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A THEOREM ON LIMITS OF KLEINIAN GROUPS
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1. Let G be a group of conformal automorphisms of the extended
complex plane C = C (J {°°}. Every element of G is a Mobius transforma-
tion of the form

cz + d

where a, b, c and d are complex numbers with ad — be = 1. This trans-

formation T is often identified with r£ yj in PSL(2, C) and, in this case,

a + d is called the trace of T and is denoted by trace T.
If there does not exist a sequence of G which converges to the identity

under the topology of PSL{2, C), then G is called discrete.
A point w e C is called a limit point of G provided that there exist

a point zeC and a sequence {ΓJΓ=i of elements of G such that T3 Φ
Tk{j Φ k) and such that Ti(z)-+w as i->oo, If a point w e C is not a
limit point of G, it is called an ordinary point of G. Denote by Λ(G) the
set of all limit points of G and by Ω(G) the set of all ordinary points of
G. If 42(6?) is not empty, then G is called a discontinuous group. If the
limit set of a discontinuous group G contains more than two points, then
G is called kleinian. A discontinuous group not being kleinian is said to
be elementary. It is known that a kleinian group contains infinitely many
loxodromic elements and the set of attracting fixed points of loxodromic
elements in G is dense in A(G).

An isomorphism φ of a kleinian group Gx onto a kleinian group G2 is
said to be type preserving if φ(T) is parabolic if and only if T is parabolic.

Let T be a Mobius transformation of the form

T: z ^ a z + b , c Φ 0 .
cz + d

Then we call two circles I(T): \ z + d/c \ = 1/| c \ and I{T'1): \z-ajc\-ll\c \

the isometric circles of T and of T~\ respectively. It is known that T
maps the exterior of I{T) onto the interior of I{T~ι). Since the radii of
I{T) and I{T~ι) are both equal to 1/| c \ and since the distance of the center
of I(T) from that of /(Γ"1) equals | (α + d)/c\, a necessary and sufficient
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condition in order that the two isometric circles I(T) and I(T~ι) bound a
doubly connected domain containing the point oo is | trace T\ = \a + d\>2.

The following theorem is due to Chuckrow [1].

CHUCKROW'S THEOREM. Let G = {Su S2, •} and G(n) = {S^n), S2(n),
...} (n = 1, 2, •••) be kleinian groups. Assume that for every m there
exists a Mobius transformation Σm such that lim^^ Sm(n) = Σm and denote
by Γ the group {Σlf Σ2, •}. Assume further that all mappings φn: Sm \->
Sm(%) of G onto G(n) are type preserving isomorphisms. Then the map-
ping φ: Sm\-+ Σm is an isomorphism of G onto Γ and Γ contains no elliptic
element of infinite order.

The purpose of this paper is to supplement the above theorem in the
following form.

THEOREM. Under the same assumption of Chuckrow's theorem, the
group Γ is discrete.

REMARK 1. Our theorem is not valid if discontinuous groups G and
G{n) are elementary. The fact is easily verified from the following
examples.

EXAMPLE 1. Let G(n) = (β J), (J i / 2 + j ^ " 1 ^ ) ) , where <T,Uf

• > denotes the group generated by the Mobius transformations T, U,

Then clearly Γ = (β J), (J Ϋ^j is not discrete.

EXAMPLE 2. Let G{n) = ( ( ^ ^ ^ β ( ^ ) > where θ is an ir-

rational number and e{θ) = exp (2πi/—lθ). Then clearly

(e{θ) 1

which is not discrete.

REMARK 2. It is easily seen that our theorem implies the following.

MARDEN'S THEOREM. (Marden [3]). A boundary group of the Schottky
space is discrete.

2. In this section we shall state lemmas which are concerned with
discontinuous groups. The following lemma is due to Chuckrow and was
used to prove Chuckrow's theorem stated above.

LEMMA 1. (Chuckrow [1]). // {(Tn, Un)}n=1 is a sequence of marked
Schottky groups and if Un converges to U, a Mobius transformation, then
Tn does not converge to the identity.
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Next, we prove an elementary lemma.

