ON A PROPERTY OF BRIESKORN MANIFOLDS

Shigeo Sasaki and Chen-Jung Hsu

(Received December 5, 1974)

1. Introduction. A Brieskorn manifold is by definition a $(2 n-1)$ dimensional submanifold $\Sigma^{2 n-\tau}\left(a_{0}, a_{1}, \cdots, a_{n}\right)$ in a complex space C^{n+1} with complex coordinates $z_{0}, z_{1}, \cdots, z_{n}$ which is defined by equations

$$
\begin{equation*}
z_{0}^{a_{0}}+z_{1}^{a_{1}}+\cdots+z_{n}^{a_{n}}=0 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{0} \bar{z}_{0}+z_{1} \bar{z}_{1}+\cdots+z_{n} \bar{z}_{n}=1 \tag{1.2}
\end{equation*}
$$

where $a_{0}, a_{1}, \cdots, a_{n}$ are positive integers.
Recently, K. Abe [1] introduced an almost contact structure for every Brieskorn manifold, i.e. a triple (ϕ, ξ, η) of a (1,1)-tensor field ϕ, a vector field ξ and a 1 -form η such that

$$
\begin{equation*}
\dot{\phi}^{2} X=-X+\eta(X) \xi, \quad \eta(\xi)=1 \tag{1.3}
\end{equation*}
$$

He studied the structure with special emphasis of the non-regularity of the 1-dimensional foliation generated by the vector field ξ in general.

A differentiable manifold $M^{2 n-1}$ is said to be a contact manifold if there exists a 1 -form ζ on $M^{2 n-1}$ such that

$$
\begin{equation*}
\zeta \wedge(d \zeta)^{n-1} \neq 0 \tag{1.4}
\end{equation*}
$$

and ζ is called a contact form. A contact manifold admits an almost contact structure closely related with the contact form.

The main result of this paper is the following
Main Theorem. Every Brieskorn manifold is a contact manifold.
It is well known that the set of all Brieskorn manifolds of dimension $2 n-1(n \geqq 2)$ contains all homotopy ($2 n-1$)-spheres which are boundaries of compact orientable parallelizable manifolds. [2] [3]

In $\S 2$, we shall find a candidate of a contact form on $\sum^{2 n-1}\left(a_{0}, a_{1}\right.$, \cdots, a_{n}). In §3, we shall prove the main theorem by showing that the candidate is really a contact form.

Besides the almost contact structure (ϕ, ξ, η) defined by K. Abe on $\sum^{2 n-1}\left(a_{0}, a_{1}, \cdots, a_{n}\right)$, we can naturally define an almost contact structure ($\phi^{\prime}, \xi^{\prime}, \eta^{\prime}$) on the same Brieskorn manifold as the latter is a hypersurface
of a Kählerian manifold. In §4, we give necessary and sufficient condition for the coincidence of two 1-dimensional foliations generated by the vector fields ξ and ξ^{\prime}.
2. To find a candidate of a contact form. We denote the hypersurface in C^{n+1} defined by (1.1) by V. If all $a_{\alpha} \geqq 2(\alpha=0,1, \cdots, n)$, then V has an isolated singularity at the origin O. We call $V-\{0\}$ a Brieskorn variety and denote it by $B^{2 n}\left(a_{0}, a_{1}, \cdots, a_{n}\right)$ or simply by $B^{2 n}$. The Brieskorn manifold $\sum^{2 n-1}\left(a_{0}, a_{1}, \cdots, a_{n}\right)$ is the intersection of $B^{2 n}$ with the unit hypersphere $S^{2 n+1}$. We denote it simply by $\Sigma^{2 n-1}$ too.

