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1. Introduction. An ^-dimensional space of constant curvature (k Φ
0) is characterized as a harmonic Riemannian space with characteristic
function

f(Ω) = 1 + (n - l)V2kΩcotV2kΩ

where Ω = s2/2 and s means the geodesic distance. A. Lichnerowicz has
obtained the following

THEOREM A. ([3], [10]) In any harmonic Riemannian space Hn

with positive definite metric, its characteristic function f(Ω) satisfies
the inequality

(1.1) /2(0) + \{n - l)/(0) 5Ξ 0 .

The equality sign is valid if and only if Hn is of constant curvature.

Recently, S. Tachibana [7] has showed that a 2m-dimensional space
of constant holomorphic curvature (k Φ 0) is characterized as a harmonic
Kahlerian space with characteristic function given by

(1.2) f{Ω) = 1 + (2m - ΐ)(ls) cot (Is) - (Is) tan (Is) ,

or

(1.2)' f(Ω) = 1 + (2m - l)(ls) coth (Is) + (Is) tanh (Is)

according to I = vlc/2, or I = V—k/2. He also has obtained

THEOREM B. In any n(=2m)-dimensional harmonic Kahlerian space
Hn, its characteristic function f(Ω) satisfies the inequality

(1.3) /2(0) + 5 ( m + 1 ) /(0) ^ 0 .
m + 7

The equality sign is valid if and only if Hn is of constant holomorphic
curvature.

In §2, we give some preliminaries. In §3, /(0) is calculated in terms
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of curvatures of a harmonic Riemannian space (Proposition 3.3). In §4,
we give an equation in a harmonic Kahlerian space (Proposition 4.1), which
plays an important role in this paper. By this we obtain the following

THEOREM 4.7. Let Hβ be a 6-(real)dimensional compact harmonic
Kahlerian space. We denote the Euler characteristic of Hβ by %(HQ).
Then we have

χ(H°) = - JL/(0){/2(0) + 5/(0)} Vol

where Vol (H6) is the volume of H\

In §5, we prove the following main theorem and some related theorems
as applications of Propositions 3.3 and 4.1.

THEOREM 5.2. In any n(=2m)-dimensional harmonic Kahlerian
space Hn, its characteristic function f(Ω) satisfies the inequality

2/3(0) + (13m + 28)/(0)/(0) + 7(m + l)(m + 2)/(0) ^ 0 .

The equality sign is valid if and only if Hn is locally symmetric.

This theorem is related to Theorem B and a well known conjecture
that any harmonic Riemannian space (with positive definite metric) is
locally symmetric (cf. [5], [9]).

The last section will be devoted to examples of Theorems 4.7 and 5.2.
I wish to express my sincere thanks to Prof. S. Tachibana, who

kindly has sent me his lecture note and gave me many valuable suggestions
and guidances, and also thanks to Mr. M. Yasuda and Miss. N. Takeuchi,
who have made sure a portion of my tedious calculations.

2. Preliminaries. We shall give some formulas which are used in
the subsequent sections. Let (Mn, g) be a Riemannian space with Levi-
Civita connection V. By R = (22*yW)*} we denote the Riemannian curvature
tensor of V. Then R, = (Ra

ija) = {Riβ) and S = (gi5Ri3) are Ricci tensor
and scalar curvature respectively. Let ( ) denote the covariant differen-
tiation, and put VR = (R^π*)- For a tensor field T = (Tijk), for example,
we denote | T\2 = TijkT

ijk. We put

7 = R'MRa\"Riuiv .

Then they satisfy the following fundamental formulas.

We follow the definition of the curvature tensor in [12].
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(2.1) (Bianchi's identities)

\Λ) -Lviikh l •"'ikhi ' •Ίihik — " >

(b) Rijkh l + Rljhl k + Rijlk K = 0 .

Now (2.2) and (2.3) are all easily derived from (2.1) (cf. [6]).