LEMMA 2. Let G be a kleinian group and let {ΓJΓ=i be a sequence of
loxodromic elements in G. Then there exists a subsequence {7VJJU of
{Ti}T=ι such that all the fixed points of {T<y}~=1 are in the complement of
a domain DaC which contains at least a limit point of G.

PROOF. Let Dίf D2 and Dz be domains in C satisfying
( i ) \JUB,z>Λ{G),
(ii) DPΠΛ(G) Φ 0 , p = 1, 2, 3,

and
(iii) Dp Π Dq = 0 , p Φ q, p, q = 1, 2, 3.

Here Dp is the closure of Dp.
Let (ξi9 ίί) be the pair of fixed points of Tif where ξt and fί are

attracting and repelling fixed points of Ti9 respectively.
If there is a set DP9 say D19 containing infinitely many pairs {(ξij9

ίίy)}?=i of fixed points of elements {Ttj}f=1 belonging to the given sequence
{Ti\T=19 then clearly D2 can be considered as a desired domain D.

In the other case, the property (i) implies that there is a set Dp, say
D19 which contains ξt for an infinite number of i and that there is a set
Dq {p Φ q)y say D2, containing repelling fixed points £<y of Ti5 for an infinite
number of Γ<y whose attracting fixed points are contained in Dt. By (ii)
and (iii), we see that the domain D3 is a desired domain D.

By the same argument as in the above proof, we can immediately
show the following.

LEMMA 3. Suppose that G is a group of Mobius transformations and
has an infinite number of elements {2\}Γ=i and at least three loxodromic
elements and that fixed points of those loxodromic elements are different
from each other. Then there exist a loxodromic element LeG and a
subsequence {T€i}JU of {TJΓ=i such that L does not fix any fixed point of
Tid (i = l,2 f ..'.)•

PROOF. Let Lp (p = 1, 2, 3) be loxodromic elements in G whose fixed
points are different from each other and let Dp be a domain containing
the fixed points of Lp and satisfying (JΐUi Dp = C and Dp Π Dq = 0 (p Φ
q). Then clearly the argument in the proof of Lemma 2 establishes our
lemma.

The following lemma is well known. For the proof we refer to [2].

LEMMA 4. Let G be a discontinuous group and let the point oo be
an ordinary point of G. Then there are only a finite number of T —

\ /7) ^n & such that \c\ is less than any preassigned real number c0.
\c a I
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The following lemma with Lemma 7 occupies the main part of the
proof of our theorem.

LEMMA 5. Let G be a kleinian group such that the point °o is an
ordinary point and no element in G fixes the point oo. Let {TJΓ=i be a
sequence of the loxodromic elements in G. Then there exists a sequence
of Schottky subgroups {{L, Ak)}%=1 of G such that any Ak is some Ti or
is of the form TiT^1, where V > i and i tends to oo as k tends to oo.

PROOF. We shall prove our lemma by classifying the situation into
two cases: (i) the case where | trace Tt \ > 3 for infinitely many Tt and
(ii) the case otherwise.

In the case (i) we may assume that | trace Tt \ > 3 for all i, so I{T%)
and /(Tf1) are disjoint for every i. By Lemma 2 we can find a subsequence
{Ttj}^ of {ΓJΓ=i such that all the fixed points of {Γ^JJU are contained in
the complement of a domain D, which contains a point weΛ(G).

