A CONVOLUTION MEASURE ALGEBRA ON THE UNIT DISC

YÛichi Kanjin

(Received March 17, 1975)

1. Introduction. Let D be the unit disc $D=\left\{z=x+i y ; x^{2}+y^{2} \leqq 1\right\}$ and m_{α} be the positive measure of total mass one on D defined by

$$
d m_{\alpha}(z)=\frac{\alpha+1}{\pi}\left(1-x^{2}-y^{2}\right)^{\alpha} d x d y,
$$

where α is a positive real number. Let $M(D)$ be the space of all bounded regular complex valued Borel measures on $D . M(D)$ is a Banach space with the total variation norm $\|\mu\|=\int_{D} d|\mu|(z)$ for $\mu \in M(D)$. Denote $L_{\alpha}^{1}=L^{1}\left(D, m_{\alpha}\right)$. Then L_{α}^{1} is identified with a subspace of $M(D)$ by the map $f \mapsto f d m_{\alpha}$ of L_{α}^{1} to $M(D)$. The mapping is isometric, since $\|f\|_{L_{\alpha}^{1}}=$ $\int_{D}|f(z)| d m_{\alpha}(x)=\left\|f d m_{\alpha}\right\|$.

For each point z in D, the operator T_{z}, called generalized translation, is defined by

$$
\begin{equation*}
T_{z} f(\zeta)=\frac{\alpha}{\alpha+1} \int_{D} f\left(\bar{z} \zeta+\sqrt{1-|z|^{2}} \sqrt{1-|\zeta|^{2} \xi}\right) \frac{d m_{\alpha}(\xi)}{1-|\xi|^{2}} \tag{1}
\end{equation*}
$$

for f in the space of all continuous functions $C(D)$. By a change of variable, if z and ζ are in the interior of D, we obtain

$$
T_{z} f(\zeta)=\int_{D} f(\xi) E_{\alpha}(z, \zeta, \xi) d m_{\alpha}(\xi)
$$

where

$$
E_{\alpha}(z, \zeta, \xi)=\left\{\begin{array}{l}
\frac{\alpha}{\alpha+1} \frac{\left(1-|z|^{2}-|\zeta|^{2}-|\xi|^{2}+2 \Re \mathrm{e}(\bar{z} \zeta \bar{\xi})\right)^{\alpha-1}}{\left(1-|z|^{2}\right)^{\alpha}\left(1-|\zeta|^{2}\right)^{\alpha}\left(1-|\xi|^{2}\right)^{\alpha}} \\
0 .
\end{array}\right.
$$

The first value is assigned only if ξ is in the disc of the center $\bar{z} \zeta$ and of radius $\sqrt{1-|z|^{2}} \sqrt{1-|\zeta|^{2}}$. By the definition,

$$
\begin{gather*}
E_{\alpha}(z, \zeta, \xi) \geqq 0, \quad z, \zeta \in \text { interior of } D, \xi \in D, \tag{2}\\
\int_{D} E_{\alpha}(z, \zeta, \xi) d m_{\alpha}(\xi)=1 \tag{3}
\end{gather*}
$$

If μ and ν are in $M(D), \mu_{\alpha}^{* \nu}$ is defined implicitly by the relation

$$
\int_{D} f(t) d\left(\mu_{\alpha}^{* \nu}\right)(t)=\int_{D} \int_{D} T_{\bar{z}} f(\zeta) d \mu(z) d \nu(\zeta) \quad(f \in C(D)) .
$$

In the following, we will leave off the index α when there occurs no confusion.
$\sup \left\{\left|T_{z} f(\zeta)\right| ; z \in D, \zeta \in D\right\} \leqq\|f\|_{C(D)}$ by the definition (1) of T_{z}. Therefore, if $\mu, \nu \in M(D)$, then $\mu * \nu \in M(D)$ and $\|\mu * \nu\| \leqq\|\mu\| \cdot\|\nu\|$ by the Riesz representation theorem. The convolution $*$ is commutative and associative. Let δ_{1} be the measure with the unit mass at the point 1 , then it is the unit with respect to the convolution $*$.
 commutative Banach algebra with a unit. If $f \in L_{\alpha}^{1}$ and $g \in L_{\alpha}^{1}, f_{\alpha}^{*} g$ will be defined by $\left(f d m_{\alpha}\right){ }_{\alpha}^{*}\left(g d m_{\alpha}\right)$. Then, we obtain

$$
\begin{aligned}
f_{\alpha}^{*} g(\zeta) & =\int_{D} T_{z} f(\zeta) g(z) d m_{\alpha}(z) \\
& =\int_{D} \int_{D} f(\xi) g(z) E_{\alpha}(z, \zeta, \xi) d m_{\alpha}(\xi) d m_{\alpha}(z)
\end{aligned}
$$

By (2) and (3), $f_{\alpha}^{*} g$ is in L_{α}^{1}. In fact, L_{α}^{1} is a closed ideal in $M_{\alpha}(D)$.
If α is a positive integer, this convolution ${ }_{\alpha}^{*}$ corresponds to the convolution of the zonal measure algebra on the unitary group $U(\alpha+2)$.

