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1. Introduction. In [2], A. Brown and C. Pearcy have proved the
following result about linear operators on a Hilbert space.

THEOREM. Let T, and T, be bounded linear operators on a Hilbert
space H, and T, Q T, be the tensor product of T, and T, on HQ H. Then
we have

o(T, R T,) = o(TYo(T.) = (AMne | N € 0(T), My € 0(TL)}
where o(T) denotes the spectrum of T acting on H.

T. Ichinose [4], M. Schechter [8] and M. Reed, B. Simon [6] extended
this result to the case of Banach spaces.

The purpose of this paper is to discuss the spectra of linear operators
on certain locally convex space and the result of A. Brown and C. Pearcy
analogous for locally convex spaces.

In §2, we debate upon the algebra L(X) of the continuous linear
operators on a locally convex space X, and the spectrum of Te L(X),
and show its property.

In § 8, we consider a quasi-complete commutative locally convex algebra
and prove some results concerning the spectrum and the joint spectrum
of its element.

In §4, we shall prove the main theorem which is the result about
the spectrum of tensor product of linear operators on nuclear Fréchet
spaces and shall show the application of Theorem.

Throughout this paper, let X be a complete locally convex space over
the complex numbers, C, and an operator means always a linear operator
on a locally convex space.

We consider the simple convergence topology in L(X) and we denote
by L,X) the linear space L(X) with this topology. A multiplication
(TU)x = T(Uz) (T, Ue L(X)) induces a structure of algebra to L,(X), and
the map (I, U)—TU of L(X) X L,(X) into L,(X) is obviously separately
continuous, hence the algebra L,(X) is a locally convex algebra in the
sense of G. R. Allan [1]. Then the following is easily shown



248 S. KAWAMURA

PropoSITION. If X is a barreled space, then LX) is sequencially
complete.

Before going into the discussion, the author wishes to express his
hearty thanks to Prof. M. Fukamiya for his many valuable suggestions
in the presentation of this paper.

2. Spectra of continuous linear operators on locally convex spaces.
We shall define a bounded operator on a locally convex space.

DEFINITION 2.1. An operator T € L(X) is said to be a bounded operator
in L(X) (or on X) if there exists a constant d = 0 such that {(07)"}ss
is a bounded subset of L,(X). The family of all bounded operators in
L,(X) is denoted by Z(X).

We notice the following proposition in [5].

PROPOSITION 2.2. Let X be a barreled space, and Te L(X). Then
the following are equivalent:

(1) T is a bounded operator in Ly(X).

(2) There exists a comstant 6 = 0 such that {(6T))7, is a equi-
continuous family in L(X).

(8) There exist a fundamental semi-norm system (hereafter F.S.N.S.
stands for this term), P, for X and a comstant ¢ = 0 such that p(Tx) <
cp(x) for all pe P and all xe X.

We remark that if we fix a F.S.N.S, P, for X, then for any bounded
operator T e L(X) the F.S.N.S. satisfying (3) is given by P, = {p, | p€ P}
where p,(x) = sup {p(0T)"x) [n=0,1,2, ---}.

DEFINITION 2.8. Let Te L(X). Then the spectrum of T, denoted by
o(T), is the complex number A\ for which T — A1 has no inverse in <& (X).
The complement of ¢(T) in C, denoted by o(T), is said to be the resolvent
set of T.

For a locally convex space X, we have the dual system (X, X*, { )),
and for Te L(X), we denoted ‘T the transpose of 7. We provide the
bounded convergence topology to X*, denoted by X, and consider the
spectrum of the transpose, 'T, in L,(Xj), and we state the following
theorem.

THEOREM 2.4. Let X be a Fréchet space whose dual space s a
barreled space. Then we have o(T) = o(*T) for Te L(X).

To prove Theorem, we need following three lemmas, since the strong
dual space X;* is a barreled space, we can use the criterion of the bounded-
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ness of the operators in L(X;*) as stated in Proposition 2.2.