Since the isometric circle of a loxodromic element contains the repelling
fixed points of that element, Lemma 4 implies the existence of a subsequence
{Tί}ΐ=ι of {TYJJU and a subdomain D* of D which contains the point we
Λ(G) such that C - D* contains I{T'k) and /(TΓ1) (k = 1, 2, •) together
with their interior. From w e A(G) f) D*, we see that there exists a
loxodromic element Ue G such that its attracting fixed point ξ lies inside
D*. Let Ve G be another loxodromic element, none of whose fixed points
r] and rf is ζ. For a sufficiently large integer M, fixed points UM(r/) and
UM{η') of the loxodromic element JJMVU~M are in D*. Since the centers
(UMVU-")-N(oo) and (UMVU~M)N(oo) of isometric circles of {UMVU~M)N

and {UMVU~MYN tend to UM(η') and UM(η), respectively, as N-+ oo, and
since by Lemma 4 radii of isometric circles of (UM VU~M)~N and (UM VU~M)N

tend to zero as iV—> oo, we can find an integer iVsuch that I((UM VU~M)N)
and I((UMVU~M)-N) are disjoint and are contained in D*. Put Ak = Tί
and L = (UMVU~M)N. Then it is immediate that the sequence of the
Schottky groups {(L, Ak)}k=1 has the required property.

In the case (ii) we may assume that for all i

(1) {trace Ti\ = \ a i + di\<Z, Tt

If ϊ ί ϊ n l α i ^ o o , we can find a subsequence {Ttί}f=ι of the given

sequence {Γ<}Γ=i such that the sequences {α ĴJU and {ώ Ĵ/Li converge to

complex numbers a and d, respectively, where Tt. = ( α ^ yn. Hence we

may assume that, for all j,

(2) | α < y | < 2 | α | + 1, \did\ <2\d\ + 1 .
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Here two cases can occur: the case where btj Φ 0 for infinitely many j
and the case otherwise.

If there are infinitely many Ti5 with bh. Φ 0 in {ϊyjU, then Lemma
4 and (2) imply the existence of a subsequence {TίJϊU of {TŶ JU such that

( 3 )

and

( 4 )

where

|trace

Λll

lk~\c
rpt rpt—\ 1

J-kJ-k+i 1

(ikdk+1 -

Kc'k+ι I

| d | + 1)+ \b'kck

By (2), (3) and (4) we have

— b'k+1ck + a'k+1dk I

! + 1 1 - I b'k+lc'k I - I ak+1d'k \

= 3 .

Thus the case has been reduced to the case (i) again.
In the remainder case, we may assume that btj always vanishes.

Since all loxodromic elements Tt. have a common fixed point 0 and since
G is discontinuous, the set {ξ, ξ'} of fixed points of Th is identical with
of every Tu (j > 1). Let BePSL(2, C) satisfy B(ξ) = 0 and B(ξ') = oo.
We may assume that

B--f« '
\0 p

Since G* = BGB'1 is discontinuous again, any \ptj\ must be greater
than a real number p > 1. Hence we can find ring domains Aj such that
Aj is a fundamental domain of the cyclic group (BT^B"1) and all Aj
contain a ring domain A such that A contains a limit point of G*. This
last property of A can be easily verified from the fact that G* is kleinian.
As in the case (i) we can find two loxodromic elements BLB'1 and BL~ιB~ι

in G* = BGB'1 whose isometric circles are contained in A and are disjoint
each other. Obviously Schottky subgroups {<L, Γ^MJU of G are desired.

If lim^, &i = oo, there exists a subsequence {Tίy}~=i of {TJΓ=i such
that

(5 ) lim I atJ \ — lim | diά | = oo .

First we assume lim^^ (dtjc^) = 0. We can take a suitable subsequence
{T'k} of {TtjU such that
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dϊ
k+1

dk

By an easy computation we have

t r a c e TkT'k+\ = a'kd'k+1 - Vkc'k+ί - b'k+ιc'k + a'k+1dk

= a'kd'Jl - ( 4 - - l τ ) | ^
L V ck a'kc'k / d £ + ι

_ /ak+ί __ 1 \ c ί + α ^ r i i 1 ̂

\ ck+1 ck+1dk+1 / αj; αί;dfc+1 J

From (1) and (5) we can conclude that, for a sufficiently large k,

dί d'k

<2

By using these, we have

ItraceΓίΓίTίl

CtkCk

< 2

and

dk*+i

d^
a'k

^ I akdk+11 ί —
cί

- 1 4 dίί+1
dί

> [αWίlf— 9 - 1 - 4.— - 2)
~ \2 9 /

The condition (5) yields that TkTk+i is a loxodromic element in G and
satisfies |trace T'kTk^\\ > 3 for a sufficiently large fc. Thus our case can
be reduced to the case (i).