The object of this paper is to determine the maximal ideal space of the Banach algebra $M_{\alpha}(D)$ and using it, to give a characterization of idempotent measures and to show a theorem of F. and M. Riesz type. To prove the last one, we will define a Poisson kernel and give an integral representation of it.
2. Idempotent measures and maximal ideal space of $M_{\alpha}(D)$. Let $P_{n}^{(\alpha, \beta)}(x)$ be the Jacobi polynomial of degree n, order $(\alpha, \beta), \alpha, \beta>-1$ defined by

$$
(1-x)^{\alpha}(1+x)^{\beta} P_{n}^{(\alpha, \beta)}(x)=\frac{(-1)^{n}}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[(1-x)^{n+\alpha}(1+x)^{n+\beta}\right]
$$

or

$$
P_{n}^{(\alpha, \beta)}(x)=\frac{\Gamma(n+\alpha+1)}{n!\Gamma(\alpha+1)} F[-n, n+\alpha+\beta+1 ; \alpha+1 ;(1-x) / 2]
$$

where

$$
\begin{gathered}
F[a, b ; c ; z]=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{n!(c)_{n}} z^{n}, \\
(a)_{n}=a(a+1)(a+2) \cdots(a+n-1), \quad(a)_{0}=1
\end{gathered}
$$

The following will be used later (see G. Szegö [10]),

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(1)=\binom{n+\alpha}{n}, \quad P_{n}^{(\alpha, \beta)}(-1)=(-1)^{n} P_{n}^{(\beta, \alpha)}(1) \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \int_{-1}^{1}\left\{P_{n}^{(\alpha, \beta)}(x)\right\}^{2}(1-x)^{\alpha}(1+x)^{\beta} d x \tag{5}\\
& \quad=\frac{2^{\alpha+\beta+1} \Gamma(n+\alpha+1) \Gamma(n+\beta+1)}{(2 n+\alpha+\beta+1) \Gamma(n+1) \Gamma(n+\alpha+\beta+1)}
\end{align*}
$$

Define $R_{n}^{(\alpha, \beta)}(x)=P_{n}^{(\alpha, \beta)}(x) / P_{n}^{(\alpha, \beta)}(1)$. Let $R_{m, n}^{(\alpha)}$ be the polynomial of degree $m+n$ in x and y defined by

$$
R_{m, n}^{(\alpha)}\left(r e^{i \theta}\right)=r^{|m-n|} e^{i(m-n) \theta} R_{m \wedge n}^{(\alpha,|m-n|)}\left(2 r^{2}-1\right)
$$

where $r e^{i \theta}=x+i y$ and $m \wedge n=\min \{m, n\}$. From the orthogonality of Jacobi polynomials, it follows that the system $\left\{R_{m, n}^{(\alpha)}\right\}_{m, n=0}^{\infty}$ constitutes an orthogonal system in $L^{2}\left(D, m_{\alpha}\right)$. Since polynomials of $R_{m, n}^{(\alpha)}$ are dense in $C(D)$, the system is complete. From the product formula for Jacobi polynomials (see T. Koornwinder [6]), it follows that

$$
\begin{align*}
T_{z} R_{m, n}^{(\alpha)}(\zeta) & =\frac{\alpha}{\alpha+1} \int_{D} R_{m, n}^{(\alpha)}\left(\bar{z} \zeta+\sqrt{1-|z|^{2}} \sqrt{1-|\zeta|^{2}} \xi\right) \frac{d m_{\alpha}(\xi)}{1-|\xi|^{2}} \tag{6}\\
& =R_{m, n}^{(\alpha)}(\bar{z}) R_{m, n}^{(\alpha)}(\zeta)
\end{align*}
$$

For $\mu \in M_{\alpha}(D)$, let $\hat{\mu}(m, n)$ be the coefficient defined by

$$
\hat{\mu}(m, n)=\int_{D} R_{m, n}^{(\alpha)}(\bar{z}) d \mu(z)
$$

In particular, if $f \in L_{\alpha}^{1}$,

$$
\widehat{f}(m, n)=\int_{D} f(z) R_{m, n}^{(\alpha)}(\bar{z}) d m_{\alpha}(z)
$$

By (6), if $\mu \in M_{\alpha}(D)$ and $\nu \in M_{\alpha}(D)$, it follows that

$$
\begin{aligned}
(a \mu+b \nu)^{\wedge}(m, n) & =a \hat{\mu}(m, n)+b \hat{\nu}(m, n) \quad(a, b \in C) \\
(\mu * \nu)^{\wedge}(m, n) & =\hat{\mu}(m, n) \hat{\nu}(m, n)
\end{aligned}
$$

Therefore the map $\mu \mapsto \hat{\mu}(m, n)$ gives a nonzero multiplicative linear functional on $M_{\alpha}(D)$.