Let us consider the C-action on C^{n+1} defined by

$$
\begin{equation*}
z_{\alpha}^{\prime}=e^{m w / a_{\alpha}} z_{\alpha}, \tag{2.1}
\end{equation*}
$$

where m is the least common multiple of the integers $a_{0}, a_{1}, \cdots, a_{n}$ and w is a complex variable. We can easily see that the C-action fixes the origin O and transforms $B^{2 n}$ onto itself. Therefore, restricting w to its real part s and differentiating $z_{\alpha}^{\prime}(s)$ at $s=0$ we see that

$$
\begin{equation*}
u_{1}=\left(\frac{m}{a_{\alpha}} z_{\alpha}\right) \quad z \in B^{2 n} \tag{2.2}
\end{equation*}
$$

is a tangent vector of $B^{2 n}$ at z. In the same way, restricting w to its purely imaginary part it (t : real), we see that

$$
\begin{equation*}
u_{2}=i u_{1}=\left(\frac{m}{a_{\alpha}} i z_{\alpha}\right) \quad z \in B^{2 n} \tag{2.3}
\end{equation*}
$$

is a tangent vector of $B^{2 n}$ at z orthogonal to u_{1}. When we restrict w to it, (2.1) gives a S^{1}-action on C^{n+1} and the S^{1}-action leaves $B^{2 n}, S^{2 n+1}$ and so their intersection $\Sigma^{2 n-1}$. Therefore, if $z \in \Sigma^{2 n-1}$, the orbit of the point z under this action lies on $\Sigma^{2 n-1}$ and so u_{2} is a tangent vector of $\Sigma^{2 n-1}$.

Now, denoting the differential at a point z on $B^{2 n}$ by $d z$, we get by (1.1)

$$
\begin{equation*}
\sum \frac{\partial f}{\partial z_{\alpha}} d z_{\alpha}=0 \tag{2.4}
\end{equation*}
$$

where $f\left(z_{0}, z_{1}, \cdots, z_{n}\right)$ means the polynomial on the left hand side of (1.1). (2.4) is equivalent with $\langle\overline{\partial f / \partial z}, d z\rangle=0$, where the bracket means the inner product of two vectors $\overline{\partial f / \partial z}$ (the complex conjugate of $\partial f / \partial z$) and $d z$ in C^{n+1}. So, we have

$$
\mathfrak{R e}\left\langle\frac{\overline{\partial f}}{\partial z}, d z\right\rangle=0, \quad \Re e\left\langle i \frac{\overline{\partial f}}{\partial z}, d z\right\rangle=0 .
$$

These equations tell us that

$$
\begin{align*}
& v_{1} \equiv\left(\frac{\overline{\partial f}}{\partial z_{\alpha}}\right)=\left(a_{\alpha} \bar{z}_{\alpha}^{\alpha}-1\right), \tag{2.5}\\
& v_{2} \equiv\left(i \frac{\overline{\partial f}}{\partial z_{\alpha}}\right)=\left(i a_{\alpha} \bar{z}^{a_{\alpha}-1}\right)=i v_{1}
\end{align*}
$$

are normal vectors of $B^{2 n}$ at the point z ．We can easily show that u_{1} ， u_{2}, v_{1} and v_{2} are mutually orthogonal．

Let us restrict the point z to the one on $\Sigma^{2 n-1}$ ．Then the unit normal vector n of $S^{2 n+1}$ has z_{α} as its components．v_{1}, v_{2} and n are normals to $\Sigma^{2 n-1}$ in C^{n+1} ．

They are linearly independent．For if there is a relation of the form $n=\rho v_{1}+\sigma v_{2}$ ，then we have

$$
z_{\alpha}=(\rho+\sigma i) a_{\alpha} \bar{z}_{\alpha}^{\gamma_{\alpha}-1}
$$

which shows us that

$$
\sum \frac{z_{\alpha} \bar{z}_{\alpha}}{a_{\alpha}}=(\rho+\sigma i)\left(\sum \bar{z}_{\alpha}^{a_{\alpha}}\right)=0
$$

and so $z_{\alpha}=0$ ，contradictory to the fact that $z \in \Sigma^{2 n-1}$ ．We define λ, μ by

$$
\begin{equation*}
\lambda=-\frac{\mathfrak{\Re e}\left(\sum a_{\alpha} z_{\alpha}^{a}\right)}{\left\langle v_{1}, v_{1}\right\rangle}, \quad \mu=\frac{\mathfrak{I n}\left(\sum a_{\alpha} z_{\alpha}^{\alpha}\right)}{\left\langle v_{2}, v_{2}\right\rangle} . \tag{2.6}
\end{equation*}
$$