When lim^.0 (dtj./ctj) Φ 0, we consider a suitable conjugate WGW~ι =
G' of G such that co is also an ordinary point of G' and such that for

WTiάW~ι = ( α J *J), it holds lim (d4*/cζ.) = 0. If ίϊm [αζ | - 00, then the

above argument shows that our lemma holds for Gr, which establishes
Lemma 5 itself. If lim | aζ. | < ©o, then the proof in the case lim | atj \ <
00 gives validity of Lemma 5 for G', so Lemma 5 also holds for G. Thus
the proof of the lemma is complete.

3. In this section we prepare some results obtained under the assump-
tion in our theorem. Let G = {Sl9 S2f •} and G(n) = {S^ri), S2(n), •} be
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kleinian groups. We restate the assumption of the theorem as follows:
there exists a Mδbius transformation Σm such that l im,^ Sm(n) = Σm for
every m and there exists a type preserving isomorphism φn: Sm \-+ Sm(n)
of G onto G(n) for every n(m — 1, 2, •).

Denote by Γ the group {Σl9 Σ2, •••}. First we prove the following.

LEMMA 6. In addition to the assumption in our theorem, suppose
that co G Ω(G) and is not fixed by any element of G. Then Γ contains
infinitely many loxodromic elements {FJΓ=i such that trace Vt is identical
with trace Vx for any i and such that V3 and Vk have no common fixed
point for any j and k.

PROOF. First, we shall show that Γ contains a loxodromic element
Vi Let Z7i be a loxodromic element in G. If φ(Ut) is loxodromic, we
have nothing to prove. If φ{U^) is not loxodromic, then by using Chuck-
row's theorem we see φ(U^ is parabolic. Let U2 be a loxodromic element
in G whose fixed points are different from the fixed points of E7i. Again
we may assume φ(U2) is parabolic. We observe that ΦiUJ and φ(U2) have
no common fixed point. In fact, if φ(Uι) and Φ(U2) have a common fixed
point, then Φ(U^) and φ(U2) are commutative. Hence U1 and U2 are com-
mutative, which contradicts the fact that loxodromic elements E7i and U2

have no common fixed point. Therefore, we may assume that φ(Uj) and

φ(U2) are parabolic and of the form φ{U,) = (I V), λ Φ 0 and φ{U2) = (£ ^ ) ,

c =£ 0. Clearly we have trace φ{Uyφ(U2) = a + NXc + d, which shows
that for a sufficiently large integer N such that Vx = φ(U^)Nφ{U2) is a
loxodromic element in Γ.

Next we shall show that Γ contains a transformation W which is not
elliptic and has no common fixed point with Fx. It is of no loss of
generarity to assume

a 0

0 a-

The fixed points of V1 are 0 and oo. We shall show the existence of a
loxodromic element U in G such that W = Φ(U) fixes neither 0 nor oo.
For the aim, suppose that for each loxodromic element U, φ(u) fixes either
0 or oo. By our assumption we can find loxodromic elements Ulf U2, U3

and Z74 in G such that their fixed points are different from each other
and such that φ( £70, φ{ Ut), φ{ U3) and ψ( U4) fix the point co, one of the
fixed points of V,. Since the centers UςN(oo) and U?(oo) (p = 1, 2, 3, 4)
of isometric circles of Up and U~N tend to the repelling and attracting
fixed points of Up, respectively, as N—>co, and since by Lemma 4 radii
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of the isometric circles of Uξ and of U~N tend to zero as N—> oo, it is
easy to see that for a sufficiently large integer N, these eight isometric
circles of Up and U~N (p = 1, 2, 3, 4) are mutually disjoint and bound an
8-ply connected domain containing the point oo. Obviously < U*, U2