Define $h_{m, n}^{(\alpha)}=\left[\int_{D}\left|R_{m, n}^{(\alpha)}(z)\right|^{2} d m_{\alpha}(z)\right]^{-1} . \quad$ Then, by (5),

$$
\begin{align*}
h_{m, n}^{(\alpha)}= & \frac{1}{(\alpha+1) \Gamma(\alpha+1)^{2}} \tag{7}\\
& \times \frac{\Gamma(m \wedge n+\alpha+1) \Gamma(m \wedge n+\alpha+|m-n|+1)}{\Gamma(m \wedge n+1) \Gamma(m \wedge n+|m-n|+1)} \\
& \times(2 m \wedge n+\alpha+|m-n|+1),
\end{align*}
$$

and every $\mu \in M_{\alpha}(D)$ is expanded in the formal series

$$
\mu \sim \sum_{m, n} h_{m, n} \hat{\mu}(m, n) R_{m, n}^{(\alpha)}(z)
$$

H. Annabi and K. Trimèche proved the following.

Theorem 1 ([1]). For every couple (m, n) of nonnegative integers, the $\operatorname{map} f \mapsto \hat{f}(m, n)$ is a nonzero multiplicative linear functional on the Banach algebra L_{α}^{1}. Conversely, if χ is a nonzero multiplicative linear functional, then there exists a couple (m, n) of nonnegative integers such that $\chi(f)=\hat{f}(m, n)\left(f \in L_{\alpha}^{1}\right)$.

Now we can describe the maximal ideal space of the Banach algebra $M_{\alpha}(D)$. Let

$$
\begin{aligned}
M_{\alpha}\left(D^{0}\right) & =\left\{\mu \in M_{\alpha}(D) ; \mu \text { is concentrated on } D^{0}\right\} \\
M_{\alpha}(\partial D) & =\left\{\mu \in M_{\alpha}(D) ; \mu \text { is concentrated on } \partial D\right\}
\end{aligned}
$$

where D^{0} is the interior of D and ∂D is the boundary of D. Then we obtain a decomposition of $M_{\alpha}(D)$ into $M_{\alpha}(D)=M_{\alpha}\left(D^{0}\right) \oplus M_{\alpha}(\partial D)$. By the definition of the convolution, it follows that $M_{\alpha}\left(D^{0}\right)$ is a closed ideal in $M_{\alpha}(D)$ and $M_{\alpha}(\partial D)$ is a subalgebra of $M_{\alpha}(D)$. Therefore if we denote by $\Delta\left(M_{\alpha}(D)\right)$ the maximal ideal space of $M_{\alpha}(D)$, it is the disjoint union

$$
\Delta\left(M_{\alpha}(D)\right)=\Delta\left(M_{\alpha}\left(D^{0}\right)\right) \cup \Delta\left(M_{\alpha}(\partial D)\right)
$$

Let $M(T)$ be the space of all bounded regular Borel measures on the circle group $\boldsymbol{T}=\boldsymbol{R} / 2 \pi \boldsymbol{Z}$. Then $M_{\alpha}(\partial D)=M(\boldsymbol{T})$ as a set. Since for $\mu \in$ $M_{\alpha}(\partial D)$ and $\nu \in M_{\alpha}(\partial D)$,

$$
\int_{D} f(t) d \mu_{\alpha}^{*} \nu(t)=\int_{\partial D} \int_{\partial D} f(z \zeta) d \mu(z) d \nu(z) \quad(f \in C(D)),
$$

the convolution ${ }_{\alpha}^{*}$ coincides with the convolution on the circle group T for all $\alpha>0$. So that $M_{\alpha}(\partial D)$ is identified with the convolution measure algebra $M(T)$ as a Banach algebra. Moreover, for $\mu \in M_{\alpha}(\partial D), \hat{\mu}(m, n)=$ $\hat{\mu}(m-n)$ where the righthand side is the Fourier-Stieltjes transform of μ which is regarded as an element in $M(T)$.

The maximal ideal spaces of measure algebras on locally compact abelian groups are studied in detail by Yu. A. Šreider [9], J. L. Taylor [11] and etc.

Nothing remains but to determine the maximal ideal space $\Delta\left(M_{\alpha}\left(D^{0}\right)\right)$ of the Banach algebra $M_{\alpha}\left(D^{0}\right)$. Because of the special nature of the convolution in $M_{\alpha}(D)$, we can relate the maximal ideal space of $M_{\alpha}\left(D^{0}\right)$ to that of L_{α}^{1}. The following lemma is the key to this relation.

Lemma 2. Let $\alpha>0$. If μ and ν are in $M_{\alpha}\left(D^{0}\right)$, then $\mu_{\alpha}^{*} \nu \in L_{\alpha}^{1}$.