LEMMA 1. Let {T.}.es be an equicontinuwous family in L(X), then
{tT,}eca ts also an equicontinuous family in L(XS).

As the proof is done by the elementary calculas, we omit the proof
of this lemma.

LEMMA 2. Let Te L(X) whose range space is dense in X. If both
T and 'T are one to one, then we have ((T)™* = *(T™).

ProOOF. For xz€ R[T], the range of T, and x* € D[!T], the domain
of ‘T, we have {(x, *) =TT 'z, x*> = (T 'z, *Tx*). Then {(T7(.), ‘Tx*)
is same as the restriction of z* to R[T], so that ‘Tx*e D[*(T™')] and
T Y)tTe* = x*. Therefore (T is the restriction of (*T)7'.

For x€ X and xz* e D[Y(T"")], we have

(e, x*) = (T7'Tx, x*) = {(Twx, (T Hx*) .

Then (T ')x*e D[*T] and ‘THT Y)x* = x*, thus (T ) is the restriction of
. q.e.d.

LEMMA 8. Let X be a Fréchet space whose dual space is a barreled
space. Then T is a bounded operator in LX) if and only if ‘T is o
bounded operator in L,(X7).

ProOF. Let T be a bounded operator in L,(X). Since {(0T)"}, is
an equicontinuous family in L(X) for some 6 = 0, each (6 T')* maps bounded
subsets into bounded subsets. For pz, defined by

pp(x*) = sup [{x, 2*>],

where B is a bounded subset of X,
ps((0*T)"x*) = sup [ <=, (3*T)"x*) | = sup [<(OT)"x, x*)| < M (const.),
z€B z€eB

where M is independent to #. Thus {(6'T)"};, is bounded in L,(X). It
follows that ‘T e &2 (X;).

Next if we exchange X by X and X by (X;)f in the discussion
above, we obtain that ‘Te & (X;) implies '(*T)e <& ((X)f). Since the
topology of X is same as the topology induced by (X;)#, T, the restric-
tion of {(*T), is a bounded operator in L,(X). Therefore if ‘Te & (X;)
then Te & (X). g.e.d.

Proor or THEOREM 2.4. By the fact (T — M) = 'T — A\, it is suffi-

cient to show the case M = 0 especially.
Let 0 o(T). Then R[T]= T and there exists a constant ¢ = 0 such
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that {(0 T )"}, are equicontinuous in L(X) by (2) of Proposition 2.2. By
virtue of Lemma 1, {{((0T %)™}, are equicontinuous in L(X;). The fact
R[T] = X shows that ‘T is one to one, so that {(6(*T)™")"}»-, are also so
by Lemma 2. Hence 0¢ po('T).

Conversely let 0€ o(*T). Then there exists a constant 6 = 0 such that
{(6¢T) ™"}z, are equicontinuous in L(X;). The fact that R[*T] = X* and
T is one to one, shows that T is one to one and R[T] is dense in X,
then (TY) = (*T)* by Lemma 2. Of course D['T] = X * by the continuity
of (T™). As above, {(0(*(T )"}~ are equicontinuous in L((X;*)F). From
the discussion in Lemma 38, {(6(T))"};-, are equicontinuous in L(X), there-
fore 0€ o(T). q.e.d.

Now we assume that X is a barreled space. Let S be the complex
numbers )\ for which there exist a F.S.N.S., P, for X and a constant
¢ = 0 such that »((T — M)x) = ep(x) for all pe P and all x€ X. The
complement of S, denoted by #(T), is a subset of o(T) and closed in C
since S is open in C.

Let ¥(T) be the complex numbers )\ in S for which R[T — A\I], the
range of T — AI, is not dense in X. If e S, R[T — M] is closed from
the completeness of X, then Y(T) ={Ae S| R[T — A]# X}. Thus o(T)
is the disjoint union of #(T') and Y(T). Moreover o(T) is closed (Cor. 3.9.
[1]) and, if Te < (X), bounded in C.

