ON THE TANGENT SPHERE BUNDLE OF A 2-SPHERE

Wilhelm Klingenberg and Shigeo Sasaki ${ }^{1)}$

(Received October 19, 1973)

Introduction. Let S^{2} be the unit sphere in a Euclidean space E^{3} with the induced metric g. Then, the set of all unit tangent vectors $T_{1}\left(S^{2}\right)$ with the natural topology is the total space of the tangent sphere bundle $p: T_{1}\left(S^{2}\right) \rightarrow S^{2} . \quad T_{1}\left(S^{2}\right)$ has a natural Riemannian metric. In this paper, we prove first that $T_{1}\left(S^{2}\right)$ with this metric is isometric with the elliptic space of constant curvature $1 / 4$ (Theorem 1). Then, we give two proofs of a theorem which characterizes each geodesic on $T_{1}\left(S^{2}\right)$ as a vector field along a circle in S^{2} (Theorem 2 and §4). Finally, we give a theorem on the set of tangent vectors of a one parameter family of circles, the set corresponds to a Clifford surface in $T_{1}\left(S^{2}\right)$ regarded as an elliptic space (Theorem 4).

1. $T_{1}\left(S^{2}\right)$ as a Riemannian manifold. First we shall show

Lemma 1. $\quad T_{1}\left(S^{2}\right)$ is diffeomorphic with the real projective space P^{3}.
Proof. For $y \in T_{1}\left(S^{2}\right)$, we consider the unit vector $e_{1}(y)$ which issues from the center O of S^{2} and ends at the point $p(y)$. Then, the map $\psi: T_{1}\left(S^{2}\right) \rightarrow S O(3)$ defined by $y \rightarrow\left(e_{1}(y), e_{2}(y), e_{1}(y) \times e_{2}(y)\right)$, where $e_{2}(y) \equiv y$ and \times means vector product in E^{3}, is a diffeomorphism. On the other hand, it is well known that $S O(3)$ is diffeomorphic with P^{3} (cf. for example [3] p. 115). Hence, $T_{1}\left(S^{2}\right)$ is diffeomorphic with P^{3}.

Now, let U be an arbitrary coordinate neighborhood with local coordinates $x^{a}(a, b, c=1,2)$ and y^{a} be components of a tangent vector y in U with respect to the natural frame $\partial / \partial x^{a}$. Then, $p^{-1}(U)$ gives a coordinate neighborhood of $T_{1}\left(S^{2}\right)$ with local coordinates $\left(x^{a}, y^{a}\right)$. By virtue of the induced metric g on S^{2} in E^{3}, the natural Riemannian metric \hat{g} on $T_{1}\left(S^{2}\right)$ is given by the following line element:

$$
\begin{equation*}
d \sigma^{2}=g_{b c}(x) d x^{b} d x^{c}+g_{b c}(x) \delta y^{b} \delta y^{c}, \tag{1.1}
\end{equation*}
$$

([2]) where we have put

$$
g_{b c}(x) y^{b} y^{c}=1, \quad \delta y^{b}=d y^{b}+\left\{\begin{array}{c}
b \tag{1.2}\\
e f
\end{array}\right\} y^{e} d x^{f} .
$$

[^0]First, let us prove the following
Lemma 2. ($\left.T_{1}\left(S^{2}\right), \hat{g}\right)$ is a Riemannian manifold of constant positive curvature $1 / 4$.

Proof. Let $e_{1}(r, \theta)$ be the point on S^{2} with coordinates (r, θ) in geodesic polar coordinates with the north pole N as its center. Then, the unit tangent vectors for the r-curve and the θ-curve at the point $e_{1}(r, \theta)$ are given by

$$
\begin{equation*}
f_{2}=\frac{\partial}{\partial r}, \quad f_{3}=\frac{1}{\sin r} \frac{\partial}{\partial \theta} . \tag{1.3}
\end{equation*}
$$