Proof. Let $\mu, \nu \in M_{\alpha}\left(D^{0}\right)$. Then,

$$
\begin{aligned}
\int_{D} f(t) d \mu_{\alpha}^{*} \nu(t) & =\int_{D} \int_{D} T_{\bar{z}} f(\zeta) d \mu(z) d \nu(\zeta) \\
& =\int_{D} \int_{D} \int_{D} f(\xi) E_{\alpha}(\bar{z}, \zeta, \xi) d m_{\alpha}(\xi) d \mu(z) d \nu(\xi),
\end{aligned}
$$

for $f \in C(D)$. Let F be a Borel set such that $m_{\alpha}(F)=0$. By the regulality of measures, we can replace f with the characteristic function of F. For any z and ζ in $D^{0}, E_{\alpha}(\bar{z}, \zeta, \cdot)$ is absolutely continuous with respect to m_{α}, and so $\mu_{\alpha}^{*} \nu(F)=0$. Thus $\mu_{\alpha}^{*} \nu$ is absolutely continuous with respect to m_{α}.

Theorem 3. Let $\alpha>0$. Then $\Delta\left(M_{\alpha}(D)\right)$ can be identified with the disjoint union $\boldsymbol{Z}^{+} \times \boldsymbol{Z}^{+} \cup \Delta(M(\boldsymbol{T}))$, where \boldsymbol{Z}^{+}denotes the set of nonnegative integers.

Proof. From the above arguments, it suffices to prove that $\Delta\left(M_{\alpha}\left(D^{0}\right)\right)$ can be identified with $\boldsymbol{Z}^{+} \times \boldsymbol{Z}^{+}$. Let χ be a nonzero multiplicative linear functional on $M_{\alpha}\left(D^{0}\right)$. Then there exists μ in $M_{\alpha}\left(D^{0}\right)$ such that $\chi(\mu) \neq 0 . \quad \chi(\mu * \mu)=\chi(\mu)^{2} \neq 0$. For any $\nu \in M_{\alpha}\left(D^{0}\right), \nu *(\mu * \mu) \in L_{\alpha}^{1}$ and $\mu * \mu \in L_{\alpha}^{1}$ by Lemma 2. By Theorem 1, there exists a couple (m, n) of nonnegative integers such that

$$
\chi(\nu *(\mu * \mu))=(\nu *(\mu * \mu))^{\wedge}(m, n)
$$

and

$$
\chi(\mu * \mu)=(\mu * \mu)^{\wedge}(m, n) .
$$

Thus

$$
\begin{aligned}
\chi(\nu)(\mu * \mu)^{\wedge}(m, n) & =\chi(\nu) \chi(\mu * \mu) \\
& =\chi(\nu *(\mu * \mu)) \\
& =(\nu *(\mu * \mu))^{\wedge}(m, n) \\
& =\hat{\nu}(m, n) \cdot(\mu * \mu)^{\wedge}(m, n) .
\end{aligned}
$$

Thus $\chi(\nu)=\hat{\nu}(m, n)$ which proves the theorem.
For $\mu \in M_{\alpha}(D)$, if $\mu_{\alpha}^{*} \mu=\mu$, it is called an idempotent measure in $M_{\alpha}(D)$.
H. Helson [5] has given a characterization of the idempotent measures in $M(\boldsymbol{T})$ and P. J. Cohen [3] has obtained a characterization of the idempotent measures in the convolution measure algebra on a locally compact abelian group. We will show that the idempotent measures in $M_{\alpha}(D)$ are essentially those in $M(\boldsymbol{T})$.

Theorem 4. If μ is an idempotent measure in $M_{\alpha}(D)$, then μ has the form

$$
\mu=\mu_{0}+\mu_{1}
$$

where μ_{0} is an idempotent measure in $M(T)$ and μ_{1} is a finite sum $\sum_{m, n} h_{m, n} a_{m, n} R_{m, n}^{(\alpha)}(z)$ with $a_{m, n}=0$ or ± 1.

Proof. Let μ be an idempotent measure in $M_{\alpha}(D)$. Then μ is decomposed as $\mu=\mu_{0}+\mu_{1}$ where $\mu_{0} \in M_{\alpha}(\partial D)$ and $\mu_{1} \in M_{\alpha}\left(D^{0}\right)$. The decomposition is unique. By the convolution equation $\mu * \mu=\mu$,

