DISCONTINUOUS GROUPS OF AFFINE TRANSFORMATIONS OF C^{3}

Kôji Uchida and Hisao Yoshimara

(Received January 30, 1975)

1. Introduction. Let G be a group of affine transformations acting freely and properly discontinuously on \boldsymbol{C}^{n}. Suppose that \boldsymbol{C}^{n} / G is compact. Let G_{0} be the subgroup of G consisting of translations, which is a normal subgroup of G. Moreover we assume that $H=G / G_{0}$ is a finite group. Enriques and Severi show that in the case of surfaces i.e., $n=2, H$ is a cyclic group of order $d, d=1,2,3,4,6,[1]$. In this paper in the case of $n=3$ we shall prove the following

Theorem. If H is cyclic, then $H \cong Z / d, d=1,2,3,4,5,6,8,10,12$. If H is not cyclic but abelian, then $H \cong \boldsymbol{Z} / d_{1} \oplus \boldsymbol{Z} / d_{2},\left(d_{1}, d_{2}\right)=(2,2),(2,4)$, $(2,6),(2,12),(3,3),(3,6),(4,4),(6,6)$. Finally, if H is not abelian, then H is D_{4} : a dihedral group of order 8.
2. Let g be an affine transformation of C^{n} i.e., $g x=A(g) x+a(g)$ where $x \in \boldsymbol{C}^{n}, A(g) \in G L(n, C), a(g) \in \boldsymbol{C}^{n}$. If g has no fixed points, then at least one eigenvalue of $A(g)$ has to be 1 . It is easy to see that if g has no fixed points, then g^{m} has no fixed points. We call $A(g)$ the holonomy part of g and A a holonomy representation.

Proposition 1. Let G be the group in Introduction. If K is an abelian subgroup of G with finite index, then G_{0} contains K i.e., G_{0} is the largest abelian subgroup of G with finite index.

Proof. As K is commutative, all the elements of K can be diagonalized simultaneously. Suppose $K-G_{0} \neq \varnothing$ and choose $g \in K-G_{0}$. Then $g x_{j}=\alpha_{j} x_{j}+a_{j}$, where $\alpha_{1}=1, \alpha_{n} \neq 1$. May assume $a_{n}=0$, because otherwise we consider $h g h^{-1}$ instead of g, h being a translation defined by ${ }^{t}\left(0, \cdots, 0, a_{n} /\left(\alpha_{n}-1\right)\right)$. Owing to the commutativity of K this implies that any $g^{\prime} \in K$ acts like $g^{\prime} x_{n}=\beta_{n} x_{n}$. Hence C^{n} / K is not compact, which contradicts the assumption $|G: K|<\infty$.

Corollary 1. Let G^{\prime} be the group similar to G. If $G \underset{\rightrightarrows}{\leadsto} G^{\prime}$ by an isomorphism φ, then $\varphi G_{0}=G_{0}^{\prime}$. Hence $H=G / G_{0} \leadsto H^{\prime}=G^{\prime} / G_{0}^{\prime}$.

Proof. $\varphi\left(G_{0}\right) \subset G_{0}^{\prime}$, and $\varphi^{-1}\left(G_{0}^{\prime}\right) \subset G_{0}$, by Proposition 1 .

Thus, G_{0} and H depend only on the group structure of G.
3. In what follows we assume $n=3$.

Proposition 2. The order of any element $\bar{g} \in H$ is one of 1, 2, 3, 4, 5, 6, 8, 10, 12. Hence the first part of Theorem is proved.

Proof. Let Ω denote the period matrix of the torus C^{3} / G_{0}. Since $g G_{0} g^{-1}=G_{0}$, it follows $A \Omega=\Omega N$, where A is the holonomy part of g and N an integral matrix. Eigenvalues of N are m-th roots of 1 . Since $N \in G L(6, \boldsymbol{Z}), \varphi(m) \leqq 4$. Hence $m=1,2,3,4,5,6,8,10,12$.

