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1. Introduction. Let D be the unit disc D = {z — x + iy; x2 + y2 ^ 1}
and mα be the positive measure of total mass one on D defined by

dma(z) — (1 — x2 — y2)adxdy ,
π

where a is a positive real number. Let M(D) be the space of all bounded
regular complex valued Borel measures on D. M(D) is a Banach space

with the total variation norm \\ μ\\ = \ d \ μ \ ( z ) for μeM(D). Denote
JD

Ll

a = Ll(D, ma). Then L\ is identified with a subspace of M(D) by the
map /H>/ώmα of L\ to M(D). The mapping is isometric, since ||/||zι =

sD

For each point z in D, the operator Tz, called generalized translation,
is defined by

( 1 ) TJ (ζ) - -2L- f /(zζ + Ί / l - ] z | 2 τ / 1 - I C I 2 g) ;*m*(f|2 ,
Oί ~r 1 J ^ \ ' Λ- — 1 ^ 1

for / in the space of all continuous functions C(D). By a change of
variable, if z and ζ are in the interior of D, we obtain

where

( a (l - I g |« - I ζ « - I g |« + 23fle(gζg))g-1

Jg?.(Z, ζ, f) = α + 1 (1 - I «|2)«(1 - I ζ T(l - I f I2)"

lo.
The first value is assigned only if ξ is in the disc of the center zζ and

of radius τ/1 - 12121/1 - | ζ |2. By the definition,

(2) #«(«, ζ, ί) ̂  0 , z, ζ 6 interior of Z>, f e Z>,

(3) ( #„(«, ζ, ξ)dma(ξ) = 1.
JI>
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If μ and v are in M(D), μ*v is defined implicitly by the relation

( f(W(μ*ι>)(t) = \ \ T-J(Qdμ(z)dv(Q (feC(D)).
JD a J D J D

In the following, we will leave off the index a when there occurs
no confusion.

sup {| 2V(ζ) z 6 D, ζ 6 D] ^ || / \\0(D} by the definition (1) of Tz.
Therefore, if μ,veM(D), then μ*veM(D) and || μ*v \\ <; || μ \\ || u \\ by
the Riesz representation theorem. The convolution * is commutative and
associative. Let dί be the measure with the unit mass at the point 1,
then it is the unit with respect to the convolution *.

M(D) with the convolution * will be denoted by Ma(D). Ma(D) is a
commutative Banach algebra with a unit. If /eL« and g$Ll

a,f*g will
be defined by (fdma)*(gdma). Then, we obtain

= \ \
J D J a(z, ζ, ξ)dma(ξ)dma(z) .

By (2) and (3), f*g is in Ll

β. In fact, L\ is a closed ideal in Ma(D).

If a is a positive integer, this convolution * corresponds to the
convolution of the zonal measure algebra on the unitary group U(a + 2).

The object of this paper is to determine the maximal ideal space of
the Banach algebra Ma(D) and using it, to give a characterization of
idempotent measures and to show a theorem of F. and M. Riesz type.
To prove the last one, we will define a Poisson kernel and give an
integral representation of it.

2. Idempotent measures and maximal ideal space of Ma(D). Let
P(

n

a'β\x) be the Jacobi polynomial of degree n, order (a, β), α, β > — 1
defined by

2nnl dxn

or

Pla β)(a \ = Γ^n + a + •*•) ^Γ — n m. 4- ΛV 4

where

F[α, 6; c; z] = ,
=o nl(c)n

(α). = a(a + l)(α + 2) (a + n - 1) , (α), = 1 .
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The following will be used later (see G. Szego [10]),

( 4 ) P<^(1)
n

l)Γ(n + β

a + /3 + l)Γ(n + 1)Γ(̂  + α + β + 1) "

Define R(f »(x) = P^'β)(x)/P^β)(l). Let R%n be the polynomial of degree
m + n in x and ?/ defined by

where reiθ = x + iy and m/\n = min {m, w}. From the orthogonality of
Jacobi polynomials, it follows that the system {R(^n}^,n=0 constitutes an
orthogonal system in L\D, ma). Since polynomials of R(£]n are dense in
C(D), the system is complete. From the product formula for Jacobi
polynomials (see T. Koornwinder [6]), it follows that

For μ e Ma(D), let β(m, n) be the coefficient defined by

μ(m, n) = \ R%n&)dμ(z) .
JD

In particular, if / € I/L,

/(m, n) = \ f(z)R^n(z)dma(z) .
JD

By (6), if μ e Ma(D) and v 6 Ma(D)9 it follows that

(aμ + bv)~(m, n) = aμ(m, n) + 60(m, w) (α, 6 e C) ,

(μ * y)Λ(m, τι) — /i(m, w)5(m, ^) .