Now, let e_{2} be an element of $T_{1}\left(S^{2}\right)$ at the point $e_{1}(r, \theta)$ of S^{2}. If we denote the angle between f_{2} and e_{2} by ω, then (r, θ, ω) can be considered as local coordinates for e_{2} in $p^{-1}\left(S^{2}-\{N, S\}\right), S$ being the south pole. As

$$
\left\{\begin{array}{l}
e_{2}=\cos \omega \cdot f_{2}+\sin \omega \cdot f_{3} \tag{1.4}\\
e_{3}=-\sin \omega \cdot f_{2}+\cos \omega \cdot f_{3}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
d e_{1}=d r \cdot f_{2}+\sin r d \theta \cdot f_{3} \tag{1.5}\\
d f_{2}=-d r \cdot e_{1}+\cos r d \theta \cdot f_{3} \\
d f_{3}=-\sin \theta d \theta \cdot e_{1}-\cos r d \theta \cdot f_{3}
\end{array}\right.
$$

we see that

$$
\begin{equation*}
\left\langle d e_{1}, d e_{1}\right\rangle=d r^{2}+\sin ^{2} r d \theta^{2} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{align*}
& \left\langle d e_{2}, e_{3}\right\rangle \\
= & \left\langle(*) \cdot e_{1}-\sin \omega \cdot \Phi \cdot f_{2}+\cos \omega \cdot \Phi \cdot f_{3}, \quad-\sin \omega \cdot f_{2}+\cos \omega \cdot f_{3}\right\rangle=\Phi, \tag{1.7}
\end{align*}
$$

where (*) means the term which we do not need to know and

$$
\begin{equation*}
\Phi=d \omega+\cos r d \theta \tag{1.8}
\end{equation*}
$$

On the other hand, we see easily that

$$
\begin{equation*}
d \sigma^{2}=\left\langle d e_{1}, d e_{1}\right\rangle+\left\langle d e_{2}, e_{3}\right\rangle^{2} \tag{1.9}
\end{equation*}
$$

So, we get by (1.6) and (1.7)

$$
\begin{equation*}
d \sigma^{2}=d r^{2}+d \theta^{2}+2 \cos r d \theta d \omega+d \omega^{2} \tag{1.10}
\end{equation*}
$$

As the right hand side of (1.10) is of very simple form we can calculate its curvature tensor by a routine method. A little long but simple
calculation shows us that the Riemannian metric (1.10) is of constant curvature 1/4.

From Lemmas 1 and 2, we get the following
Theorem 1. The Riemannian manifold $\left(T_{1}\left(S^{2}\right), \hat{g}\right)$ is isometric with the elliptic space $\mathscr{E}^{3}=\left(P^{3}, k\right)$, where k is the Riemannian metric of constant curvature 1/4.
2. Geodesics on $T_{1}\left(S^{2}\right)$. Now, we shall prove the following theorem.

Theorem 2. Any geodesic on $T_{1}\left(S^{2}\right)$ is interpreted as a unit vector field along a circle C on S^{2} which makes constant angle with C.

Remark 1. C may reduce to a point. Thus, each fibre of the bundle $p: T_{1}\left(S^{2}\right) \rightarrow S^{2}$ is a geodesic of $T_{1}\left(S^{2}\right)$.

Remark 2. Both of Theorems 1 and 2 tell us that all geodesics are closed. Moreover, Theorem 1 tells us that every geodesic has of length 2π. This can be also proved directly by virtue of Theorem 2.

Proof. If we denote a geodesic Γ in $T_{1}\left(S^{2}\right)$ parametrically by ($x^{a}(\sigma), y^{a}(\sigma)$), where σ is the arc length of Γ, then $x^{a}(\sigma)$ and $y^{a}(\sigma)$ satisfy the following set of differential equations (cf. [2]*) II,'p. 152):

$$
\left\{\begin{array}{l}
x^{\prime \prime}=-b y+a y^{\prime} \tag{2.1}\\
y^{\prime \prime}=\rho y
\end{array}\right.
$$

where x^{\prime} means the tangent vector $d x^{a} / d \sigma$, and dashes on the shoulders of y 's mean covariant derivatives along the curve $C=p(\Gamma)$ and

$$
\begin{equation*}
a=\left\langle x^{\prime}, y\right\rangle, \quad b=\left\langle x^{\prime}, y^{\prime}\right\rangle \tag{2.2}
\end{equation*}
$$

are inner products on S^{2}. Of course, we have

$$
\begin{equation*}
\langle y, y\rangle=1, \quad\left\langle y, y^{\prime}\right\rangle=0 \tag{2.3}
\end{equation*}
$$