Remark 1. Det $G \subset C^{*}$ is a cyclic group isomorphic to $Z / d, d=1$, $2,3,4,5,6,12$. Actually, any element $\bar{g}=A(g)$ of order 10 is mapped to $\operatorname{det} A(g)$ whose order is 5 . The similar argument is available to exclude the case of order 8.

Let $G_{1}=\{g \in G ; \operatorname{det} A(g)=1\}$. Then the order m of $\bar{g}_{1} \in H_{1}=G_{1} / G_{0}$ is $1,2,3,4,6$ because $\varphi(m) \leqq 2$. Hence the order of H_{1} is $2^{a} 3^{b}$. Since H is an extention of H_{1} by a cyclic group $\operatorname{det} G \subset C^{*}$, we have

Proposition 3. H is a solvable group.
Lemma 1. If ${ }^{*} H=|H: 1|$ is a multiple of 5 , then ${ }^{*} H=2^{a} 3^{b} 5$.
Proof. By Remark 1, the cyclic group det G is $\boldsymbol{Z} / 5$. Hence by ${ }^{*} H=$ ${ }^{\#}\left(G / G_{1}\right) \cdot{ }^{*} H_{1}$, we obtain the result.

Proposition 4. H has no abelian subgroup of type (p, p, p). Moreover H_{1} has no abelian subgroup of type $(q, q), q=3,4,6$.

Proof. Let K be an abelian subgroup of H. Then $K=C_{1} \times C_{2} \times C_{3}$, where each C_{i} is a cyclic group acting on C^{3}. If K is of type (p, p, p), then each $C_{i} \cong \boldsymbol{Z} / p$. Hence, a general element of K has not 1 as its eigenvalue. If $K \subset H_{1}$ is of type (q, q), then we arrive at a contradiction by the similar consideration.

Corollary 2. If H is an abelian group, it is a cyclic group or a product of two cyclic groups.

Proposition 5. The 3 -Sylow group of H is $\boldsymbol{Z} / 3 \oplus \boldsymbol{Z} / 3$ or $\boldsymbol{Z} / 3$ or 1.
Proof. Let Q be the 3-Sylow group of H. Suppose Q is not an abelian group, then the holonomy representation $Q \subset G L(3, C)$ is irreducible. Take $A \in Z(Q)-\{1\}$. Then by Schur's lemma A is a scalar matrix $\lambda 1$ and hence any eigenvalue of A is not 1 , a contradiction. Thus Q is abelian. By Propositions 2 and 4 we obtain the result.

Lemma 2. If the 5-Sylow group of H is not trivial, the 3-Sylow group of H is trivial.

Proof. Since ${ }^{\ddagger} H=5 \cdot 2^{a} \cdot 3^{b}, b=0,1,2$, we have only to consider the two cases: (i) ${ }^{\#} H=5 \cdot 2^{a} \cdot 9$ and (ii) ${ }^{\#} H=5 \cdot 2^{a} \cdot 3$. In (i), ${ }^{\#} H_{1}=2^{a} 9$. Hence, H_{1} has a subgroup of order 9 , which is isomorphic to $\boldsymbol{Z} / 3 \oplus \boldsymbol{Z} / 3$. This contradicts Proposition 4. In (ii), recalling that H is solvable, there exists a subgroup of order 15 by Hall's theorem, which is $Z / 15$. This contradicts Proposition 2.

Lemma 3. Suppose that H is a non-abelian group and is generated by 2 elements $A(g), A(h)$ satisfying $A(g) A(h) A(g)^{-1}=A(h)^{-1}$. Then any element $A(k)$ of H can be represented as $\alpha(k)+\beta(k)$ where $\alpha(k) \in C^{*}$, $\beta(k) \in G L(2, C)$, by choosing a suitable base. Moreover we have $A(g)^{2}=1$, $\alpha(g) \neq 1$.

