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ON THE TANGENT SPHERE BUNDLE OF A 2-SPHERE
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Introduction. Let S2 be the unit sphere in a Euclidean space E3 with
the induced metric g. Then, the set of all unit tangent vectors Ϊ\(S2)
with the natural topology is the total space of the tangent sphere bundle
p: T^S2) —»S2. T^S2) has a natural Riemannian metric. In this paper,
we prove first that 2\(S2) with this metric is isometric with the elliptic
space of constant curvature 1/4 (Theorem 1). Then, we give two proofs
of a theorem which characterizes each geodesic on 2\(S2) as a vector field
along a circle in S2 (Theorem 2 and §4). Finally, we give a theorem on
the set of tangent vectors of a one parameter family of circles, the set
corresponds to a Clifford surface in TΊ(S2) regarded as an elliptic space
(Theorem 4).

1. Ϊ\(S2) as a Riemannian manifold. First we shall show

LEMMA 1. 2\(S2) is diffeomorphic with the real projective space P3.

PROOF. For y e Γi(S2), we consider the unit vector ex{y) which issues
from the center 0 of S2 and ends at the point p(y). Then, the map
f: T.iS2)^ SO(3) defined by y^ie^y), ez(y), e,(y) x e2(y))> where e2(y) = y
and x means vector product in Es, is a diffeomorphism. On the other
hand, it is well known that SO(3) is diίfeomorphic with P 3 (cf. for ex-
ample [3] p. 115). Hence, T^S2) is diίfeomorphic with P3.

Now, let U be an arbitrary coordinate neighborhood with local coordi-
nates xa(a, 6, c = 1, 2) and ya be components of a tangent vector y in U
with respect to the natural frame d/dxa. Then, p~\U) gives a coordinate
neighborhood of T^S2) with local coordinates (xa, ya). By virtue of the
induced metric g on S2 in E3, the natural Riemannian metric g on Ϊ\(S2)
is given by the following line element:

(1.1) dσ2 = ghc{x)dxhdxe + gφWδyc ,

([2]) where we have put

(1.2) gφ)ybve = i > W = dyb + i t
15 This research was done when the first author visited Japan in 1973 by the support

of the Japan Society for the Promotion of Science.



50 W. KLINGENBERG AND S. SASAKI

First, let us prove the following

LEMMA 2. (7\(S2), g) is a Riemannian manifold of constant positive
curvature 1/4.

PROOF. Let e^r, θ) be the point on S2 with coordinates (r, θ) in
geodesic polar coordinates with the north pole N as its center. Then,
the unit tangent vectors for the r-curve and the 0-curve at the point
βi(r, θ) are given by

(1.3) Λ = f f* = -±-T*'
d sm dθ

Now, let e2 be an element of Ϊ\(S2) at the point ex(r, θ) of S2. If
we denote the angle between f2 and e2 by ω, then (r, 0, ω) can be con-
sidered as local coordinates for e2 in p~ι(S2 — {N, S}), S being the south
pole. As

(1 4 ) \e2 = cos ω jf2 + sin ω./8,

I β3 = — sin ω f2 + cos a) -/8

and

(1.5) \df2 = - d r β! + cosrdθ-f,,

U/3 = —sin θdθ-eγ — cosrdθ f3

we see that

(1.6) <<felf rfβl> = dr2 + sin2rdθ2

and

(1.7)
= <(*)#ei — sinω Φ /2 + cosω Φ / 3 , — sinω /2 + cosω /3> = Φ ,

where (*) means the term which we do not need to know and

(1.8) Φ = dω + cosrdθ .

On the other hand, we see easily that

(1.9) dσ2 = (delf de,) + (de29 e3}
2 .

So, we get by (1.6) and (1.7)

(1.10) dσ2 = dr2 + dθ2 + 2 cos rdθdω + dω2 .

As the right hand side of (1.10) is of very simple form we can calculate
its curvature tensor by a routine method. A little long but simple
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calculation shows us that the Riemannian metric (1.10) is of constant
curvature 1/4.

From Lemmas 1 and 2, we get the following

THEOREM 1. The Riemannian manifold (Ti(S2), g) is isometric with
the elliptic space ί? 3 = (P3, ifc), where k is the Riemannian metric of
constant curvature 1/4.

2. Geodesies on 2\(S2). Now, we shall prove the following theorem.

THEOREM 2. Any geodesic on TJβ2) is interpreted as a unit vector
field along a circle C on S2 which makes constant angle with C.

REMARK 1. C may reduce to a point. Thus, each fibre of the
bundle p: T,(S2) -> S2 is a geodesic of T,(S2).

REMARK 2. Both of Theorems 1 and 2 tell us that all geodesies are
closed. Moreover, Theorem 1 tells us that every geodesic has of length
2τr. This can be also proved directly by virtue of Theorem 2.