If we put

$$
\begin{equation*}
c^{2}=\left\langle y^{\prime}, y^{\prime}\right\rangle \equiv\left|y^{\prime}\right|^{2}, \quad c \geqq 0 \tag{2.4}
\end{equation*}
$$

then, we see easily that a, b, c are constants. For example, we shall prove the constancy of b. We get first

$$
b^{\prime}=\left\langle x^{\prime}, y^{\prime}\right\rangle^{\prime}=\left\langle-b y+a y^{\prime}, y^{\prime}\right\rangle+\rho\left\langle x^{\prime}, y\right\rangle=a\left(c^{2}+\rho\right)
$$

However, by (2.3) we have $\rho=-c^{2}$. So, we see that b is a constant.
Now, the horizontal component and the vertical component of the tangent vector T of Γ are given by $x^{\prime h}$ and $y^{\prime v}$ respectively, where $x^{\prime h}$

[^1]is the horizontal lift of x^{\prime} and $y^{\prime v}$ is the vertical lift of y^{\prime}. So, if we denote the norm of a tangent vector of $T_{1}\left(S^{2}\right)$ by $\|\|$, then we have
$$
\left\|x^{\prime h}\right\|^{2}=\|T\|^{2}-\left\|y^{\prime v}\right\|^{2}=1-\left|y^{\prime}\right|^{2}, \quad\left\|x^{\prime h}\right\|^{2}=\left|x^{\prime}\right|^{2}
$$

So, we get

$$
\begin{equation*}
\left|x^{\prime}\right|^{2}=1-c^{2} . \tag{2.5}
\end{equation*}
$$

The last equation shows that $0 \leqq c \leqq 1$ and (i) C reduces to a point if $c=1$ and Γ is a fibre over the point, (ii) C reduces to a geodesic on S^{2} if $c=0$ and Γ is a trajectory of the geodesic flow.

When C does not reduce to a point, let us denote its arc length by s. Then, (2.5) shows us that

$$
\begin{equation*}
\frac{d s}{d \sigma}=\sqrt{1-c^{2}}=\text { const. . } \tag{2.6}
\end{equation*}
$$

Then, the relation

$$
\left|x^{\prime \prime}\right|^{2}=b^{2}+a^{2} c^{2}
$$

and (2.6) tell us that the geodesic curvature κ of C is given by

$$
\begin{equation*}
\kappa^{2}\left(1-c^{2}\right)^{2}=b^{2}+a^{2} c^{2} \tag{2.7}
\end{equation*}
$$

Thus, κ is constant along C and so C is a circle on S^{2}.
The angle $\alpha(\sigma)$ between the tangent vector $x^{\prime}(\sigma)$ and $y(\sigma)$ along C is given by

$$
\cos \alpha(\sigma)=a /\left|x^{\prime}\right|^{2}
$$

So, by (2.5) $\alpha(\sigma)$ is constant along C. This completes the proof.
3. The isometry $\psi: T_{1}\left(S^{2}\right) \rightarrow S O(3)$. In $\S 1$, we showed that the map $\psi: T_{1}\left(S^{2}\right) \rightarrow S O(3)$ is a diffeomorphism. Now, as $S O(3)$ is a compact connected Lie group, it admits a natural symmetric Riemannian structure. Although it is a well-known fact, we shall explain a little which seems necessary for our purpose.

For simplicity, we put $G=S O(3)$ and denote its Lie algebra by g. \mathfrak{g} is identified with the tangent space of G at the unit element e. Denoting the rectangular coordinates in E^{3} by (x, y, z), the basis of g is given by

$$
\begin{aligned}
& B_{1}=y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}, \quad B_{2}=z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z} \\
& B_{3}=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}
\end{aligned}
$$

and the structural equations are given by

$$
\begin{equation*}
\left[B_{2}, B_{3}\right]=-B_{1},\left[B_{3}, B_{1}\right]=-B_{2},\left[B_{1}, B_{2}\right]=-B_{3} \tag{3.1}
\end{equation*}
$$

So, if we express the components of elements X_{e} and Y_{e} of g with respect to the above basis by ($\lambda_{1}, \lambda_{2}, \lambda_{3}$) and ($\mu_{1}, \mu_{2}, \mu_{3}$), then we see that the Killing form B of G is given by

$$
\begin{equation*}
B\left(X_{e}, Y_{e}\right)=-2\left(\lambda_{1} \mu_{1}+\lambda_{2} \mu_{2}+\lambda_{3} \mu_{3}\right) \tag{3.2}
\end{equation*}
$$