REMARK. 7(T) is the set of all » € C satisfying the condition; for an
arbitrary F.S.N.S., P, there exist {x,}7.,c X such that p,(2,) =1 and
2,(T — xI)x,) —0 as w —  for some sequence {p,};-; of P.

THEOREM 2.5. Let X be a barreled space and Te L(X). Then we
have 0o(T)c on(T). (Let 0 stand for “boundary of”)

Proor. Firstly we shall show that o(T) is closed in S. Let A =
lim,_. X, where A€ S and \,€p0(T). For e S, there exist a F.S.N.S.,
P, for X and a constant ¢ = 0 such that

p((T — N)x) = ep(x) for all pe P and all ze€ X .
If [x =N, | =e¢/2, then
p((T — N 0)2) = p((T — M)x) — [N, — M| p(x)
= cp(@) — (c/2)p(x)
= (c/2)p(x) .
For e X, let z, = (T — N\, I)"'¢. Since
p(,) = @/e)p(T — N I)x,) = (2/c)p()
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for large n, we have the following
p@ — (T — M)(T — N, I)'w)

= px — (T — M)x,)

= p@ — (T — M )z,) + p(v — N,)2,)

=p@ — ) + [N — N, | p(2,)

=[x = A, | (@fc)p(x) — 0 as n-— oo .
Thus z€ R[T — M| = R[T — \I]. Therefore A belongs to o(T). Now
for AcC, Int A denotes the set of interior points in C. Since Y(T) =
S\o(T) is open in S, it is also open in C. Then Y(T') = Int 7(T) < Int o(T).
Thus 7(T) U Int 7z(T) c Int 6(T). Consequently

00(T) = o(T\Int o(T) c a(T)\(Y(T) U Int n(T))

= n(T)\Int z(T)

= on(T) .

3. The spectrum of an element and the joint spectrum of elements
in a locally convex algebra. In this section, let A be a quasi-complete
commutative locally convex algebra over C. (If A is a sequencially
complete locally convex algebra, then it is quasi-complete.) (cf. [1])
Moreover let A4, be the set of all bounded elements of A, i.e., 4, =
{ac A|{(da)"}z-, is a bounded subset of A for some 0 == 0} and B be a
fundamental system of multiplicative closed absolutely convex and bounded
subset in A.

It is easily shown that A, = Uz s A(B,) where A(B,) = Ur-.nB, is
a Banach algebra with the norm || - ||;, defined by

[lallz, =inf{Ax > 0|N"'a€ B,} .

Let M, (resp. M,) be the set of all non identically zero multiplicative
linear functional on A, (resp. A(B,)). It has been shown in [1] that M,
(resp. M,) is compact with respect to a(M,, A,) (resp. o(M,, A(B,)) topology
and M, is isomorphic to the projective limit of M,, i.e., M = lim (M,, ,;s)

-
where for hse M;, 7,(hs) is the restriction of h; to A(B,) (8> « i.e.,
B; D B,).
The spectrum of ac 4 is defined as follows;
o(a) = {xeC|a — \e has no inverse in A4},

where ¢ is the identity of A4, and
o@) ={neC|\¢goa(a)).
Then we have o(a) = {#(a) | he M,} for ac A, [1]
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Next we define the joint spectrum of element a, (1 <7 < n) of A,.

DEFINITION 3.1. Let a, (1 =<7 < n) be element of A. We say that
(A, oo+, M)V € C, 1 <7 =< n) belongs to the joint resolvent set, o(a,, -+, @,)
of {a;},<i<ns if there exist b,e 4, (1 <1 < n) such that X7, b,(a; — \e) =
e. Otherwise it is said to be in the joint spectrum, o(a, ---, @,)-

THEOREM 3.2. Let a. €l L =t=mn). Then (A, ---, \,) belongs to
o(a, -+, a,) tf and only if there exists he M, such that h(a,) =\, for
each i, 1 =7 = n.