Therefore the map μ i— » μ(ιn, n) gives a nonzero multiplicative linear
functional on Ma(D).

Define Λjft - Λif,^) ^m^) ' Then, by (5),

(7) Λί&
(α + l)Γ(α + I)2

Γ(m Λ n + ft + l)Γ(m /\n + a + \m - n\ + I)x
Γ(m Λ w + l)Γ(m Λ ^ + | m - n +1)

x (2mΛ^ + ^ + | m — ^| + 1),
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and every μ β Ma(D) is expanded in the formal series

μ - Σ hMβ(m, n)R%n(z) .
m,n

H. Annabi and K. Trimeche proved the following.

THEOREM 1 ([!]). For every couple (m, n) of nonnegatίve integers,
the map f ι-» /(m, n) is a nonzero multiplicative linear functional on
the Banach algebra L\. Conversely, if χ is a nonzero multiplicative
linear functional, then there exists a couple (m, n) of nonnegative integers
such that χ(f) = /(m, n) (f e Z/«).

Now we can describe the maximal ideal space of the Banach algebra
Ma(D). Let

Ma(D°) = {μ e Ma(D); μ is concentrated on D°} ,

Ma(dD) — {μ e Ma(D)\ μ is concentrated on 3D} ,

where D° is the interior of D and 3D is the boundary of D. Then we
obtain a decomposition of Ma(D) into Ma(D) = Ma(DQ) 0 Ma(dD). By the
definition of the convolution, it follows that Ma(DQ) is a closed ideal in
Ma(D) and Ma(dD) is a subalgebra of Mα(Z)). Therefore if we denote by
Δ(Ma(D)) the maximal ideal space of Ma(D), it is the disjoint union

A(Ma(D)) = A(Ma(D»)) U Δ(MJ(dD)) .

Let Λf(Γ) be the space of all bounded regular Borel measures on the
circle group T = R/2πZ. Then Ma(dD) = M(T) as a set. Since for μe
Ma(dD) and ve

f(Mμ*v(t)=\ \ f(zζ)dμ(z}dv(z) (feC(D)),
J d D J d D

the convolution * coincides with the convolution on the circle group T
for all a > 0. So that Mu(dD) is identified with the convolution measure
algebra M(T) as a Banach algebra. Moreover, for μeMa(dD), μ(mf n) =
μ(m — n) where the righthand side is the Pourier-Stieltjes transform of
μ which is regarded as an element in M(T).

The maximal ideal spaces of measure algebras on locally compact
abelian groups are studied in detail by Yu. A. Sreider [9], J. L. Taylor
[11] and etc.

Nothing remains but to determine the maximal ideal space Λ(Ma(Dΰ))
of the Banach algebra Ma(D°). Because of the special nature of the
convolution in Ma(D), we can relate the maximal ideal space of Ma(D°)
to that of Ll

a. The following lemma is the key to this relation.

LEMMA 2. Let a > 0. If μ and v are in Ma(DQ), then
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PROOF. Let μ, v e Ma(D°). Then,

f(Wμ*v(t)=\ \
JDJ

= \ \ \
JDJDJD

for / 6 C(D). Let F be a Borel set such that ma(F) = 0. By the regulality
of measures, we can replace / with the characteristic function of F. For
any z and ζ in D°, Ea(z, ζ, •) is absolutely continuous with respect to mα,
and so μ%v(F) — 0. Thus μ*v is absolutely continuous with respect to
ma.

THEOREM 3. Let a > 0. Then A(Ma(D)} can be identified with the
disjoint union Z+ x Z+ U Δ(M(T)), where Z+ denotes the set of nonnegative
integers.

PROOF. From the above arguments, it suffices to prove that
Λ(Ma(DQ)) can be identified with Z+ x Z+. Let χ be a nonzero multipli-
cative linear functional on Ma(D°). Then there exists μ in Ma(D°) such
that 7.(μ) Φ 0. χ(μ * μ) = χ(μ)2 Φ 0. For any v e Ma(D*), v*(μ*μ)e Ua

and μ*μeLl

a by Lemma 2. By Theorem 1, there exists a couple (m, n)
of nonnegative integers such that

χ(v * (μ * μ)) = (v * (μ * μ)Γ(m, w)

and

Thus

= χ(v*(μ*μ))

= (ι>*(μ*μ)Γ(m,n)

= ϊ>(m, ri) (μ* μT(m, n) .

Thus χ(v) = £(m, 9t) which proves the theorem.