If we define a Riemannian metric h on G by

$$
\begin{equation*}
h(X, Y)=-\frac{1}{2} B\left(L_{a-1}^{\prime} X, L_{a-1}^{\prime} Y\right) \tag{3.3}
\end{equation*}
$$

for $X, Y \in G_{a}$, where L_{a-1}^{\prime} is the differential of the left translation $L_{a^{-1}}$ and G_{a} is the tangent space at $a \in G$, then h is biinvariant and (G, h) is a globally symmetric Riemannian space. Moreover, as $G=S O(3)$ is semisimple, G is an Einstein space (cf. [1] p. 206). So, the vanishing of Weyl's conformal curvature tensor of every Riemannian 3 -space tells us that (G, h) is a globally symmetric Riemannian space of constant curvature.

Now, we shall prove the following
Theorem 3. The map $\psi: T_{1}\left(S^{2}\right) \rightarrow S O(3)$ is an isometry of $\left(T_{1}\left(S^{2}\right), \hat{g}\right)$ with $(S O(3), h)$.

Proof. $G=S O(3)$ acts on G from the left as a simply transitive group of isometries. It acts also on $T_{1}\left(S^{2}\right)$ as a simply transitive group of isometries considered to act from the left. So, to show the isometry of the map ψ of ($\left.T_{1}\left(S^{2}\right), \hat{g}\right)$ with (G, h), it is sufficient to show the isometry of the differential of the map ψ of the tangent space $\left(T_{1}\left(S^{2}\right)\right)_{y_{0}}$ at the point $y_{0}=\psi^{-1}(e)$ with the one G_{e} at the unit element e of G. We see that y_{0} is the tangent vector $e_{2}^{0}=(0,1,0)$ at the point $e_{1}^{0}=(1,0,0)$.

Now, take an element $X_{e}=\lambda_{1} B_{1}+\lambda_{2} B_{2}+\lambda_{3} B_{3}$. Then, it corresponds by ψ^{-1} to

$$
\left\{\begin{array}{l}
e_{1}^{\prime}=\lambda_{3} e_{2}^{0}-\lambda_{2} e_{3}^{0}, \quad e_{2}^{\prime}=-\lambda_{3} e_{1}^{0}+\lambda_{1} e_{3}^{0}, \tag{3.4}\\
e_{3}^{\prime}=e_{1}^{\prime} \times e_{2}^{0}+e_{1}^{0} \times e_{2}^{\prime}
\end{array}\right.
$$

So, by (1.9), we have

$$
\hat{g}\left(\left(\psi^{-1}\right)^{\prime} X_{e},\left(\psi^{-1}\right)^{\prime} X_{e}\right)=\left\langle e_{1}^{\prime}, e_{1}^{\prime}\right\rangle+\left\langle e_{2}^{\prime}, e_{3}^{0}\right\rangle^{2}=\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}=h\left(X_{e}, X_{e}\right) .
$$

This completes the proof.
4. Another proof of Theorem 2. By virtue of Theorem 3 , $\left(T_{1}\left(S^{2}\right), \hat{g}\right)$ can be identified with the globally symmetric space ($S O(3), h$). Geodesics of the latter through the unit element e are 1-parameter subgroups of $S O(3)$ and other geodesics are cosets of these 1-parameter subgroups.

Now, let H be a 1-parameter subgroup of $S O(3)$. Then, H is a group of rotations around a fixed axis l through the origin O.