Proor. Let (A, :--,N,)€p0(ay, ---, a,), then there exist » elements
bl =i=m of A, such that 3, b,(a; — N\e) =e¢. For every he M,
hCr bi(a;, — Ne) = D (b)) (h(a;) — ;). On the other hand h(e) =1,
thus h(a;) # N, for some \,.

Conversely let (A, --+, N,)eo(a, -+, a,). Then there exist a Banach
algebra A(B;), (B,€ B), which contains {a;},<;<. and h,e M, such that
hs(a;) = N; for each 7, [9]. For every @ = d, we put N, = {he M, | h(a,) =
N 1 =1 = nd.

Then N, is closed, and therefore compact, subset of M,, and by the
supposition N, is non-empty. Since 7, (N;)C N,, (0 £ a =< B), we can
form the projective limit, Q,;, of {N,|a = d}. Choose some element
{he} € Q.

Then we may extend it to an element {h,} of M, by putting

(i) h,=h} if a=9;

(ii) h, = w,s(h;) otherwise, where g = a, B = 9.

Then W(a;) = hi(a;) = ki(a;) = N, for each 7 (1 <7 < n). g.e.d.

From Theorem 3.2, we obtain the following.

THEOREM 3.3. Let a, (1 < 7 < n) be elements of A,. If Pis a complex
polynomial in n variables, then

P(a(a'ly M) an)) = U(P(aly ) an)) .

Proor. Following statements are equivalent:

(i) neP(a(ay, -+, a)).

(ii) »= P(\, +--, \,) for some (A, --+, N,) €0(ay, -+, a,).

@iii) » = P(ny, --+, \,) where (\,, ---, \,) is a vector such that for
some he M, h(a;) =X, for each 7, 1 =<1 < n).

(iv) » = P(k(a)), ---, Ma,)) for some ke M,.

(v) »=h(P(ay -, a,) for some he M,.

(vi) neo(P(ay, ---, a,)).
Theorem 3.2 says the equivalence of (ii) and (iii). q.e.d.



TENSOR PRODUCT OF LINEAR OPERATORS 253

4. On the spectra of tensor product of linear operators on Fréchet
spaces. For Fréchet spaces X and Y, let W be the completion of the
tensor product of X and Y endowed with the @ topology, say X Q.Y
(cf. [T]). If P (resp. @) is a F.S.N.S. for X (resp. Y), then PR Q =
(pRq|peP,qeqQ} is a F.S.N.S. for W, where

p®q@w) = inf {3 p@)ew) |u = 32 @ v}

for all ue X®.Y. Conversely we have the following fact.

PROPOSITION 4.1. Let R be a F.S.N.S. for W. Then for r € R, there
exist continuous semi-norms p = p(r) and ¢ = q(r) on X and Y respec-
tively such that r is a cross semi-norm of p and q, moreover {p = p(r) | r € R}
and {q = q(r)lre R} are F.S.N.S. for X and Y respectively.

ProOF. Let re R be given, for which we put
R, = {pXq|p and ¢ are continuous semi-norms on X and Y
respectively such that » < p Q ¢},

where r < p ® ¢ means that r(u) < p ®Q q(u) for all wue W. Clearly R, is
non-empty set by the continuity of 7. For any totally ordered subset

{pa ®qa}aEA Of R'r! let
po(@) = inf p,(x) and ¢i(y) = inf ¢ () .
Then p, ® g, belongs to R, and it is smaller than all elements of {p, ®
Qs}ecs. BY Zorn’s Lemma, there exists at least a minimal element p, X ¢,
in R,.
We shall show that = is a cross semi-norm of p, and ¢q,. If this were
not true, then there exists an element 2, ® ¥,€ X X. Y such that