For μeMa(D), if μ*μ = μ, it is called an idempotent measure in

Ma(D).
H. Helson [5] has given a characterization of the idempotent measures

in M(T) and P. J. Cohen [3] has obtained a characterization of the
idempotent measures in the convolution measure algebra on a locally
compact abelian group. We will show that the idempotent measures in
Ma(D) are essentially those in M(T).
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THEOREM 4. // μ is an ίdempotent measure in Ma(D), then μ has
the form

μ = μ* + ft »
where μ0 is an ίdempotent measure in M(T) and ft is a finite sum
Σi».»hm,nam,Jt%%(z) with am,n - 0 or ±1.

PROOF. Let μ be an idempotent measure in Ma(D). Then μ is
decomposed as μ = μ0 + μl where μ0 e Ma(dD) and μ1 e Ma(D°). The decom-
position is unique. By the convolution equation μ*μ = μ,

ft + μ,= μ,*μ, + 2μ0*ft + ft* ft .

Since Ma(dD) is a subalgebra and Ma(DQ) is an ideal in Ma(D), μ0 = μ0 * ft,.
That is if μ is idempotent in Ma(D), so is μ0 in Ma(dD), i.e., in Λf(Γ).
Since μ = ft + ft and μ0 is itself idempotent, ft(m, w) takes values 0, 1,
or — 1. It is clear that for feLl

a, f(m,n)-+Q as m + n~+°o. By
Lemma 2, ft*ft€l/β and so (ft * ftΓXm, w) — » 0 as m + τι— >°o. That is
ft(m, w) — > 0 as m + ^—^cxD. From this it follows that all of ft(m, n)
vanish except a finite number of (m, w). Therefore μ must have the form
described in the theorem. The proof is complete.

Related results to Theorems 3 and 4 will be found in C. F. Dunkl [4],
D. L. Ragozin [7] and A. Schwartz [8]. They are concerned with the
special orthogonal group S0(n) and radial measures on Rn, etc.

3. The Poisson kernel. In this section, a Poisson kernel on D x [0, 1)
is defined which possesses the same good properties as the usual Poisson
kernel on the unit disc.

DEFINITION. We call the series

Poisson kernel for polynomials R(£n of index a > 0, where 0 <^ s < 1 and
zzD.

For 0 <; s < 1, the series in the right hand side converges uniformly
in D by (7) and the inequality | R(£n(z) | ^ 1 (z e D).

THEOREM 5. Let 0 < | z <^1, 0 ̂  s < 1. Then the Poisson kernel
has integral representation

- ί cos

where z — reίθ, k = (sv2 + s~1/2)/2 and Pr(x) is the Poisson kernel for the
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trigonometric polynomials, i.e., Pr(x) — 1/2 + Σ?=ι r* cos nx. In particu-
lar, we have

P8

(a}(z) ^ 0 (z € D) ,

\ P«\z)dma(z) = 1 ,
JD

and
p(α) ^ p(α) _ p(α)

•* r * *ι — •» re

Most of this section is devoted to proving the first part of the
theorem.

Let z = reiθ. Then

- 29ΐe - - Σ Λ. Bs^<" 0)(2r2 - 1)
2 »=o

From (4) and (7), f or β ^ 0 ,

/W^-'^r2 - 1)

(2B + α

Thus it follows that

ί 8 ί P' 'ω - 2 5»e ( 1 y Γ(rt + « + 1)
(8) F (Z)~ Γ(α + 2)Λ et¥έ l . Γ(» + l)

x (2n + α + l)Pi" β)(2r1 - l)s"
, f. /f. Γ(ro + a + β + 1)

fc Vέo r(Λ + β + i)

x (2w + a + β + l)P;α ί)(2r2 - l)β"V«'} .

Put

- i)β .
»=o Γ(n + β

It is easy to see that

A(ff\ = y
VP; A/3 + 1) «"

x (2n + α + β
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We have

(9) .i(o) - Γ(a + β + 1) \ (a + β + 1)(1 - s)
Γ(β + 1) I (1 + s

x F ( a + β + 2)> (« + β + 3); α + 1, /3 + 1; 0, .

where A; = (s1/2 + s~1/2)/2 (see Bailey [2] p. 102). Ft is AppelΓs hyper-
geometric function of two variables defined by

Ft[a, β; 7, 7'; x, y] = Σ Σ

By the definition of F4, we have

(10) Ft\ ±(a + /3+2),±(a + ί3 + $);a + l,/3 + 1; 0, '-

, y «« + β + 2)/2).((« + £ + 8)/2)./r« y
«i£n /w ϊ (P -L- Λ\ \ £2 /

and further

/ID ((̂  + β + 2)/2)n((α + β + 3)/2)n = Γ(/9 + l)Γ(2n + α + β + 2)