(2.2)

(a) B^ Bu*... = \

(b) R°M-"R<bad;« = I

(c) R" ' R.Mi. = I

(d) Λ ••"£.,..,. = -

(e) Λ ' Λ.^;. = I

(2.3)

(a) RahcdRaΓRc«d* = R*h°dRaVRcdu, = ^

(b) R°b°dRaγReuiυ = λ-β ,
4

(c) R°h°dRaγRcviu = - ±.β ,
4

(d) R°UdRarRUn, = -J-i8 »

(e) RabcdRa\
vRbduv = RahcdRarRbudv = ±β

4
/•f\ τ>abcdj? u VD τ>abcdT> v uΊD o/ J-

4

(2.4) (Lichnerowicz's formula ([4], [11]))

±-Δa = \FR\2 - 4^***2?,*;*^ + 2RijR
ihkιR3'hkl + β + 47

where J is the Laplace-Bertrami operator acting on differentiable functions
on Mn.

(2.5) α - —?—1-BiΓ^O
9^ 1
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where the equality sign is valid if and only if Mn is constant curvature
(cf. [8]).

Let Mn be an ^-dimensional analytic Riemannian space and x0 a point
of Mn. We denote by s the geodesic distance from x0 to the point in a
neighbourhood of x0. If the Laplacian Δs is a function of s only, then
M* is called to be harmonic at x0. When Mn is harmonic at any point,
it is called harmonic and denoted by H*. For a harmonic space Hn, if
we put Ω = (l/2)s2, then it is well known that ΔΩ = f(Ω) is a function of
Ω only and does not depend on the reference point x0. f(Ω) is called the
characteristic function of Mn.

It is known (cf. [3], [5]) that any harmonic space satisfies the following
curvature conditions.

(2.6) /(0) = n ,

(2.7) Rί5 = - |/(0)Λi t S = - ^V(0) ,

where (•) means the operator taking the derivative with respect to Ω.

(2.8) P(R*ijqR\lP) = - ^

where P denotes the sum of terms obtained by permuting the given free
indices, i.e.,

(2.8)' Rp

ίjq(Rq

klP + R\kp) + Rp

ikq(Rquv + Rqnv) + Rpaq(R9

JkP + R9

kjP)

f(Q)(9ij9ki + gtkgu + g«gjk) ,
4

(2.9) a=-

(2.10) P(9R»ijq]kR
q

lmP]n - Z2R\jqR\lrR\nP) =

Then taking account of (2.7) and (2.9), (2.4) and (2.5) take the following
forms respectively.

(2.11) \FR\2 + —Sa + β + 4τ - 0 ,
n

and

(2.12) a -
n(n — 1)

3. Calculation of /(0).



HARMONIC KAHLERIAN SPACE 17

LEMMA 3.1*°. For a tensor field T = (Tiίkιmn)f we have

9ij9kι9mnP(Tijklmn)

= 48(2VΛ + PΛ* + 2V*« + TV* + F>\k

jk

+ PVw + TV* + r*Λ* + τ v <

PROOF. Each term of the left hand side is a scalar with three dummy-
indices such as TV,/. We can rewrite these indices as follows; replace
the first index by i, the next and the rest by j and k respectively, for
example, TVy*' by Γ'/w* o r Ti3

ά

k

ik. Then they necessarily coincide with
one of the fifteen terms arranged in alphabetical order in the right hand
side. It is easily seen that each of the fifteen terms appears forty eight
times in the left hand side.

Now we put

A-ijklmn — -KPijq;kl* imP n >

Bijklmn = •***ijq R klr^mnP >

Cijklmn — QijQklQmn

Then we have the following

LEMMA 3.2. In any harmonic Riemannian space, we have

(a) Wg ΊϊAvu..) = 4& Z\FR\* ,

(b) giSgHgmnP{Bimnn)

= 48(JΓS3 + f S α - lβ + 7),

(c) ifg^PiCu^) = 48(%3 + 6%2 + 8n) .