Then，we can easily verify that v_{1}, v_{2} and

$$
\begin{equation*}
v=n+\lambda v_{1}+\mu v_{2} \tag{2.7}
\end{equation*}
$$

are normal vectors of $\Sigma^{2 n-1}$ in C^{n+1} orthogonal with each other．Hence， v is a normal vector of $\sum^{2 n-1}$ which lies in the tangent space of $B^{2 n}$ at each point $z \in \Sigma^{2 n-1}$ ．
$B^{2 n}$ inherits the complex structure from that of C^{n+1} ．If we denote the Kählerian inner product by 《，》，we have

$$
\langle i v, d z\rangle=\Re \mathrm{e}\langle i v, d z\rangle
$$

On account of（2．4）and（2．5），this reduces to

$$
《 i v, d z\rangle=\frac{i}{2} \sum_{\alpha=0}^{n}\left(z_{\alpha} d \bar{z}_{\alpha}-\bar{z}_{\alpha} d z_{\alpha}\right) .
$$

The real 1－form ζ on $\sum^{2 n-1}\left(a_{0}, a_{1}, \cdots, a_{n}\right)$ defined by

$$
\begin{equation*}
\zeta=\frac{i}{2} \sum\left(z_{\alpha} d \bar{z}_{\alpha}-\bar{z}_{\alpha} d z_{\alpha}\right) \tag{2.8}
\end{equation*}
$$

i.e. the restriction of the real 1-form on C^{n+1} defined by the right hand side of (2.8) to $\Sigma^{2 n-1}$ is a candidate of a contact form for the Brieskorn manifold in consideration. The geometrical meaning of ζ is given as

$$
\begin{equation*}
\zeta=\langle\langle i v, d z\rangle=\langle\langle i n, d z\rangle \tag{2.9}
\end{equation*}
$$

3. A proof of the main theorem. We shall show that the 1 -form ζ on $\Sigma^{2 n-1}\left(a_{0}, a_{1}, \cdots, a_{n}\right)$ defined by (2.8) is a contact form.

From (2.8) we have

$$
\begin{equation*}
d \zeta=i \sum_{\alpha=0}^{n} d z_{\alpha} \wedge d \bar{z}_{\alpha} \tag{3.1}
\end{equation*}
$$

So, we get

$$
\begin{align*}
\zeta \wedge(d \zeta)^{n-1}= & \frac{i^{n}}{2}\left\{\sum_{\alpha=0}^{n}\left(z_{\alpha} d \bar{z}_{\alpha}-\bar{z}_{\alpha} d z_{\alpha}\right)\right\} \wedge\left(\sum_{\beta=0}^{n} d z_{\beta} \wedge d \bar{z}_{\beta}\right)^{n-1} \tag{3.2}\\
= & \frac{(n-1)!i^{n}}{2}\left[\left\{\sum_{\alpha=0}^{n}\left(z_{\alpha} d \bar{z}_{\alpha}-\bar{z}_{\alpha} d z_{\alpha}\right)\right\}\right. \\
& \wedge\left\{\sum_{\beta<r}\left(d z_{0} \wedge d \bar{z}_{0}\right) \wedge \cdots \wedge\left(\widehat{d z_{\beta} \wedge d \bar{z}_{\beta}}\right)\right. \\
& \left.\left.\wedge \cdots \wedge\left(\widehat{d z_{r} \wedge d \bar{z}_{r}}\right) \wedge \cdots \wedge\left(d z_{n} \wedge d \bar{z}_{n}\right)\right\}\right]
\end{align*}
$$

where roofs mean factors which should be omitted.
To show (1.4), we may first restrict ourselves on the domain D_{n} on $\sum^{2 n-1}$ where $z_{n} \neq 0$.