We identify e with ($e_{1}^{0}, e_{2}^{0}, e_{1}^{0} \times e_{2}^{0}$) and denote elements of H by f_{σ} $\sigma \in R \bmod 2 \pi$. If we put $e_{1}(\sigma)=f_{0}\left(e_{1}^{0}\right), e_{2}(\sigma)=f_{0}\left(e_{2}^{0}\right)$, then $\left(e_{1}(\sigma), e_{2}(\sigma)\right.$, $\left.e_{1}(\sigma) \times e_{2}(\sigma)\right)$ draws a geodesic on (SO(3), h) as σ varies. This shows that $e_{2}(\sigma)$ draws a geodesic Γ on $\left(T_{1}\left(S^{2}\right), \hat{g}\right)$. When l does not have the direction e_{1}^{0}, the initial point of $e_{2}(\sigma)$, i.e. the end point of $e_{1}(\sigma)$, draws a circle C on S^{2} and $e_{2}(\sigma)$ makes a constant angle with C as σ varies. When l has the direction $e_{1}^{0}, e_{1}(\sigma)$ coincides with the fixed vector e_{1}^{0}. We denote the end point of e_{1}^{0} by x_{0}. Then, $e_{2}(\sigma)$ draws a fibre $p^{-1}\left(x_{0}\right)$. Thus the assertion of Theorem 2 is true for geodesics of $T_{1}\left(S^{2}\right)$ which correspond to 1-parameter subgroups of $S O(3)$ by the map ψ^{-1}.

Any geodesic of ($S O(3), h$) which does not pass through e is given as a left coset of a 1-parameter subgroup H, i.e. as a family of frames $f\left(e_{1}(\sigma), e_{2}(\sigma), e_{1}(\sigma) \times e_{2}(\sigma)\right)$ where $f \in S O(3)$ and $e_{1}(\sigma)=f_{\sigma}\left(e_{1}^{0}\right), e_{2}(\sigma)=f_{\sigma}\left(e_{2}^{0}\right)$, $f_{\sigma} \in H(\sigma \in R)$. By ψ^{-1} this corresponds to a vector field $f\left(e_{2}(\sigma)\right)$ on $T_{1}\left(S^{2}\right)$. Thus the geodesic on $T_{1}\left(S^{2}\right)$ which corresponds to a left coset of a 1parameter subgroup H of $S O(3)$ is either a unit vector field along a circle $f(C)$ which makes a constant angle with $f(C)$ or a fibre $p^{-1}\left(f\left(x_{0}\right)\right)$. This completes the proof.
5. A family of tori in $T_{1}\left(S^{2}\right)$. Let us consider two parallel small circles $C_{\phi_{0}}$ and $C_{-\phi_{0}}$ on S^{2} which are defined by $\phi=\phi_{0}$ and $\phi=-\phi_{0}(\phi=$ $\pi / 2-r$) and lie equidistant from the equator. We consider a point (ϕ_{0}, θ) on $C_{\phi_{0}}$ and denote it by the unit vector $f_{1}(\theta)$ and the unit tangent vector at the point to the circle $C_{\phi_{0}}$ with the orientation coherent with its parameter θ by $f_{2}(\theta)$. Then, the great circle K_{θ} which passes through the point $f_{1}(\theta)$ and has the direction $f_{2}(\theta)$ is expressed by the field of unit vectors

$$
\begin{equation*}
e_{1}(\theta, t)=\cos t \cdot f_{1}(\theta)+\sin t \cdot f_{2}(\theta) \tag{5.1}
\end{equation*}
$$

with the origin O as its initial point. The unit tangent vector to K_{θ} at the point $e_{1}(\theta, t)$ is given by

$$
\begin{equation*}
e_{2}(\theta, t)=-\sin t \cdot f_{1}(\theta)+\cos t \cdot f_{2}(\theta) \tag{5.2}
\end{equation*}
$$

We may change the value of θ arbitrarily in the interval $[0,2 \pi]$ too. It is clear that the locus of the point $e_{2}(\theta, t)$ in $T_{1}\left(S^{2}\right)$ is a surface F homeomorphic with a torus. t-curves on F are geodesics of $T_{1}\left(S^{2}\right)$ and any two of them do not intersect. They are trajectories of the geodesic flow of S^{2}. Thus, F is covered by a family of geodesics. In the same way θ-curves are also geodesics of $T_{1}\left(S^{2}\right)$, because any of them is a vector
field along a circle $\phi=$ const. which makes a constant angle with the tangent vector to the circle. So, F is covered also by another family of geodesics, any two of them do not have common point. As $\left(T_{1}\left(S^{2}\right), \hat{g}\right)$ is isometric with the elliptic space \mathscr{E}^{3} by Theorem $1, F$ must be a surface which corresponds to a quadric with two families of real generators. This suggests us that F may be a surface which corresponds to a Clifford torus in \mathscr{E}^{3}. In fact, we get the following

Theorem 4. The Riemannian metric on the surface F induced from the one in $T_{1}\left(S^{2}\right)$ is flat. Thus F is a surface in $\left(T_{1}\left(S^{2}\right), \hat{g}\right)$ corresponding to a Clifford torus in \mathscr{E}^{3}.