PROOF. Each straightforward calculation using Lemma 3.1, (2.1), (2.2),
(2.3) and (2.7) yields (a), (b) and (c). We write calculations of (a) and (b):

I. Calculation of (a).

all the other = 0 .

* } This lemma is essentially due to M. Yasuda.
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II. Calculation of (b).

*VΛ = Λ s ι > Bi^k^ = iτSa > &"" = ~Sa >
n2 2n n

Έ>ij k _ 1 CVy Έ>ij k _ _ 1 o Dij fc _ _ 1
iό k — — o α > & i jk — ~~T~P ' n i k3 — ~~o~

•Dij k _ 1 COy -Dij k _ _ 1 p Dij A; _ _ p

n 2

= 7 - J U , £ i i4

iW = - - f / 3 ,
4 4

2

Transvecting (2.10) with giigklgmn

f by Lemma 3.2 we obtain the fol-
lowing

PROPOSITION 3.3.*} In any harmonic Riemannian space, we have

(3.1) 27\FR\2 - 32(^-S 3 + -*-Sa - —β + 7)
\ n2 2n 2 /

- 315^(^ + 2){n + 4)/(0) .

4. Harmonic Kahlerian spaces. Let us consider an n( = 2m) real
dimensional Kahlerian space Mn with real coordinate {af}. Then the
(positive definite) Kahlerian metric g = (s^ ) and the almost complex struc-
ture F = (F/) satisfy the following equations (cf. [11]).

(4.1) Λ * W / = gti , ί W = - δ | , F 4 i = - F Λ ,
777 h f\ ΊD TD Tp a ΊP b

* j ί = V , Itijkh = -Kijab* k 2 K f

Ίpr ~Dh Tph Z?*" TΓr 7? 771r 7?
-^ i tf rA Z = r rU jkι , JΓ A j α r y Λ I — — r jJXhrkl J

FijRijkh = -2FJRjh , F ^ y w - *VΛiΛ .

By (4.1), we have

(4.2) FijFkhRijkh = -2S , FihF*kRίjkh = S .

Henceforward let Mn be an w( = 2m)-dimensional harmonic Kahlerian
space and denoted by Hn.
Transvecting (2.8)' with FJFb

jRkabl, we have from (4.2)

(4.3) {Rp

ijq(Rq

klP + Rq

lkp) + Rp

ikq(Rq

ιjP + Rg

jlP)

+ R*ilq(Rq

jkP

= -45S/(0) .

*} We received an information from S. Tachibana such that S. Yamaguchi has obtained
independently this equation.
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Now using (4.1) we calculate the left hand side of (4.3). By (2.3), we have

JP β ΊD JP Q ΊDt p "Dribl

— r q £ίpib8r t it rι It
— —Itpib8lt rι It

By (2.1) and (2.3), we have

F.WR^RΊSR™

= FjFh

ίRPijqR<lk»(-Rkbl° - RkM)

4 4

Similary, we have

FaΨjRVikqR\i*RkM = -A/3 ,
4

FjFb

jRp

ίk

qRqjιPR
kahι = ~ β ,

4

Γ a Γ b £ί u £ίqjkpll — 7 — —p f

TΓ iJP 3 J?P ϊ 7? JDkabl _ ry 1 fl
r a r b It n ltqkjpJX — 7 — — p .

4

Substituting these into (4.3), we obtain

PROPOSITION 4.1. In any harmonic Kdhlerian space, we have

(4.4) 4 7 - 2/9 - -45S/(0) .
Substituting (4.4) into (2.11), we have

(4.5) IVR|2 + — Sa + 3/3 - 45S/(0) - 0 .
n

By (2.9), we have

<4-6)

from which (4.4) and (4.5) take the following forms respectively.
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(4.7) 2j-β= 6g (a + fff) ,
w(w + 2) \ 3w /

and

(4.8)

2)

and

+ Zβ + ^ g α + S 0 .
w(w + 2) w2(w + 2)

By (4.7) and (4.8), we get

(4.9) \VR\* + 67 + 2 < n ~ *> Sα - _ — i _ - S 3 = 0 .
w(w + 2) w2(w + 2)

Thus we obtain

THEOREM 4.2. Any n-(real)dimensional harmonic Kahlerian space
Hn satisfies the following two inequalities.