2:(20)0: (%) = 1, ® ¢.(@ R Yo) 2 (% @ o)

and we may assume that

2i(0)q:(¥o) = 1 = (%, @ ¥o) »

moreover we assume that p,(x,) =1 and q¢,(y,) = 1. This implies that
2, ® Yo belongs to the 0-neighbourhood, U = {ue W|r(u) < 1}, in W, but
%, does not belong to the 0-neighbourhood, U(p,) = {xe X |p,(x) <1} in
X. Now we define a new semi-norm, p,, on X such that

p(w) = inf {t 2 0 t7'we (2, U(p))},

where I'(%,, U(p,)) is a convex and balanced hull of {x,} and U(P,). Then
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2.®¢ = p ¢, and by the fact;
I'(x, Up)) @{ye Yaq =1}
= {x ® y l HAS F(xo; U(pl))’ ql(y) é 1} e U ’

and r is the gauge function of U, we have p, ® q, = r (cf. 6.3 Chap. III
of [7]). Then p,® q,€ R,. This contradicts the minimality of », & qu,
thus 7 is a cross semi-norm of p, and q,. Therefore for each € R there
exist continuous semi-norms, p = p(r) and ¢ = q(r), on X and Y respec-
tively such that 7 is a cross semi-norm of p» and ¢, and the assertion
that families of these semi-norms are F.S.N.S.s for X and Y respectively
is easily shown by the following formulas;

p@) =r@Q®y)a), @) =@ Qy)/p),

where ¥y, and z, are elements of X and Y respectively such that q(y,) = 0
and p(z,) #= 0. g.e.d.

For T,e L(X) and T,e L(Y), we define the tensor product, T, ® T},
of T, and T, on the algebraic tensor product, X ® Y, by

LT = 3 T@) @Tw)  for u=35Qu.,

then T, X T, is a densely defined continuous linear operator on W and its
continuous extension to W is again denoted by T, X T,. Further the
following is easily shown.

PROPOSITION 4.2. Let X and Y be Fréchet spaces. If T, and T, are
bounded operators on X and Y respectively, then T, R T, is also a bounded
operator on W.

For T,e I(X) and Ic L(Y) (resp. Ic L(X) and T,c L(Y)), let A,
(resp. A,) be the operator on W defined by T, Q I (resp. IR T,).

Now if either X or Y is a nuclear space, we have Grothendieck’s
Theorem, that is, the dual space of W with the g8 topology, Wy, is the
completion of the tensor product of X;* and Y, with respect to the «
topology, (cf. [3]). Then we have (T, X T, =T, ®'T, by elementary

calculas.
At last, in order to prove the main theorem, we note the lemma about

the property of complex valued polynomial in two variables.

LEMMA [8]. Let P(-, -) be a polynomial in two variables such that
P(0,0) = 0. Then there exist two complex-valued functions g(t) and h(t)
continuous im 0 <t < co such that g(0) = n(0) =0, |g(@)| + | (i) | — = as
t— oo, and P(g(t), k() =0 in 0 <t < .
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THEOREM 4.3. Let X and Y be Fréchet spaces and let either X or
Y be a nuclear space. If T, and T, are bounded operators on X and Y
and A, =T, I, A, = IR T, respectively and P is a polynomial in two
variables, then the spectrum of P(A,, A,) consists of those N such that A =
P(\y, \y), where N;€0(T) ©=1,2. 1i.e., o(P(A, 4,)) = P(o(T)), o(T,)).

PrOOF. The proof of o(P(4,, 4;)) < P(o(T), o(T,)). It iseasily shown
that if X and Y are Fréchet space, then W is also Fréchet space, thus
L,(W) is sequencially complete by Proposition in § 1, moreover it is quasi-
complete. Let U be the double commutant of {4, A4,} in L,(W). Since
A, and A, are commute each other, ¥ is a commutative quasi-complete
locally convex algebra, and we put 04(7T), the algebraic spectrum of T,
be considered as an element of U, then d4(T) = o(T).