$$
\mu_{0}+\mu_{1}=\mu_{0} * \mu_{0}+2 \mu_{0} * \mu_{1}+\mu_{1} * \mu_{1}
$$

Since $M_{\alpha}(\partial D)$ is a subalgebra and $M_{\alpha}\left(D^{0}\right)$ is an ideal in $M_{\alpha}(D), \mu_{0}=\mu_{0} * \mu_{0}$. That is if μ is idempotent in $M_{\alpha}(D)$, so is μ_{0} in $M_{\alpha}(\partial D)$, i.e., in $M(T)$. Since $\mu=\mu_{0}+\mu_{1}$ and μ_{0} is itself idempotent, $\hat{\mu}_{1}(m, n)$ takes values 0,1 , or -1. It is clear that for $f \in L_{\alpha}^{1}, \widehat{f}(m, n) \rightarrow 0$ as $m+n \rightarrow \infty$. By Lemma 2, $\mu_{1} * \mu_{1} \in L_{\alpha}^{1}$ and so $\left(\mu_{1} * \mu_{1}\right)^{\wedge}(m, n) \rightarrow 0$ as $m+n \rightarrow \infty$. That is $\hat{\mu}_{1}(m, n) \rightarrow 0$ as $m+n \rightarrow \infty$. From this it follows that all of $\hat{\mu}_{1}(m, n)$ vanish except a finite number of (m, n). Therefore μ must have the form described in the theorem. The proof is complete.

Related results to Theorems 3 and 4 will be found in C. F. Dunkl [4], D. L. Ragozin [7] and A. Schwartz [8]. They are concerned with the special orthogonal group $S O(n)$ and radial measures on \boldsymbol{R}^{n}, etc.
3. The Poisson kernel. In this section, a Poisson kernel on $D \times[0,1)$ is defined which possesses the same good properties as the usual Poisson kernel on the unit disc.

Definition. We call the series

$$
P_{s}^{(\alpha)}(z)=\sum_{m, n} s^{|m-n|+m \wedge n} h_{m, n} R_{m, n}^{(\alpha)}(z),
$$

Poisson kernel for polynomials $R_{m, n}^{(\alpha)}$ of index $\alpha>0$, where $0 \leqq s<1$ and $z \in D$.

For $0 \leqq s<1$, the series in the right hand side converges uniformly in D by (7) and the inequality $\left|R_{m, n}^{(\alpha)}(z)\right| \leqq 1(z \in D)$.

Theorem 5. Let $0<|z| \leqq 1,0 \leqq s<1$. Then the Poisson kernel has integral representation

$$
\boldsymbol{P}_{s}^{(\alpha)}(z)=\frac{1-s}{\pi(1+s)^{\alpha+2}} \int_{0}^{2 \pi} P_{\sqrt{s}}(\theta-\tau)\left(1-\frac{r}{k} \cos \tau\right)^{-\alpha-2} d \tau
$$

where $z=r e^{i \theta}, k=\left(s^{1 / 2}+s^{-1 / 2}\right) / 2$ and $P_{r}(x)$ is the Poisson kernel for the
trigonometric polynomials, i.e., $P_{r}(x)=1 / 2+\sum_{n=1}^{\infty} r^{n} \cos n x$. In particular, we have

$$
\begin{aligned}
& \boldsymbol{P}_{s}^{(\alpha)}(z) \geqq 0 \quad(z \in D), \\
& \int_{D} \boldsymbol{P}_{s}^{(\alpha)}(z) d m_{\alpha}(z)=1,
\end{aligned}
$$

and

$$
\boldsymbol{P}_{r}^{(\alpha)} * \boldsymbol{P}_{s}^{(\alpha)}=\boldsymbol{P}_{r s}^{(\alpha)} .
$$

Most of this section is devoted to proving the first part of the theorem.

Let $z=r e^{i \theta}$. Then

$$
\begin{aligned}
\boldsymbol{P}_{s}^{(\alpha)}(z)= & \sum_{m, n} s^{|m-n|+m \wedge n} h_{m, n} R_{m, n}^{(\alpha)}(z) \\
= & 2 \mathfrak{R e}\left\{\frac{1}{2} \sum_{n=0}^{\infty} h_{n, n} s^{n} R_{n}^{(\alpha, 0)}\left(2 r^{2}-1\right)\right. \\
& \left.+\sum_{\beta=1}^{\infty}\left(\sum_{n=0}^{\infty} h_{n+\beta, n} s^{n} R_{n}^{(\alpha, \beta)}\left(2 r^{2}-1\right)\right) s^{\beta} z^{\beta}\right\} .
\end{aligned}
$$

From (4) and (7), for $\beta \geqq 0$,

$$
\begin{aligned}
& h_{n+\beta, n} R_{n}^{(\alpha, \beta)}\left(2 r^{2}-1\right) \\
= & \frac{1}{\Gamma(\alpha+2)} \frac{\Gamma(n+\alpha+\beta+1)}{\Gamma(n+\beta+1)}(2 n+\alpha+\beta+1) P_{n}^{(\alpha, \beta)}\left(2 r^{2}-1\right) .
\end{aligned}
$$