On D_{n} we have by (1.1)

$$
\begin{equation*}
d z_{n}=-\sum_{p=0}^{n-1} l_{p} d z^{p} \tag{3.3}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
l_{p}=\frac{t_{p}}{t_{n}}, \quad t_{\alpha}=a_{\alpha} z_{\alpha}^{a_{\alpha}-1} \tag{3.4}
\end{equation*}
$$

We denote the equation complex conjugate to (3.3) by ($\overline{3.3}$). On the other hand, we have by (1.2)

$$
\sum_{\alpha=0}^{n}\left(z_{\alpha} d \bar{z}_{\alpha}+\bar{z}_{\alpha} d z_{\alpha}\right)=0
$$

on $B^{2 n-1}$. Putting (3.3) and $\overline{(3.3)}$ into the last equation, we have

$$
\begin{equation*}
\sum_{p=0}^{n-1}\left(m_{p} d z_{p}+\bar{m}_{p} d \bar{z}_{p}\right)=0, \tag{3.5}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
m_{p}=\bar{z}_{p}-\bar{z}_{n} l_{p}, \quad \bar{m}_{p}=z_{p}-z_{n} \bar{l}_{p} . \tag{3.6}
\end{equation*}
$$

The functions $m_{0}, m_{1}, \cdots, m_{n-1}$ defined on D_{n} can not vanish simultaneously at any point of D_{n}. For, if $m_{0}, m_{1}, \cdots, m_{n-1}$ vanish simultaneously at a point z on D_{n}, we have

$$
\begin{equation*}
\frac{t_{0}}{\bar{z}_{0}}=\frac{t_{1}}{\bar{z}_{1}}=\cdots=\frac{t_{n}}{\bar{z}_{n}} \tag{3.7}
\end{equation*}
$$

which tells us that

$$
\frac{z_{0}^{a_{0}}}{\frac{z_{0} \bar{z}_{0}}{a_{0}}}=\frac{z_{1}^{a_{1}}}{\frac{z_{1} \bar{z}_{1}}{a_{1}}}=\cdots=\frac{z_{n}^{a_{n}}}{\frac{z_{n} \bar{z}_{n}}{a_{n}}}=\frac{\sum z_{\alpha}^{a_{\alpha}}}{\sum \frac{z_{\alpha} \bar{z}_{\alpha}}{a_{\alpha}}}=0
$$

by (1.1). This implies that z is the origin of C^{n+1}, contrary to our assumption that $z \in D_{n}$. Hence we may consider the subdomain $D_{n, n-1}$ in D_{n} such that

$$
\begin{equation*}
\bar{m}_{n-1} \neq 0 \tag{3.8}
\end{equation*}
$$

Then, we see that

$$
\begin{equation*}
d \bar{z}_{n-1}=-\frac{1}{\bar{m}_{n-1}}\left(\sum_{p=0}^{n-1} m_{p} d z_{p}+\sum_{k=0}^{n-2} \bar{m}_{k} d \bar{z}_{k}\right) \tag{3.9}
\end{equation*}
$$

holds good on $D_{n, n-1}$.
Now, if we pay attention to the domain $D_{n, n-1}$ on $\Sigma^{2 n-1}$, (3.2) can be written as

$$
\begin{equation*}
\zeta \wedge(d \zeta)^{n-1}=\frac{(n-1)!i^{n}}{2}(A+B+C) \tag{3.10}
\end{equation*}
$$

where A, B and C are $(2 n-1)$-forms defined as follows:
A : the sum of monomials each of which contains $z_{k} d \bar{z}_{k}-\bar{z}_{k} d z_{k}(k=$ $0,1, \cdots, n-2$) as its factor,
B : the sum of monomials each of which contains $z_{n-1} d \bar{z}_{n-1}-\bar{z}_{n-1} d z_{n-1}$ as its factor, and
C : the sum of monomials each of which contains $z_{n} d \bar{z}_{n}-\bar{z}_{n} d z_{n}$ as its factor.