Proof. We may easily verify that

$$
\begin{aligned}
f_{1}^{\prime}(\theta) & =\cos \phi_{0} \cdot f_{2}(\theta) \\
f_{2}^{\prime}(\theta) & =-\cos \phi_{0} \cdot f_{1}(\theta)+\sin \phi_{0} \cdot f_{3}(\theta) \\
f_{3}^{\prime}(\theta) & =-\sin \phi_{0} \cdot f_{2}(\theta)
\end{aligned}
$$

hold good. So, we get

$$
\begin{aligned}
e_{1 \theta} & \equiv \frac{\partial e_{1}}{\partial \theta}=-\cos \phi_{0} \sin t \cdot f_{1}(\theta)+\cos \phi_{0} \cos t \cdot f_{2}(\theta)+\sin \phi_{0} \sin t \cdot f_{3}(\theta) \\
e_{1 t} & \equiv \frac{\partial e_{1}}{\partial t}=-\sin t \cdot f_{1}(\theta)+\cos t \cdot f_{2}(\theta)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\langle e_{1 \theta}, e_{1 \theta}\right\rangle=\cos ^{2} \phi_{0}+\sin ^{2} \phi_{0} \sin ^{2} t \\
& \left\langle e_{1 \theta}, e_{1 t}\right\rangle=\cos \phi_{0}, \quad\left\langle e_{1 t}, e_{1 t}\right\rangle=1
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\left\langle d e_{1}, d e_{1}\right\rangle=\left(\cos ^{2} \phi_{0}+\sin ^{2} \phi_{0} \sin ^{2} t\right) d \theta^{2}+2 \cos \phi_{0} d \theta d t+d t^{2} . \tag{5.3}
\end{equation*}
$$

On the other hand, we get

$$
\begin{aligned}
d e_{2} & =e_{2 \theta} d \theta+e_{2 t} d t \\
& =\left(-\sin t \cdot f_{1}^{\prime}(\theta)+\cos t \cdot f_{2}^{\prime}(\theta)\right) d \theta-\left(\cos t \cdot f_{1}(\theta)+\sin t \cdot f_{2}(\theta)\right) d t \\
& =(*) \cdot f_{1}(\theta)+(*) \cdot f_{2}(\theta)+\sin \phi_{0} \cos t d \theta \cdot f_{3}(\theta)
\end{aligned}
$$

where (*)'s mean factors which we do not need to know their exact forms. So, we have

$$
\begin{equation*}
\left\langle d e_{2}, e_{3}\right\rangle=\sin \phi_{0} \cos t d \theta \tag{5.4}
\end{equation*}
$$

Hence, we get by (1.9), (5.3) and (5.4)

$$
\begin{equation*}
d \sigma^{2} \mid F=d \theta^{2}+2 \cos \phi_{0} d \theta d t+d t^{2} \tag{5.5}
\end{equation*}
$$

where the left hand side means the restriction of $d \sigma^{2}$ to F i.e. the induced metric on F. Clearly, it is flat.

As we have seen before, t-curves and θ-curves are geodesics of $T_{1}\left(S^{2}\right)$. (5.5) tells us that any pair of geodesics from different families intersects at a constant angle ϕ_{0}. This completes the proof.

Bibliography

[1] L. P. Eisenhart, Continuous groups of transformations, Princeton Univ. Press, 1933.
[2] S. Sasaki, Differential geometry of tangent bundles I, Tôhoku Math. J. (2) 10 (1958), 338-354, II, ibid. (2) 14 (1962), 146-155.
[3] N. E. Steenrod, The topology of fibre bundles, Princeton Univ. Press, 1951.
Mathematisches Institut
Universität Bonn
Bonn, West Germany
and
Mathematical Institute
TôHOKU University

[^0]: ${ }^{1)}$ This research was done when the first author visited Japan in 1973 by the support of the Japan Society for the Promotion of Science.

[^1]: ${ }^{*)} K$ in [2] I p. $353 \uparrow 1$ and p. $354 \downarrow 1$ should be replaced by $-K$.