Combining (9), (10) and (11) we get

A(β) = 1 — * y Γ(2r^ + fl + /9 + 2)/
(1 + s)α^+2n=o 22wn!Γ(^ + £ + 1) V

Now we rewrite the series in the righthand side using the function
/ΛC) introduced by Bessel which is defined by

(12) J,(ζ) = (-5-Y Σ - 7̂ ^ - r - C * negative real number .
V 2 / » = O T O Γ V n 1n

has the integral representation

cos(13) /v(ζ) = — Γ eccosr

π Jo

From definition of Γ-f unction and (12), it follows that

2k

By (13),
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(15) Iβ (*-t} = — [%'<"*>«>" cos βτdτ ,
\k / π Jo

for ί, r > 0 and β = 0, 1, 2, . From (14) and (15), it follows that

(16) A(β) = ^Γlr-J/i 2k . }' Π V<"*>cosT<+1

β-< cos
τr(l + s)α+2 1 (1 + s)r ) Jo Jo

Combining (8) and (16) we get

Λ^)-.Λ. +

+ I; ί
*=ι I (1 + s)r

But,

= 1 + 2 Σ s β / 2 cos ̂ 8β cos ySr
β=l

= 1 + Σ sβ/2 (cos /S(^ + r) + cos /9(^ - r))

= P^fl + r) + P^(θ - r) ,

and so by a change of variable it is clear that P8

(α)(z) has the integral
representation described in the Theorem 5. The proof of the Theorem 5
is complete.

COROLLARY 6. If f G LP(D, mα), p*zl9 then the Poίsson integral
Pg

(α) * / converges to f in the norm.

In fact, if / is a polynomial of R(£n, it is obvious. Since polynomials
of R(£% is dense in C(D), the Corollary holds for any / e L*(D, mα), p ^ 1.

4. A theorem of F. and M. Riesz type. In this section, we will give
a theorem of F. and M. Riesz type using Theorem 5.

Let μ e Ma(D). Then

μ ̂  Σ IE hn+β,nμ(n + β, n)R#βtn(z) + Σ hn>n+βμ(n, n + β)R&+β(z) } .
Λ=0 1^9=0 β=l )

From (4) and (7),

hn+βtn = 0(n2a+1 + n°βa+1) as n -> ™ or β-+ oo ,

and
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α + 1)ΓG8 + 1) '

where the constant C depends only on a. Therefore we have

*„+,.. I R%f..(z) I = OOβ"+«+V ) as £ — - .

Since ft.*,.. | R%β,n(z) \ = hn,n+β R(£n+β(z)\, both series

Σ hn+β,nβ(n + β, n)R%f,Λ(z) and Σ hn,n+ββ(n, n +
0 = 1

converge uniformly in the wide sense on the interior of D for n = 0, 1,
2, ....

THEOREM 7. Let a > 0 and μ be an element in Ma(D). Suppose
there exists an integer N such that

(17) β(m, n) = 0 for all m Λ n > N .

Then μ is absolutely continuous with respect to maj that is, in L\.

PROOF. Suppose that μ is an element in Ma(D) satisfying (17). Then
we have

/* ~ Σ \ΣhΛ+fi,nβ(n + β, n)R(

n

a^,n(z) + Σ hn}n+ββ(nf n + β)R™H+β(z)\ .
n=0 \β=0 f=ί I

Therefore there exists a continuous function f(z) such that

(18) f(z)

= Σ IΣ hn+β,nβ(n + β, n)R%f.Λ(z) + Σ hn,n+βμ(n, n + /S)Λi«i+ί(«)l
71=0 (0=0 /3=1 /

on the interior of D. By Fatou's lemma, we get

I f(z) I ώmα = I lim inf | P.(a}*μ(z) \ dma(z)
D JD β-»l

^ lim inf ί | P8

(a}*μ(z) \ dma(z) ,
•->! JD

and by Theorem 5, ||P8

( α )*/^|| ^ ||^||. Therefore we have

[ \ f ( z ) \ d m J i z ) ^ \ \ μ \ \ .
JD

It is clear that the coefficients of / coincide with those of μ since the
series (18) converges uniformly in the wide sence on D° and the system
{JRm^n} is orthogonal. Therefore, we get f=μ which completes the proof.

REMARK. If μ is an analytic measure on T, then β(m, n) = 0 for
m < n and μ is singular with respect to mα. So that our formulation
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will be natural in a sence.

The author wishes to thank Professor S. Igari for his many helpful
criticisms and suggestions.

Added in proof, 28 January 1976: We have learned after submitting
this paper that G. B. Folland gives a spherical harmonic expansion of
the Poisson-Szego kernel for the ball, Proc. Amer. Math. Soc. 47 (1975).
One would obtain Theorem 7 using his expansion formula.
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