(4.10) β ^ o 72S

ΛA(n + 8)α + —S2\ ,
3n(n + 2) 1 w )

(4.11) 7

o 7Λ3n(n + 2)

2f
+ 2)

Each equality sign is valid if and only if Hn is locally symmetric.

Since \FR\2>0 and a ^ 0, (2.12), (4.7), (4.10) and (4.11) give the
following

THEOREM 4.3. Let Hn be a harmonic Kahlerian space.
(1) If S^O, then 0 ^ 27 ^ β .
( 2) // S < 0, £/κm 27 < β.

Here we shall consider about the Euler characteristic of a 6-dimensional
compact harmonic Kahlerian space.

To prove Theorem 4.5, we need the following

LEMMA 4.4.*} ([2], [6]) Let M be a ^-dimensional compact orientable
Riemannian space. Then the Euler characteristic χ(M) is given as follows:

(4.12) χ(M) = — ^ — ( {S* - 12Sr|2ί1| + 3Sα: + 16RabRa

cRbc

3847Γ3 Jif

- 2ARabRcdRaebd - 2ARuυRu

abcRvabc + 87 -

where dV is the volume element of M.
If M is Einsteinian, (4.12) takes the following form;

(4 13) m ) = v h LI I s ' - * + » - <
Our curvature tensor is different from Sakai's in sign.
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Let H6 be a 6-(real)dimensional compact harmonic Kahlerian space.
Since H6 is Einsteinian, we get from (4.4) and (4.13)

(4 14) χ m = w \A¥2 -a - 9 0 / ( 0 ) H F

Since S and a are constant (cf. [3], [5]), (4.6) and (4.14) give the following

THEOREM 4.5. Let H6 be a 6-(real)dimensional compact harmonic
Kahlerian space. We denote the Euler characteristic of H6 by χ(HQ).
Then we have

(4.15) χ(H°) = ^ | _ { _ L s 2 - a} Vol (IF)

where Vol (H6) is the volume of H6.

COROLLARY 4.6. Let H6 be a Q-(real)dimensίonal compact harmonic
Kahlerian space. We denote the Euler characteristic of Hβ by χ(Hβ).

(1) If' S > 0 and S2β ^ a (S2/3 ̂  a, resp.) then χ(H«) ^ 0 (χ(H«) ^ 0,
resp.).

(2) If S = 0, then χ(H«) = 0.
(3) If S<0and S2β ^ a (S2β ^ a, resp.) then χ(HQ) ̂  0 (χ(H6) ^ 0,

resp.).

Representing the right hand side of (4.15) in terms of /(0) and /(0),
we get from (2.7) and (2.9),

THEOREM 4.7. Let H6 be a ̂ -dimensional compact harmonic Kahlerian
space. We denote the Euler characteristic of H6 by χ(Hβ). Then we have

(4.16) χ{H«) = - -|L./(0){/2(0) + 5/(0)} Vol

where Vol (H6) is the volume of H6.

5. Main results. In this section, we shall give some results by
combining Proposition 3.3 and Proposition 4.1.

Now substituting (4.4) into (3.1), we get

(5.1) 27\FB\2 - — S 3 - —Sa + 96/3 + 360S/(0)
n2 n

- 315n(n + 2)(n

By (4.5) and (5.1), we get

(5.2) 5\PR\2 + ^ - S 3 +
n2n2 n

= 1800S/(0) - S15n(n + 2)(n
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Since \FR\2 ̂  0 and a ^ 0, we get from (4.6) and (5.2)

THEOREM 5.1. An n-(real)dimensional harmonic Kdhlerian space
with positive scalar curvature satisfies /(0) < 0.