Thus it follows that

$$
\begin{align*}
\boldsymbol{P}_{s}^{(\alpha)}(z)= & \frac{2}{\Gamma(\alpha+2)} \Re e\left\{\frac{1}{2} \sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha+1)}{\Gamma(n+1)}\right. \tag{8}\\
& \times(2 n+\alpha+1) P_{n}^{(\alpha, 0)}\left(2 r^{2}-1\right) s^{n} \\
+ & \sum_{\beta=1}^{\infty}\left(\sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha+\beta+1)}{\Gamma(n+\beta+1)}\right. \\
& \left.\left.\times(2 n+\alpha+\beta+1) P_{n}^{(\alpha, \beta)}\left(2 r^{2}-1\right) s^{n}\right) s^{\beta} z^{\beta}\right\} .
\end{align*}
$$

Put

$$
A(\beta)=\sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha+\beta+1)}{\Gamma(n+\beta+1)}(2 n+\alpha+\beta+1) P_{n}^{(\alpha, \beta)}\left(2 r^{2}-1\right) s^{n}
$$

It is easy to see that

$$
\begin{aligned}
A(\beta)= & \frac{\Gamma(\alpha+\beta+1)}{\Gamma(\beta+1)} \sum_{n=0}^{\infty} \frac{n!(\alpha+\beta+1)_{n}}{(\alpha+1)_{n}(\beta+1)_{n}} \\
& \times(2 n+\alpha+\beta+1) P_{n}^{(\alpha, \beta)}(1) P_{n}^{(\alpha, \beta)}\left(2 r^{2}-1\right) s^{n} .
\end{aligned}
$$

We have

$$
\begin{align*}
A(\beta)= & \frac{\Gamma(\alpha+\beta+1)}{\Gamma(\beta+1)}\left\{\frac{(\alpha+\beta+1)(1-s)}{(1+s)^{\alpha+\beta+2}}\right. \tag{9}\\
& \left.\times F_{4}^{[}\left[\frac{1}{2}(\alpha+\beta+2), \frac{1}{2}(\alpha+\beta+3) ; \alpha+1, \beta+1 ; 0, \frac{r^{2}}{k^{2}}\right]\right\}
\end{align*}
$$

where $k=\left(s^{1 / 2}+s^{-1 / 2}\right) / 2$ (see Bailey [2] p. 102). $\quad F_{4}$ is Appell's hypergeometric function of two variables defined by

$$
F_{4}\left[\alpha, \beta ; \gamma, \gamma^{\prime} ; x, y\right]=\sum \sum \frac{(\alpha)_{m+n}(\beta)_{m+n}}{m!n!(\gamma)_{m}\left(\gamma^{\prime}\right)_{n}} x^{m} y^{n}
$$

By the definition of F_{4}, we have

$$
\begin{gather*}
F_{4}\left[\frac{1}{2}(\alpha+\beta+2), \frac{1}{2}(\alpha+\beta+3) ; \alpha+1, \beta+1 ; 0, \frac{r^{2}}{k^{2}}\right] \tag{10}\\
\quad=\sum_{n=0}^{\infty} \frac{((\alpha+\beta+2) / 2)_{n}((\alpha+\beta+3) / 2)_{n}}{n!(\beta+1)_{n}}\left(\frac{r^{2}}{k^{2}}\right)^{n}
\end{gather*}
$$

and further
(11) $\frac{((\alpha+\beta+2) / 2)_{n}((\alpha+\beta+3) / 2)_{n}}{n!(\beta+1)_{n}}=\frac{\Gamma(\beta+1) \Gamma(2 n+\alpha+\beta+2)}{2^{2 n} n!\Gamma(\alpha+\beta+2) \Gamma(n+\beta+1)}$.

Combining (9), (10) and (11) we get

$$
A(\beta)=\frac{1-s}{(1+s)^{\alpha+\beta+2}} \sum_{n=0}^{\infty} \frac{\Gamma(2 n+\alpha+\beta+2)}{2^{2 n} n!\Gamma(n+\beta+1)}\left(\frac{r^{2}}{k^{2}}\right)^{n}
$$

Now we rewrite the series in the righthand side using the function $I_{\nu}(\zeta)$ introduced by Bessel which is defined by
(12) $\quad I_{\nu}(\zeta)=\left(\frac{\zeta}{2}\right)^{\nu} \sum_{n=0}^{\infty} \frac{(\zeta / 2)^{2 n}}{n!\Gamma(\nu+n+1)}, \quad \zeta \neq$ negative real number.
$I_{\nu}(\zeta)$ has the integral representation

$$
\begin{align*}
I_{\nu}(\zeta)= & \frac{1}{\pi} \int_{0}^{\pi} e^{\zeta \cos \tau} \cos \nu \tau d \tau-\frac{\sin \nu \pi}{\pi} \int_{0}^{\infty} e^{-\zeta \cosh u-\nu u} d u, \tag{13}\\
& \Re e \nu>-\frac{1}{2}, \quad \Re e \zeta>0 .
\end{align*}
$$

From definition of Γ-function and (12), it follows that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\Gamma(2 n+\alpha+\beta+2)}{2^{2 n} n!\Gamma(n+\beta+1)}\left(\frac{r^{2}}{k^{2}}\right)^{n}=\int_{0}^{\infty}\left(\frac{2 k}{r}\right)^{\beta} I_{\beta}\left(\frac{r}{k} t\right) t^{\alpha+1} e^{-t} d t \tag{14}
\end{equation*}
$$