We shall calculate A, B and C on $D_{n, n-1}$. For the convenience of printing, we put

$$
\begin{equation*}
\omega_{\alpha}=d z_{\alpha} \wedge d \bar{z}_{\alpha} \tag{3.11}
\end{equation*}
$$

(i) Calculation of A. If we fix the value of k, any non-zero monomial in (3.2) which contains $z_{k} d \bar{z}_{k}-\bar{z}_{k} d z_{k}$ does not contain $d z_{k} \wedge d \bar{z}^{k}$ as its factor. So A can be written as

$$
\begin{equation*}
A=A_{1}+A_{2}+A_{3}, \tag{3.12}
\end{equation*}
$$

where A_{1}, A_{2} and A_{3} are $(2 n-1)$-forms with the following additional properties:
A_{1} : the sum of monomials each of which contains $d z_{n-1} \wedge d \bar{z}_{n-1}$ as its factor, but does not contain $d z_{n} \wedge d \bar{z}_{n}$ as its factor,
A_{2} : the sum of monomials each of which contains $d z_{n} \wedge d \bar{z}_{n}$ as its factor, but does not contain $d z_{n-1} \wedge d \bar{z}_{n-1}$ as its factor,
A_{3} : the sum of monomials each of which contains both of $d z_{n-1} \wedge d \bar{z}_{n-1}$ and $d z_{n} \wedge d \bar{z}_{n}$ as its factors.

First, we see easily that

$$
A_{1}=\sum_{k=0}^{n-2} \omega_{0} \wedge \cdots \wedge \omega_{k-1} \wedge\left(z_{k} d \bar{z}_{k}-\bar{z}_{k} d z_{k}\right) \wedge \omega_{k+1} \wedge \cdots \wedge \omega_{n-1}
$$

Substituting (3.9) into the last equation, we get

$$
\begin{equation*}
A_{1}=\frac{-1}{\bar{m}_{n-1}} \sum_{k=0}^{n-2}\left(z_{k} m_{k}+\bar{z}_{k} \bar{m}_{k}\right) \Omega \tag{3.13}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
\Omega=\omega_{0} \wedge \omega_{1} \wedge \cdots \wedge \omega_{n-2} \wedge d z_{n-1} \tag{3.14}
\end{equation*}
$$

Next, we see that

$$
\begin{gathered}
A_{2}=\sum_{k=0}^{n-2} \omega_{0} \wedge \cdots \wedge \omega_{k-1} \wedge\left(z_{k} d \bar{z}_{k}-\bar{z}_{k} d z_{k}\right) \wedge \omega_{k+1} \\
\wedge \cdots \wedge \omega_{n-2} \wedge \omega_{n}
\end{gathered}
$$

Substituting (3.3) and ($\overline{3.3}$) into the last equation we get

$$
\begin{aligned}
A_{2}= & \sum_{k=0}^{n-2}\left\{-z_{k} l_{k} \bar{l}_{n-1} \omega_{0} \wedge \cdots \wedge \omega_{n-2} \wedge d \bar{z}_{n-1}\right. \\
& +z_{k} l_{n-1} \bar{l}_{n-1} \omega_{0} \wedge \cdots \wedge \omega_{k-1} \wedge d \bar{z}_{k} \wedge \omega_{k+1} \wedge \cdots \wedge \omega_{n-1} \\
& +\bar{z}_{k} l_{n-1} \bar{l}_{n-1} \omega_{0} \wedge \cdots \wedge \omega_{n-2} \wedge d z_{n-1} \\
& \left.-\bar{z}_{k} l_{n-1} \bar{l}_{n-1} \omega_{0} \wedge \cdots \wedge \omega_{k-1} \wedge d z_{k} \wedge \omega_{k+1} \wedge \cdots \wedge \omega_{n-1}\right\}
\end{aligned}
$$