Proof. As the abelian group generated by $A(g)^{2}, A(h)$ has the index 2 in H, the degree of the irreducible representation of H is one or two. Hence H can be represented as above. Since H is non-abelian, $A(h)^{2} \neq 1$. On the other hand, $\beta(h)$ and $\beta(h)^{-1}$ have the same eigenvalue. Hence $\beta(h)$ does not have eigenvalue 1 and so $\alpha(h)=1$. Suppose $\alpha(g)=1$. Since $g x_{1}=x_{1}+a_{1}$ and $h x_{1}=x_{1}+b_{1}$ we have $(g h)^{2} g^{-2} x_{1}=x_{1}+2 b_{1}$. Hence $(g h)^{2} g^{-2} h^{-2} x_{1}=x_{1}$. The eigenvalue of $\beta\left((g h)^{2} g^{-2} h^{-2}\right)=\beta\left(h^{-2}\right)$ is not 1 , so $(g h)^{2} g^{-2} h^{-2}$ has a fixed point. Thus $\alpha(g) \neq 1$. Since $A(g)^{2} \in Z(H), \beta(g)^{2}$ is a scalar matrix. If $\alpha(g)^{2} \neq 1$ and $\beta(g)^{2}=1$, then $A\left(g^{2} h\right)-1$ is nondegenerate. If $\beta(g)^{2} \neq 1$, then $A(g)-1$ is non-degenerate. Hence $\alpha(g)^{2}=$ $\beta(g)^{2}=1$ so $A(g)^{2}=1$.

Lemma 4. If H is a non-abelian 2-group, it is D_{4}.
Proof. By choosing an appropriate base, $A(h) \in H$ can be represented as a direct sum of $\alpha(h) \in \boldsymbol{C}^{*}$ and $\beta(h) \in G L(2, C)$. The representation β is faithfull. In fact otherwise we have $A\left(h_{1}\right)=\alpha+1_{2}, \alpha \neq 1$ and $A\left(h_{2}\right)=$ $1+\beta 1_{2}, \beta \neq 1$ where $A\left(h_{2}\right) \in Z(H)-1$. Then $A\left(h_{1} h_{2}\right)-1$ is non-degenerate. Let $N=\{A(h) \in H ; \operatorname{det} \beta(h)=1\}$. Then N is a normal subgroup of H and the element $A(h)$ of order 2 in N satisfies $\beta(h)=-1_{2}$. Hence such an $A(h)$ is unique. In addition N does not contain the elements of order 8. It follows that N is either a quaternion group or a cyclic group of order at most 4. (Hall [2], Theorem 12.5.2). By Lemma 3, N is cyclic. Let $N=\langle y\rangle$. As H / N is cyclic, let x be the element of H which generates H / N. Then $H=\langle x, y\rangle$. Since N is a cyclic group of order at most 4 and H is a non-abelian group, we have a relation $x y x^{-1}=y^{-1}, y^{2} \neq 1$. Hence $y^{4}=1$ and by Lemma 3 we have $x^{2}=1$. Thus H is D_{4}.

Lemma 5. If H contains an element of order 5, it is a cyclic group of order 5 or 10.

Proof. At first note that ${ }^{\#} H$ is $5 \cdot 2^{a}$ and ${ }^{\#} H_{1}$ is 2^{a}. By Lemmas 1 and 4 we have $a \leqq 3$. Hence the 5-Sylow group of H is a normal subgroup $\langle x\rangle$. For any $y \in H_{1}, y x y^{-1}=x^{k}$. Hence $\operatorname{det} x=(\operatorname{det} x)^{k}$, so $k=1$. Consequently H is an abelian group. Since H cannot have an abelian subgroup of type $(2,10)$, it turns out to be $\boldsymbol{Z} / d, d=5,10$.