Since ¢,(P(4,, A,)) = P(04(4,, A,)) by virtue of Theorem 3.3, and by
Theorem 3.2, \ € 04(A,, A;) implies that A = (A, \;) where \, € 0,(4), N\, €
04(A;). Then

o0(P(A, A)) = P(04(4,, Ay)) C P(0x(A), 0x(4,))
= P(0(4,), 0(4,)) = P(a(T)), o(TY)) -

The proof of P(o(T)), o(T.) C o(P(A, A,)). We shall divide the proof
into three cases. Let M = (A, \y) € a(T) X a(T)).

Case 1. A= (A, M) en(T) x 7(Ty).

Since P(A, A) = DFi0a;Ti®Ti (a,;€C), the proof is reduced to
show the following.

(i) If pen(T), then p*exn(Ty) for every n.

(ii) If (¢, ) e(T) X w(T,), then p,-pe (T, R T)).

Let p#en(T,) and P be a F.S.N.S. for X. For the polynomial, Q(-),
such that T7 — p#*I = Q(T)(T, — pI), we define the F.S.N.S., P, =
{po| € P}, for X such that

Po(x) = sup {p((OQ(T))"») [m =1, 2, ---}

where 0 is some positive constant. For any € = 0, there exist py € P, and
xe X with pg(x) =1 such that po((T, — #I)x) < e. Then for some m,
p((0Q(T,))™x) = 1/2, and we have
p((T? — p1)(OQ(T))"x)

= p(Q(T)(T, — pI)(OQ(T))"x)

= 1/0)p(OT )" (T, — pI)x)

= (1/0)po((T, — pel))

<¢lo.

Therefore p"en(Ty). This completes the proof of (i).
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To show (ii), let R be a F.S.N.S. for W. We may assume that R
is the countable set, then we put R = {r,}m_,. From Proposition 4.1, there
exist F.S.N.S.s P= {p,}5-, and Q = {¢.}5-, for X and Y respectively
such that r, is a cross semi-norm of p, and ¢,. Since p, €n(T,), we can
take a subsequence {p,}i=, from {p,}n_, and {x, }:, in X satisfying follow-
ing two conditions;

(@) Dulea) =1 and p (T, — p)r,) —0 as i — co.

(b) {97 C{qu}n-. is also a F.S.N.S. for Y.

Then we can take again a subsequence {g;,}7, from {q.,}:2, and {y; }7,
in Y such that ps(y5,) =1 and ¢, ((T: — t)¥s,) —0 as @ —oo. Therefore

"'ﬂi(( T.RT, — p- I ®Q I)(xﬂ.; ® yﬁ,-))
= 05, ® ¢5,((T, — puD)ws, ® (T, — .1)y;,)
+ (T, — tI)ws, @ MY, + s, @ (T, — ﬂZ)yﬂi)
= 5,((T, — puD)ws)q5,(Ty — .1)ys,)
+ [t s, (T, — puD)25.)q5,(Ys,)
+ [ | Ds,(@6,)05,((Ty — £)Y5,) — 0 as 1 — oo .

The other hand 7;,(x;,&y5,) = ps,(@s,)q(ys,) =1. Therefore p,- 1, € 7(T'\QT).
Case 2. N = (M, M) €m(T) X Y(TY).
Since o(T) = o(*T,) = n(*T,) U Y(T,), we shall consider two cases;

@2.1) nmern(T), (2.2 neY(T).

Firstly suppose M = (A, Ny) €T(*Ty) X Y(T,). Since )\, is an eigenvalue of
tTy N = (A, M) €(*T) X w(*T,). In the proof of (b) of the preceding case,
we used the countability of R, then this case is not reduced to Case 1,
but Aj is also an eigenvalue of (*T,)* and the following holds.