PROOF. If we denote a geodesic Γ in T^S2) parametrically by
(xa(σ), ya{σ)), where σ is the arc length of Γ, then xa(σ) and ya(σ) satisfy
the following set of differential equations (cf. [2]*> 11/p. 152):

[x" = -by + ay' ,

where x' means the tangent vector dxa/dσ, and dashes on the shoulders
of y's mean covariant derivatives along the curve C = p(Γ) and

(2.2) a = <*', y) , b = (xf, y')

are inner products on S2. Of course, we have

(2.3) (y, y) = 1 , <», y') = 0 .

If we put

(2.4) c2 = (y\ y'y = | y'\2, c ^ 0

then, we see easily that α, 6, c are constants. For example, we shall

prove the constancy of b. We get first

V = <&', y'y = (-by + ay', y') + ρ(x\ y) = a(c2 + p) .

However, by (2.3)2 we have p = — c2. So, we see that 6 is a constant.
Now, the horizontal component and the vertical component of the

tangent vector T of Γ are given by xth and y'v respectively, where x'h

*> K in [2] I p. 353 Π and p. 354 | 1 should be replaced by -K.
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is the horizontal lift of xf and ytυ is the vertical lift of y'. So, if we
denote the norm of a tangent vector of 2\(S2) by || ||, then we have

\\χ'kw = \\τ\\* - \\v»w = 1- wr, I I ^ Ί I 2 = N Ί 2 .
So, we get

(2.5) \x'\2 = 1 - & .

The last equation shows that 0 <Ξ c <; 1 and (i) C reduces to a point
if c = 1 and Γ is a fibre over the point, (ii) C reduces to a geodesic on
S2 if c = 0 and Γ is a trajectory of the geodesic flow.

When C does not reduce to a point, let us denote its arc length by s.
Then, (2.5) shows us that

(2.6) — = τ/1 - c2 - const. .

Then, the relation

I z" |« = 6* + αV

and (2.6) tell us that the geodesic curvature ic of C is given by

(2.7) κ2(l - c2)2 = 62 + αV .

Thus, Λ: is constant along C and so C is a circle on S2.
The angle α:(σ) between the tangent vector x'(σ) and y(σ) along C is

given by

cos a(σ) = a/\ xr | 2 .

So, by (2.5) a(σ) is constant along C. This completes the proof.

3. The isometry ψ: T^S2) «-* SO(3). In § 1, we showed that the map
ψ: Γi(iS2) —> SO(3) is a diίfeomorphism. Now, as SO(3) is a compact con-
nected Lie group, it admits a natural symmetric Riemannian structure.
Although it is a well-known fact, we shall explain a little which seems
necessary for our purpose.

For simplicity, we put G = SO(3) and denote its Lie algebra by g.
g is identified with the tangent space of G at the unit element e. Denoting
the rectangular coordinates in Ez by {x, y, z), the basis of g is given by

A=y.|__β * 4 = 4 - 4 ,
oz ay dx dz

4=4- 4
and the structural equations are given by
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(3.1) [B2, B5] = -Blt [B3, BJ = -B2, [Bu B2] = -Bs.

So, if we express the components of elements Xe and Yβ of g with
respect to the above basis by (λlf λ2, λ3) and (μlf μ2y μ3), then we see that
the Killing form B of G is given by

(3.2) B(Xe, Ye) = -2(\μι + \2μ2 + λ3μ3) .

If we define a Riemannian metric h on G by

(3.3) h{X, Y) = -±B{L'a-.X, L'a~iY)

for X, YeGa, where Lά-i is the differential of the left translation La-i
and Ga is the tangent space at a e G, then h is biinvariant and (G, h) is
a globally symmetric Riemannian space. Moreover, as G = SO(β) is semi-
simple, G is an Einstein space (cf. [1] p. 206). So, the vanishing of WeyΓs
conformal curvature tensor of every Riemannian 3-space tells us that
(G, h) is a globally symmetric Riemannian space of constant curvature.

Now, we shall prove the following

THEOREM 3. The map ψ: Γ^S2) -> SO(3) is an isometry of (^(S2), g)
with (SO(3), h).

PROOF. G — SO(3) acts on G from the left as a simply transitive
group of isometries. It acts also on 2\(S2) as a simply transitive group
of isometries considered to act from the left. So, to show the isometry
of the map ψ of (2\(S2), g) with (G, h), it is sufficient to show the isometry
of the differential of the map ψ of the tangent space (T1(S2))yo at the
point y0 = Ψ~\e) with the one Ge at the unit element e of G. We see
that y0 is the tangent vector e°2 = (0, 1, 0) at the point ej = (1, 0, 0).

Now, take an element Xe — X1B1 + X2B2 + λ3i?3. Then, it corresponds
by Ί/Γ"1 to

(e[ = X3e°2 - X2e°3 , e'2 = - λ 3 e ? + λ lβ3° ,

(eί = e[ x e\ + e\ x e[.

So, by (1.9), we have

Sifr-yx., fr-jx.) = <βίf e[) + <β; eiy = λ2 + λ2 + λ2 = h(xe, xe).

This completes the proof.