Proposition 6. H cannot contain a subgroup which is isomorphic to S_{3}.
Proof. Suppose that H contains such a group K. Since there is one and only one irreducible representation of degree two of S_{3}, we may assume that K is generated by

$$
\begin{aligned}
& A(g)=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad A(h)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) \\
& \omega: \text { a primitive cubic root of } 1 .
\end{aligned}
$$

Then $h g^{2} h^{-1} g(x)=x$ has a solution $x_{1}=a_{1} / 2, x_{2}=\lambda, x_{3}=\lambda+\omega^{2} a_{2}-\omega a_{3}$ where $a(g)={ }^{t}\left(a_{1}, a_{2}, a_{3}\right), \lambda \in C$.

Proposition 7. H cannot contain a subgroup K which is isomorphic to A_{4}.

Proof. Suppose H contains such a group K. Since A_{4} has the only one irreducible representation of degree 3 and three representations of degree 1 , we may assume that K can be generated by

$$
A(g)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad A(h)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Then $g h^{3} g^{-1} h$ has a fixed point.
Lemma 6. If ${ }^{\#} H=2^{a} 3^{b}$, then H is a product of the 2-Sylow group and the 3-Sylow group.

Proof. Use the induction on ${ }^{*} H$. Take a normal subgroup K such that $|H: K|=2$ or 3 . By induction hypothesis we have $K=M \times N$ where M is a 2 -group and N is a 3 -group, in which M and N are normal subgroups of H. In case $|H: K|=2$, choose $x \in H-K$ such that $x^{2^{m}}=1$ for some m. Then $\langle x, M\rangle$ is the 2-Sylow group of H. If $[x, N]=1$, then $H=\langle x, M\rangle \times N$. If $[x, N] \neq 1$, then we have an element $y \in N$ such that $y^{3}=1$ and $x y x^{-1}=y^{-1}$. By Lemma 3, we have $x^{2}=1$. Hence
$\langle x, y\rangle \cong S_{3}$. In case $|H: K|=3$, choose $x \in H-K$ such that $x^{3}=1$. If [x, M] $=1$, then $H=M \times\langle x, N\rangle$. If $[x, M] \neq 1$, then M is abelian, since Aut $D_{4} \cong D_{4}$. Hence $\langle x, M\rangle$ has a subgroup which is isomorphic to A_{4}.

Now we shall prove the last part of Theorem. If ${ }^{\#} H$ is a multiple of 5 , then H is cyclic by Lemma 5 . Hence it suffices to consider the case ${ }^{\#} H=2^{a} 3^{b}$. By Lemma $6, H=S \times Q$ where S is a 2 -group and Q a 3 -group. If S is non-abelian, then $S=D_{4}$ by Lemma 4. Hence S is generated by

$$
A(g)=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \text { and } A(h)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & i & 0 \\
0 & 0 & -i
\end{array}\right) \text { where } i=\sqrt{-1} .
$$

Suppose $Q \neq 1$. Hence $1 \neq A(k) \in Q$ can be written $\alpha+\beta+\beta, \alpha^{3}=\beta^{3}=1$. If $\beta \neq 1, A(g k)-1$ is non-degenerate and if $\alpha \neq 1, A(h k)-1$ is nondegenerate, a contradiction.

Example. Define g_{1}, \cdots, g_{7} as follows;

$$
\begin{aligned}
& A\left(g_{1}\right)=1+i+(-i), \quad a(g)={ }^{t}(1 / 4,0,0), \quad A\left(g_{2}\right)=-1+\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \\
& a\left(g_{2}\right)={ }^{t}(0,(1+i) / 2,0), \quad g_{3}(x)=\left(x_{1}+\alpha, x_{2}, x_{3}\right), \quad \operatorname{Im} \alpha \neq 0, \\
& g_{4}(x)=\left(x_{1}, x_{2}+1, x_{3}\right), \quad g_{5}(x)=\left(x_{1}, x_{2}+i, x_{3}\right), \\
& g_{6}(x)=\left(x_{1}, x_{2}+(1+i) / 2, x_{3}+(1+i) / 2\right), \\
& g_{7}(x)=\left(x_{1}, x_{2}+(1+i) / 2, x_{3}+(1-i) / 2\right) .
\end{aligned}
$$

Then the group $G=\left\langle g_{1}, \cdots, g_{7}\right\rangle$ satisfies the condition in Introduction and $H \cong D_{4}$.