N) and
< U3

N, Uf) are Schottky subgroups of G and it is easily seen that one of
the fixed points of the loxodromic element U^UξUrNU^N is in the isometric
circle of U? and the other is in the isometric circle of Uξ. For the
loxodromic element US'Uf UfNUrN, the situation is quite similar. Hence
two loxodromic elements U?U2

NUrNU2~
N and Uξ Uf UfN UrN have no com-

mon fixed point and they are not commutative. Therefore φ( U? U2 UrN U2~
N)

and φ{UξU?UZ~
NUrN) must not be commutative. On the other hand, since

Φ( U") (p = 1, 2, 3, 4) fix the point oo, we can write as

and
\U α2

It is easy to see that

-a2b2 — aιa\bι + a\a2b2

Hence φ(U»U2

NUrNU2~
N) = φiUnΦiU^φiϋΓ^ΦiU^) is parabolic and fixes

the point oo. For the element φ(U3

NU4

NUfNUrN)f we have the same prop-
erty. Therefore, they are commutative, which is absurd. Thus there
exists a loxodromic element UeG such that W= φ(U)eΓ has no fixed
point common with VΊ.

Put Vt+1 = W* V, W~\ i = 1, 2, . Then obviously the set {FJΓ=i of
loxodromic elements is the desired.

LEMMA 7. In addition to the assumption in our theorem suppose that
oo G Ω(G) and is not fixed by any element of G. // Γ is not discrete,
then there exists a sequence { FAJ£=I of loxodromic elements in Γ such that

k=i converges to the identity.

PROOF. Since Γ is not discrete, we can find a sequence {ΓJlLi in Γ
which converges to the identity. If {TJΓ=i contains an infinite number
of loxodromic elements, then we have nothing to prove more. So we may
assume that {TJJLi contains no loxodromic elements. There are two cases:
(i) the case when {!ΓJΓ=1 contains infinitely many elliptic elements and (ii)
the case when {Γjjli contains at most a finite number of elliptic elements.

First we consider the case (i). By Lemma 6 there exist loxodromic
elements Lp (p = 1,2, 3) which have no common fixed point. Hence Lemma
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3 implies that there exist a loxodromic element L in Γ and a subsequence
{Tt.}γ=ι of {Ti}r=i such that L does not fix any fixed point Tt. (j = 1, 2, - •)•
We normalize Ttj into the form

e{θt) 0 \

0 e(-θ )J ' e{θίj) Φ ±X '

where W3 is in PSL(2, C), not necessary in Γ, and e{θ) — exp i
and put

\c3

Then we can see that trace X3 = 2 + 26^(1 — cos 20̂ .) for

Xj = WiTtjLTrfL^Wr1 and trace Xy = 2 + 2δicy(αi + ^)2(1 - cos 2^ti)

for Xo = WjTt ISTϊL-'WΓ1.
Since both {WiιXό TFyjjU and {TΓ^Xy Wi}̂ i converge to the identity,

it is sufficient to show that Wj~ιXj W3 or W^Xj W3- is loxodromic for every
j . For the purpose we have only to prove that Xs or Xd is loxodromic
for every j . If trace L is neither real nor pure imaginary, then trace
L = trace WjLWf1 = % + d,- is neither real nor pure imaginary, and at
least one of trace Xs or trace Xs is not real, because bάc3(l — cos 2tJ) Φ 0.
If trace L is pure imaginary, we see easily that trace L2 is real. There-
fore as remainder we consider the case, where trace L is real. Then
WjLWf1 is hyperbolic. If WjLWf1 transforms the disk {z; \ z \ ̂  p) onto
itself, then W3 LWfι is of the form