4. Another proof of Theorem 2. By virtue of Theorem 3, (Ϊ\(S2), g)
can be identified with the globally symmetric space (SO(3), h). Geodesies
of the latter through the unit element e are 1-parameter subgroups of
SO(S) and other geodesies are cosets of these 1-parameter subgroups.
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Now, let H be a 1-parameter subgroup of SO(3). Then, H is a group of
rotations around a fixed axis I through the origin 0.

We identify e with (e°ί9 e% el x e°2) and denote elements of H by fa

σeB mod 2ττ. If we p u t e^σ) = fσ(eΐ), e2(σ) = fσ(e°2), then (ex(σ), e2(σ),

e^σ) x e2(α )) draws a geodesic on (S0(3), h) as σ varies. This shows that
e2(σ) draws a geodesic Γ on (!\(S2), #). When I does not have the direction
el, the initial point of e2(σ), i.e. the end point of eγ(σ), draws a circle C
on S2 and e2(σ) makes a constant angle with C as σ varies. When I has
the direction e}, βi(σ) coincides with the fixed vector βj. We denote the
end point of β? by a?0. Then, e2(σ) draws a fibre p " 1 ^ ) - Thus the as-
sertion of Theorem 2 is true for geodesies of T^S2) which correspond to
1-parameter subgroups of S0(3) by the map ψ~\

Any geodesic of (S0(3), h) which does not pass through e is given as
a left coset of a 1-parameter subgroup H, i.e. as a family of frames
f{φ\ e2(σ), ex(σ) x φ)) where /eS0(3) and ex(a) - fσ(el), e2(σ) - /α(e°2),
/, eH (σe R). By α/r"1 this corresponds to a vector field f{e2{σ)) on T^S2).
Thus the geodesic on 2\(S2) which corresponds to a left coset of a 1-
parameter subgroup H of S0(3) is either a unit vector field along a circle
/(C) which makes a constant angle with /(C) or a fibre ^(/(tfo))- This
completes the proof.

5. A family of tori in T^S2). Let us consider two parallel small
circles CΦo and C_Φo on S2 which are defined by φ = φ0 and φ = —φ0 (φ =
π/2 — r) and lie equidistant from the equator. We consider a point (φQ, θ)
on CΦo and denote it by the unit vector fλ{θ) and the unit tangent vector
at the point to the circle CΦo with the orientation coherent with its para-
meter θ by f2(β). Then, the great circle Kθ which passes through the
point fjβ) and has the direction f2{θ) is expressed by the field of unit
vectors

(5.1) 6,(0, t) = cos t ftf) + sin t ft(θ)

with the origin 0 as its initial point. The unit tangent vector to Kθ at
the point ejβ, t) is given by

(5.2) et(θ, t) = -sin t-ftf) + cos t-/a(0) .

We may change the value of θ arbitrarily in the interval [0, 2π] too.
It is clear that the locus of the point e2(θ, t) in TJfi2) is a surface F
homeomorphic with a torus, ί-curves on F are geodesies of T^S2) and
any two of them do not intersect. They are trajectories of the geodesic
flow of S2. Thus, F is covered by a family of geodesies. In the same
way 0-curves are also geodesies of TΊ(S2), because any of them is a vector
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field along a circle φ = const, which makes a constant angle with the
tangent vector to the circle. So, F is covered also by another family of
geodesies, any two of them do not have common point. As (Ϊ\(S2), g) is
isometric with the elliptic space £?3 by Theorem 1, F must be a surface
which corresponds to a quadric with two families of real generators.
This suggests us that F may be a surface which corresponds to a Clifford
torus in i?3. In fact, we get the following

THEOREM 4. The Riemannian metric on the surface F induced from
the one in T^S2) is flat. Thus F is a surface in (T^S2), g) correspond-
ing to a Clifford torus in g73.

PROOF. We may easily verify that

fl(θ) = cos

fi(θ) = -

/,'(*)= -sin

hold good. So, we get

elθ = -£-= -cos φ0 sin t-fx{θ) + cos φQ cos t*fz{θ) + sin φQ sin t fz(θ) ,
Oυ

and

(eιθ, elθ) = cos2 φQ + sin2 φQ s in 2 1 ,

(elθ, eίt) = cos φQ , <β«, β!t> = 1 .

Therefore, we have

(5.3) (del9 de,) = (cos2 φ0 + sin2 φ0 sin2 t)dθ2 + 2 cos φ0 dθdt + ώί2 .

On the other hand, we get

de2 = e2βdθ + eudt

= (-sint-fl(θ) + cost fi(θ))dθ - (cosί Λίfl) + sint-f2(θ))dt

sin φ0 cos ί t

where (*)?s mean factors which we do not need to know their exact

forms. So, we have

(5.4) (de29 e3) = sin φQ cos t dθ .

Hence, we get by (1.9), (5.3) and (5.4)

(5.5) dσ21 F = ώ^2 + 2 cos & dtfeft + dt2 ,
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where the left hand side means the restriction of dσ2 to F i.e. the in-
duced metric on F. Clearly, it is flat.

As we have seen before, ί-curves and 0-curves are geodesies of T^S2).
(5.5) tells us that any pair of geodesies from different families intersects
at a constant angle φ0. This completes the proof.
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