In what follows we consider the case in which H is non-cyclic abelian. Let A and B generate H. By choosing an appropriate base we write $A=1+\alpha+\beta$ and $B=\gamma+\delta+\varepsilon$.

Lemma 7. If $\gamma \neq 1$, then (1) $\alpha=\delta=1$ or (2) $\beta=\varepsilon=1$ or (3) $A^{2}=B^{2}=1$.

Proof. By noting one of eigenvalues of each $A B, A^{2} B, A B^{-1}$ and $A B^{2}$ has to be 1 , we can check this easily.

Lemma 8. H does not contain an element A such that the order m of its eigenvalue is 8 or 12.

Proof. Suppose that H contains such an element A. Then by Lemma 7 it is generated by $A, B ; A=1+\alpha+\beta, B=1+\delta+\varepsilon$. Moreover we may assume $\varepsilon=1$, because B can be chosen in the kernel of the projection $\tau: H \rightarrow C^{*}, \tau\left(B^{\prime}\right)=\varepsilon^{\prime}$ where $B^{\prime}=\gamma^{\prime}+\delta^{\prime}+\varepsilon^{\prime}$. Then $\alpha \delta, \beta, \overline{\alpha \bar{\delta}}$,
$\bar{\beta}$ turn out to be primitive m-th roots of 1 . This is a contradiction. Similarly we can prove
Lemma 9. If H contains an element of order 12, then it is an abelian group of type $(12,2) \cong(6,4)$.

The group G such that G / G_{0} is non-cyclic but abelian can be constructed as follows: Let ξ and η be the primitive m and n-th root of 1 , respectively, where $\varphi(m) \leqq 2$ and $\varphi(n) \leqq 2$.

Set

$$
\mu=\left\{\begin{array}{l}
\xi \text { if } \varphi(m)=2 \\
i \text { if } \varphi(m)=1
\end{array} \text { and } \nu=\left\{\begin{array}{l}
\eta \text { if } \varphi(n)=2 \\
i \text { if } \varphi(n)=1
\end{array}\right.\right.
$$

Define g_{1}, \cdots, g_{6} as follows;

$$
\begin{array}{ll}
g_{1}(x)=\left(x_{1}+1 / m, \xi x_{2}, x_{3}\right), & g_{2}(x)=\left(x_{1}+i / n, x_{2}, \eta x_{3}\right), \\
g_{3}(x)=\left(x_{1}, x_{2}+1, x_{3}\right), & g_{4}(x)=\left(x_{1}, x_{2}+\mu, x_{3}\right), \\
g_{5}(x)=\left(x_{1}, x_{2}, x_{3}+1\right) \quad \text { and } & g_{6}(x)=\left(x_{1}, x_{2}, x_{3}+\nu\right) .
\end{array}
$$

Then $G / G_{0} \cong \boldsymbol{Z} / m \oplus \boldsymbol{Z} / n$.
Thus we have proved the whole part of Theorem.

References

[1] F. Enriques et F. Severi, Mémoire sur les surfaces hyperelliptiques, Acta Math., 32 (1909), 283-392; 33 (1910), 321-403.
[2] M. Hall, The theory of groups, Macmillan 1959.

Kôji Uchida

Mathematical Institute
Tôhoku University
Sendai, Japan
AND
Hisao Yoshihara
Department of Mathematics
Faculty of Science
Kyoto University
Kitashirakawa, Sakyo-ku
Kyoto, Japan