(iii) If T\, Ty)e L(X}), pen(T*) and g, is an eigenvalue of T,
then p,-p, e n(T* Q T.¥).
To prove (iii), let R* = {r}},., be a F.S.N.S. for W* and we assume
that r¥(x¥ @ yr) = 0 for every aec A, where zF is some vector in X; and
y¥ is an eigenvalue of g,. As Case 1, there exist F.S.N.S.s, P* = {p}}
and @Q* = {q}}, for X and Y respectively such that r} is a cross semi-
norm of p, and ¢., and ¢;(y5) # 0. Since y, € n(Ty*), there exist {pZ )z, C
P* and {x}}z, c X with pX(xX¥) =1 such that pX((T* — p)xk) —0 as
1 — 0. If weput v, = y5/qs (), re(T* QT — puptI R Ixk, K yk) —0
as 1 — oo, and ri (2}, Qyk) = 1. Then pp,en(T* ®TF). Therefore

Py ) €T(*P(Ay, Ag)) Co((P(4, A)) = 0(P(Ay, 4)) .

To show that Case (2.2) is reduced to the case above, we put
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P(Sr"?):P(NI-FEv)"Z_&_??)_Po\'lykz)’
then P(0, 0) = 0. Hence by the Lemma [8] there exist continuous func-
tions g¢(f), h(t) on [0, =) such that ¢g(0) = 0, #(0) = 0,
PN+ 9@), M + B(E)) = P(My, No)
and |g(¢)| + |A(t)| — = as t— . Since N, (resp. \,) is belonging to the
bounded open subset, Y(*T)) (resp. Y(T:)) of C, there exists ¢, = 0 such
that either
(2.2.1) N+ gE)edY(T)cn(CT,) and N\, + k() e 7(Ty)
n0s=t=st,,
or
(2.2.2) N + B(t) €0Y(T,) cn(T,) and N, + g(t)eY(T) (T
n0=t=t,.
Case (2.2.1) and (2.2.2) are reduced to Case (2.1) and Case 1 respectively.
Thus
P(Ay, N) = PN+ 9(o), M + R(E)) € 0(P(4,, 4Y)) -

Case 3. )= (\y M) €V(TY) X Y(TY).
Since Y(T,) c #(*T)), this case is a particular case of (2.1). q.e.d.

Now we shall apply Theorem 4.3 to the following example.

ExAMPLE. The space C,(R*) of complex valued periodic infinitely
partial differentiable functions in R* with I*, hypercube [0, 1]%, as period,
with the topology of uniform convergence in all derivatives, is a nuclear
Fréchet space and we have known C;(R? = Cr(R") ®.Cr(R'). On the
space C;(R'), we consider translations T, and T (0 = a, 8 = 1) defined
by

(T.)@) = fle+a), (Tif)@)=flx+ B,
for f(x)e C5(R'). Then
((Toz ® Tﬂ)h)(xr y) = h’(x + ay Yy + :8) ’
(TR I+ IXTHM(2, ¥y) = hx + a,y) + k(z,y + B) ,
for h(z, y) € Cr (R?Y).

If e @, the set of rational number, there exists an integer » such
that na = 0 (mod. 1) and we put #n, = min {# = 0|na = 0 (mod. 1)}. Other-
wise na # 0 (mod. 1) for any integer n. Then we have the following;

{\ | Arme =1} if xke @,

A= nl=1  if acQ.
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Since T, and T, are bounded operators on C;(R'), we have the following;

(v At =1, pme =1} if ae@ and Re@,
(L. ST) = NN = 1) otherwise .
NN £ 2) if a¢gQ and ¢ Q,

AT @I+ IQT)={+p|\e=1|p|=1 if acQ and B¢Q,
N+ pae =1, pe =1} if ¢e@ and Be@.

Furthermore for a polynomial, P(-, -), in two complex variables
o(P(T.Q L, IQT) = {P(\, 1) I Ned(TL), rea(Ty)} .

Moreover we can know the spectrum of ‘P(T, X I, I @ T;) acting on the
dual space of (Cr (R?).
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