By virtue of (3.9) this is transformed to

$$
\begin{align*}
A_{2}= & \frac{1}{\bar{m}_{n-1}} \sum_{k=0}^{n-2}\left\{z_{k} \bar{l}_{n-1}\left(l_{k} m_{n-1}-l_{n-1} m_{k}\right)\right. \tag{3.15}\\
& \left.+\bar{z}_{k} l_{n-1}\left(\bar{l}_{k} \bar{m}_{n-1}-\bar{l}_{n-1} \bar{m}_{k}\right)\right\} \Omega
\end{align*}
$$

Thirdly, A_{3} can be written as

$$
\begin{equation*}
A_{3}=A_{3}^{\prime}+A_{3}^{\prime \prime}, \tag{3.16}
\end{equation*}
$$

where we have put

$$
\begin{aligned}
A_{3}^{\prime}= & \sum_{k=0}^{n-2} \sum_{j=k+1}^{n-2} \omega_{0} \wedge \cdots \wedge \omega_{k-1} \wedge\left(z_{k} d \bar{z}_{k}-\bar{z}_{k} d z_{k}\right) \\
& \wedge \omega_{k+1} \wedge \cdots \wedge \hat{\omega}_{j} \wedge \cdots \wedge \omega_{n-2} \wedge \omega_{n-1} \wedge \omega_{n} \\
A_{3}^{\prime \prime}= & \sum_{k=0}^{n-2} \sum_{h=0}^{k-1} \omega_{0} \wedge \cdots \wedge \hat{\omega}_{h} \wedge \cdots \wedge \omega_{k-1} \\
& \wedge\left(z_{k} d \bar{z}_{k}-\bar{z}_{k} d z_{k}\right) \wedge \omega_{k+1} \wedge \cdots \wedge \omega_{n-2} \wedge \omega_{n-1} \wedge \omega_{n}
\end{aligned}
$$

Substituting (3.3) and ($\overline{3.3}$) into A_{3}^{\prime} we get

$$
\begin{aligned}
A_{3}^{\prime}= & \sum_{k=0}^{n-2} \sum_{j=k+1}^{n-2}\left\{-z_{k} l_{k} \bar{l}_{j} \omega_{0} \wedge \cdots \wedge \omega_{j-1} \wedge d \bar{z}_{j} \wedge \omega_{j+1} \wedge \cdots \wedge \omega_{n-1}\right. \\
& +z_{k} l_{j} \bar{l}_{j} \omega_{0} \wedge \cdots \wedge \omega_{k-1} \wedge d \bar{z}_{k} \wedge \omega_{k+1} \wedge \cdots \wedge \omega_{n-1} \\
& +\bar{z}_{k} l_{j} \bar{l}_{k} \omega_{0} \wedge \cdots \wedge \omega_{j_{-1}} \wedge d z_{j} \wedge \omega_{j+1} \wedge \cdots \wedge \omega_{n-1} \\
& \left.-\bar{z}_{k} l_{j} \bar{l}_{j} \omega_{0} \wedge \cdots \wedge \omega_{k-1} \wedge d z_{k} \wedge \omega_{k+1} \wedge \cdots \wedge \omega_{n-1}\right\}
\end{aligned}
$$

By virtue of (3.9), the last equation is transformed to

$$
\begin{equation*}
A_{3}^{\prime}=\frac{1}{\bar{m}_{n-1}} \sum_{k=0}^{n-2} \sum_{j=k+1}^{n-2}\left\{z_{i} \bar{l}_{j}\left(l_{i} m_{j}-l_{j} m_{i}\right)+\bar{z}_{i} l_{j}\left(\bar{l}_{i} \bar{m}_{j}-\bar{m}_{i} \bar{l}_{j}\right)\right\} \Omega \tag{3.17}
\end{equation*}
$$