By (13),

$$
\begin{equation*}
I_{\beta}\left(\frac{r}{k} t\right)=\frac{1}{\pi} \int_{0}^{\pi} e^{t(r / k) \cos \tau} \cos \beta \tau d \tau \tag{15}
\end{equation*}
$$

for $t, r>0$ and $\beta=0,1,2, \cdots$. From (14) and (15), it follows that

$$
\begin{equation*}
A(\beta)=\frac{1-s}{\pi(1+s)^{\alpha+2}}\left\{\frac{2 k}{(1+s) r}\right\}^{\beta} \int_{0}^{\infty} \int_{0}^{\pi} e^{t(r / k) \cos \tau} t^{\alpha+1} e^{-t} \cos \beta \tau d \tau d t \tag{16}
\end{equation*}
$$

Combining (8) and (16) we get

$$
\begin{aligned}
\boldsymbol{P}_{s}^{(\alpha)}(z)= & \frac{1-s}{\pi \Gamma(\alpha+2)(1+s)^{\alpha+2}} \int_{0}^{\infty} \int_{0}^{\pi} 2 \Re e\left[\frac{1}{2}\right. \\
& \left.+\sum_{\beta=1}^{\infty}\left\{\frac{2 s k z}{(1+s) r}\right\}^{\beta} \cos \beta \tau\right] e^{t(r / k) \cos \tau} t^{\alpha+1} e^{-t} d \tau d t
\end{aligned}
$$

But,

$$
\begin{aligned}
2 \Re e & {\left[\frac{1}{2}+\sum_{\beta=1}^{\infty}\left\{\frac{2 s k z}{(1+s) r}\right\}^{\beta} \cos \beta \tau\right] } \\
& =1+2 \sum_{\beta=1}^{\infty} s^{\beta / 2} \cos \beta \theta \cos \beta \tau \\
& =1+\sum_{\beta=1}^{\infty} s^{\beta / 2}(\cos \beta(\theta+\tau)+\cos \beta(\theta-\tau)) \\
& =P_{\sqrt{s}}(\theta+\tau)+P_{\sqrt{\varepsilon}}(\theta-\tau),
\end{aligned}
$$

and so by a change of variable it is clear that $P_{s}^{(\alpha)}(z)$ has the integral representation described in the Theorem 5. The proof of the Theorem 5 is complete.

Corollary 6. If $f \in L^{p}\left(D, m_{\alpha}\right), p \geqq 1$, then the Poisson integral $\boldsymbol{P}_{s}^{(\alpha)} * f$ converges to f in the norm.

In fact, if f is a polynomial of $R_{m, n}^{(\alpha)}$, it is obvious. Since polynomials of $R_{m, n}^{(\alpha)}$ is dense in $C(D)$, the Corollary holds for any $f \in L^{p}\left(D, m_{\alpha}\right), p \geqq 1$.
4. A theorem of F. and M. Riesz type. In this section, we will give a theorem of F. and M. Riesz type using Theorem 5.

Let $\mu \in M_{\alpha}(D)$. Then

$$
\mu \sim \sum_{n=0}^{\infty}\left\{\sum_{\beta=0}^{\infty} h_{n+\beta, n} \hat{\mu}(n+\beta, n) R_{n+\beta, n}^{(\alpha)}(z)+\sum_{\beta=1}^{\infty} h_{n, n+\beta} \hat{\mu}(n, n+\beta) R_{n, n+\beta}^{(\alpha)}(z)\right\} .
$$

From (4) and (7),

$$
h_{n+\beta, n}=O\left(n^{2 \alpha+1}+n^{\alpha} \beta^{\alpha+1}\right) \text { as } n \rightarrow \infty \text { or } \beta \rightarrow \infty,
$$

and

$$
\left|R_{n+\beta, n}^{(\alpha)}(z)\right| \leqq C \frac{\Gamma(n+\beta+1)}{\Gamma(n+\alpha+1) \Gamma(\beta+1)} r^{\beta}
$$

where the constant C depends only on α. Therefore we have

$$
h_{n+\beta, n}\left|R_{n+\beta, n}^{(\alpha)}(z)\right|=O\left(\beta^{n+\alpha+1} r^{\beta}\right) \quad \text { as } \quad \beta \rightarrow \infty .
$$

Since $h_{n+\beta, n}\left|R_{n+\beta, n}^{(\alpha)}(z)\right|=h_{n, n+\beta}\left|R_{n, n+\beta}^{(\alpha)}(z)\right|$, both series

$$
\sum_{\beta=0}^{\infty} h_{n+\beta, n} \hat{\mu}(n+\beta, n) R_{n+\beta, n}^{(\alpha)}(z) \quad \text { and } \quad \sum_{\beta=1}^{\infty} h_{n, n+\beta} \hat{\mu}(n, n+\beta) R_{n, n+\beta}^{(\alpha)}(z)
$$

converge uniformly in the wide sense on the interior of D for $n=0,1$, $2, \cdots$.