Taking account of (2.7) and (2.9), (5.2) takes the following form.

(5.3) \FR\2 + 9^{8/3(0) + 2(13^ + 56)/(0)/(0) + l(n + 2)(n + 4)/(0)} = 0 .

Thus we have

THEOREM 5.2. In any n( = 2m)-dimensional harmonic Kdhlerian space
Hn, its characteristic function f(Ω) satisfies the inequality

(5.4) 8/3(0) + 2(lSn + 56)/(0)/(0) + 7(n + 2)(n + 4)/(0) ^ 0 ,

or

(5.4)' 2/3(0) + (13m + 28)/(0)/(0) + 7(m + l)(m + 2)/(0) ^ 0 .

The equality sign is valid if and only if Hn is locally symmetric.

On the other hand, we know ([3], [5]) that a, /(0), /(0) and /(0) are
independent of the reference point. Therefore (5.3), (4.8) and (4.9) give
the following

THEOREM 5.3. In any n( = 2m)-dimensional harmonic Kdhlerian space
Hn, \VR\2

9 β and 7 are all constant.

We transform (5.4)' as follows;

(5.5) 2(m +

+ (m + 2){3(m + 31)/(0)/(0) + 7(m + l)(m + 7)/(0)} S 0 .

If S > 0, then /(0) < 0. Hence by (1.3) we have

(5.6) ί/2(0) + δ ( m + 1 ) 2/(0) 1/(0) ^ 0 .
I m + 7 )

Thus we have

THEOREM 5.4. Aw n( = 2m)-dimensional harmonic Kdhlerian space
Hn with positive scalar curvature satisfies the inequality

(5.7) 3(m + 31)/(0)/(0) + 7(m + l)(m + 7)/(0) ^ 0 .

equality sign is valid if and only if Hn is of constant holomorphic
curvature.

6. Examples. Let Hn be an w( = 2m)-dimensional space of constant
holomorphic curvature (k > 0) characterized as a harmonic Kahlerian space
with the characteristic function given by (1.2). It is known that
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2 2 W j g * a2*
«=i (2n)l

= 1- —x2 - —x* - —x6

3 45 945

where Bn is the Bernoulli number. Therefore we have

(6.2) x tan x — x cot # — 2x cot 2#

— r2 4- r4 4-
~ * + 3 * + 945* + '

If we develop f(Ω) in the power series of Ω and s respectively, then
taking account of (6.2) it holds that

f{Ω) = 2m + f(0)Ω + ±-f(0)Ω> + -1-/(0)17 +
Z o!

(is) _ 4(m + 31)

Thus we have

(6.3)
45

315

It is easily seen that (6.3) satisfies (5.4)' and (5.7), i.e.,

(6.4) 2/(0) + (13m + 28)/(0)/(0) + 7(m + l)(m + 2)/(0) - 0 ,

(6.5) 3(m + 31)/(0)/(0) + 7(m + l)(m + 7)/(0) - 0 .

On the other hand, it is well known (cf. [11]) that a Kahlerian space
of constant holomorphic curvature is locally symmetric.

REMARK. Similarly, it can be seen that (6.4) is valid for the f(Ω)
of (1.2)' in the case of I = V^Ίcfi.

Now let S2m+1 be the unit sphere in Cm + 1 and S1 the multiplicative
group of complex numbers of absolute value 1. Then S2m+1 is a principal
fibre bundle over the complex protective space CPm with group S\ called
Hopf fibering. It is well known that CP™ carries the canonical Kahlerian
metric of constant holomorphic curvature 4. We know (cf. [1]).

(6.6) Vol (CPm) = - ζ - .
ml

Especially for CP\ we have from (6.3) and (6.6)
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(6.7) /(O) = - if, /(O) = - -f-, Vol (CP°) = 4 "
o y Ό

Substituting (6.7) into (4.16), we get the well known result; χ(CP") = 4.
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