ g is the
character of the regular representation of H^ Then there exist only one
(Ψi (x) X)σ which appears in φG. Let /&* e £Γ, ί ~ 1, •••,£, be the represen-
tatives of G/Gi Then it holds for any he H that

(to (x) X)G(h) = Σ to ® X{hϊιhhτ)
i

= the number of Ai such that hτιhht e SΊ .

Hence every ( f 0 (g) λ)σ(fc) ^ 0 and ( f 0 (g) λ)σ(e) = (iϊ: HO > 0. It then holds

= (H: I)"1 G(h) > 0 .

We
X)σ.

λ) is

Therefore (ψ0 (x) λ)σ is the component of λ*7 which appears in φ®.
have shown that every component of φi — χ0 is of the form (ψ0 (
As ψo ® λ, ΐs a non-trivial one-dimensional character of G i f L(s, α/r0 0
a Hecke L-function which is entire. This shows that ζF(s)/ζk(s) is entire.
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