Theorem 7. Let $\alpha>0$ and μ be an element in $M_{\alpha}(D)$. Suppose there exists an integer N such that

$$
\begin{equation*}
\hat{\mu}(m, n)=0 \quad \text { for all } \quad m \wedge n>N \tag{17}
\end{equation*}
$$

Then μ is absolutely continuous with respect to m_{α}, that is, in L_{α}^{1}.
Proof. Suppose that μ is an element in $M_{\alpha}(D)$ satisfying (17). Then we have

$$
\mu \sim \sum_{n=0}^{N}\left\{\sum_{\beta=0}^{\infty} h_{n+\beta, n} \widehat{\mu}(n+\beta, n) R_{n+\beta, n}^{(\alpha)}(z)+\sum_{\beta=1}^{\infty} h_{n, n+\beta} \hat{\mu}(n, n+\beta) R_{n, n+\beta}^{(\alpha)}(z)\right\} .
$$

Therefore there exists a continuous function $f(z)$ such that

$$
\begin{align*}
& f(z) \tag{18}\\
& \quad=\sum_{n=0}^{N}\left\{\sum_{\beta=0}^{\infty} h_{n+\beta, n} \hat{\mu}(n+\beta, n) R_{n+\beta, n}^{(\alpha)}(z)+\sum_{\beta=1}^{\infty} h_{n, n+\beta} \hat{\mu}(n, n+\beta) R_{n, n+\beta}^{(\alpha)}(z)\right\}
\end{align*}
$$

on the interior of D. By Fatou's lemma, we get

$$
\begin{aligned}
\int_{D}|f(z)| d m_{\alpha} & =\int_{D} \liminf _{s \rightarrow 1}\left|\boldsymbol{P}_{s}^{(\alpha)} * \mu(z)\right| d m_{\alpha}(z) \\
& \leqq \liminf _{s \rightarrow 1} \int_{D}\left|\boldsymbol{P}_{s}^{(\alpha)} * \mu(z)\right| d m_{\alpha}(z)
\end{aligned}
$$

and by Theorem 5, $\left\|P_{s}^{(\alpha)} * \mu\right\| \leqq\|\mu\|$. Therefore we have

$$
\int_{D}|f(z)| d m_{\alpha}(z) \leqq\|\mu\|
$$

It is clear that the coefficients of f coincide with those of μ since the series (18) converges uniformly in the wide sence on D^{0} and the system $\left\{R_{m, n}^{(\alpha)}\right\}$ is orthogonal. Therefore, we get $f=\mu$ which completes the proof.

Remark. If μ is an analytic measure on T, then $\hat{\mu}(m, n)=0$ for $m<n$ and μ is singular with respect to m_{α}. So that our formulation
will be natural in a sence.
The author wishes to thank Professor S. Igari for his many helpful criticisms and suggestions.

Added in proof, 28 January 1976: We have learned after submitting this paper that G. B. Folland gives a spherical harmonic expansion of the Poisson-Szegö kernel for the ball, Proc. Amer. Math. Soc. 47 (1975). One would obtain Theorem 7 using his expansion formula.

References

[1] H. Annabi et K. Trimèche, Convolution généralisée sur le disque unité, C. R. Acad. Sc. Paris, 278 (1974), 21-24.
[2] W. N. Bailey, Generalized Hypergeometric Series, Cambridge Univ. Press, Cambridge, 1935.
[3] P. J. Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math., 82 (1960), 191-212.
[4] C. F. Dunkl, Operators and harmonic analysis on the sphere, Trans. Amer. Math. Soc., 125 (1966), 250-263.
[5] H. Helson, Note on harmonic functions, Proc. Amer. Math. Soc., 4 (1953), 686-691.
[6] T. Koornwinder, The addition formula for Jacobi polynomials, I. Summery of results, Indag. Math. 34 (1972), 188-191.
[7] D. L. Ragozin, Zonal measure algebras on isotoropy irreducible homogeneous spaces, J. Functional Analysis 17 (1974), 355-375.
[8] A. Schwartz, The structure of the algebra of Hankel transforms and the algebra of Hankel-Stieltjes transforms, Can. J. Math., XXIII (1971), 236-246.
[9] Yu. A. Sreider, The structure of maximal ideals in rings of measures with convolution, Math. Sbornik N. S., 27(69), (1950), 297-318, Amer. Math. Soc. Translation 81, Providence, 1953.
[10] G. Szegö, Orthogonal polynomials, Colloquim Publications, vol. 23, Amer. Math. Soc., Providence, third edition, 1967.
[11] J. L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc., 119 (1965), 150-166.

Mathematical Institute
Tôhoku University
Sendai, Japan