_
p % a3

Hence trace X3 = 2 + 2 | b31
2 (1 — cos 2 ί̂:?.) > 2 and X3 is loxodromic. If

for any p > 0 the disk {2; | a; | ^ }̂ is not invariant under W3L Wi\ then
two elements L and Γ̂ . have no common invariant disk. Hence we may
assume that L makes invariant the upper half plane and is of the form

and that Tt. does not make invariant the upper half plane and is of the
form
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where at least one of aίp bip ctj and dtj is not real and ctj Φ 0. Obviously
trace LUTU is equal to 2*atJ + (2*"1 + 2M~3 + + 2~M+ι)βci5 + 2'Mdu and
is not real for a sufficiently large integer M. In fact if trace LMTij is
real for any integer M, then aij9 ct. and dt. are clearly real, and btj =
(a>ijdij — ])lGij i s a l s o real. This contradicts the assumption that at least
one of aip bij9 cu and dtj is not real. Further, if traceLMT t. is purely
imaginary for infinitely many integers M and for any j , then aip ct. and
dt. must be pure imaginary, for any j , which contradicts the fact that
T^ tends to the identity as j —> oo. Thus we have shown that Γ contains
a loxodromic element L* = LMTt. whose trace is neither real nor pure
imaginary. Hence by Lemma 3 and Lemma 6 we see the existence of a
subsequence {T'k}k=ι of {Ttj}i=1 and a loxodromic element L** such that L**
does not fix any fixed point of an arbitrary T'k and trace L** = trace L*.
Therefore, this case can be reduced to the previous case.

In the case (ii), we may assume that each Tt is parabolic. By the
same way as in the case (i), we can find a loxodromic element L and a
subsequence {ΪY^i of {TJ^i in such that L does not fix the fixed points
of any Tir Since the sequence {Γ€}=1 converges to the identity, the
sequence {T^LT^L"1} also converges to the identity, so our final task is
to show that T^LT^L"1 is loxodromic for each j . For the purpose, we
normalize Ttj into

where Wά is in PSL(2, C). It is easily seen that W^LT^L-^Wr1 is
parabolic and does not fix the point oo. Hence

and, therefore, immediately we have

trace T^LTr/L"1 = trace Wji

= 2 + ΎJXJ ,

which shows that T^LT^L'1 is not parabolic. If the sequence
contains an infinitely many elliptic elements, our case can be reduced to
the case (i). If {Γ^LΓ^L"1}^ contains at most a finite number of elliptic
elements, this sequence contains infinitely many loxodromic elements. Thus
our lemma is proved completely.

4. Now we can give the proof of our theorem.
First we note that we may restrict ourselves to the case where the
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set Ω(G) contains the point oo and any element of G does not fix oo.
Assume that Γ is not discrete. Then Lemma 7 implies the existence of
a sequence {Vi}Γ=i in Γ such that every Vt is loxodromic and {FJΓ=1

converges to the identity. Put φ~\Vτ) = 2 .̂ Then for a sufficiently large
n, φn(Ti) is loxodromic and hence Tt is also loxodromic. By Lemma 5 we
can find a sequence of Schottky subgroups {<!/, Ak)}ΐ=1 of G such that Afc

is some Tt or is of the form TiTf1 where i' > i.
First we deal with the second case, that is, the case where Ak is of

the form TtTf1. For each k it holds that l i m ^ φn(Ak) = l i m ^ ^(TVTV1) =
Vi Vf1. Consequently, there exists a subsequence {nk}ΐ=1 of {n}n=ί such that
lim^^ φnk(Ak) = id. On the other hand <L, AA> is a free and purely
loxodromic group. Since φn}c is a type preserving isomorphism of G onto
G{nk), (φn]c(L), φnk(Ak)) is also a free and purely loxodromic group. More-
over, since (φHk(L), φnk(Ak)) is a subgroup of a discontinuous group (?(?&*),
(φnje(L), φn]e(Ak)) is also a discontinuous group. By a theorem of Maskit
[4], (φnk(L)f φnfc(Ak)} is a Schottky group, which contradicts Lemma 1 due
to Chuckrow.

In the remainder case where Ak is some Ti9 we arrive at the contradic-
tion by the same reasoning as above. Thus we complete the proof of our
theorem.
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