In the same way $A_{3}^{\prime \prime}$ is transformed to

$$
A_{3}^{\prime \prime}=\frac{1}{\bar{m}_{n-1}} \sum_{k=0}^{n-2} \sum_{h=0}^{k-1}\left\{z_{k} \bar{l}_{h}\left(l_{k} m_{h}-l_{h} m_{k}\right)+\bar{z}_{k} l_{h}\left(\bar{l}_{k} \bar{m}_{h}-\bar{l}_{h} \bar{m}_{k}\right)\right\} \Omega
$$

However, this can be written also as

$$
A_{3}^{\prime \prime}=\frac{1}{\bar{m}_{n-1}} \sum_{h=0}^{n-2} \sum_{k=h+1}^{n-2}\left\{z_{k} \bar{l}_{h}\left(l_{k} m_{h}-l_{h} m_{k}\right)+\bar{z}_{k} l_{h}\left(\bar{l}_{k} \bar{m}_{h}-\bar{l}_{h} \bar{m}_{k}\right)\right\} \Omega .
$$

Changing indices h and k to k and j respectively we have

$$
\begin{equation*}
A_{3}^{\prime \prime}=\frac{1}{\bar{m}_{n-1}} \sum_{k=0}^{n-2} \sum_{j=k+1}^{n-2}\left\{z_{j} \bar{l}_{k}\left(l_{j} m_{k}-l_{k} m_{j}\right)+\bar{z}_{j} l_{k}\left(\bar{l}_{j} \bar{m}_{k}-\bar{l}_{k} \bar{m}_{j}\right)\right\} \Omega . \tag{3.18}
\end{equation*}
$$

So, by (3.15) ~ (3.17), we get

$$
\begin{align*}
A_{3}= & \frac{1}{\bar{m}_{n-1}} \sum_{k=0}^{n-2} \sum_{j=k+1}^{n-2}\left\{\left(l_{k} m_{j}-l_{j} m_{k}\right)\left(z_{k} \bar{l}_{j}-z_{j} \bar{l}_{k}\right)\right. \tag{3.19}\\
& \left.+\left(\bar{l}_{k} \bar{m}_{j}-\bar{m}_{k} \bar{l}_{j}\right)\left(\bar{z}_{k} l_{j}-\bar{z}_{j} l_{k}\right)\right\} \Omega .
\end{align*}
$$

(ii) Calculation of B. Clearly B can be written as

$$
\begin{equation*}
B=B_{1}+B_{2}, \tag{3.20}
\end{equation*}
$$

where B_{1} and B_{2} are ($2 n-1$)-forms with the following additional properties:
B_{1} : the monomial which contains $z_{n-1} d \bar{z}_{n-1}-\bar{z}_{n-1} d z_{n-1}$ as its factor,
but does not contain $d z_{n} \wedge d \bar{z}_{n}$ as its factor,
B_{2} : the sum of monomials each of which contains both of $z_{n-1} d \bar{z}_{n-1}-$ $\bar{z}_{n-1} d z_{n-1}$ and $d z_{n} \wedge d \bar{z}_{n}$ as its factors.

First, we see that

$$
B_{1}=\omega_{0} \wedge \omega_{1} \wedge \cdots \wedge \omega_{n-2} \wedge\left(z_{n-1} d \bar{z}_{n-1}-\bar{z}_{n-1} d z_{n-1}\right)
$$

Substituting (3.9) in it, we get

$$
\begin{equation*}
B_{1}=\frac{-1}{\bar{m}_{n-1}}\left(z_{n-1} m_{n-1}+\bar{z}_{n-1} \bar{m}_{n-1}\right) \Omega \tag{3.21}
\end{equation*}
$$

Next, we see that

$$
B_{2}=\sum_{k=0}^{n-2} \omega_{0} \wedge \cdots \wedge \hat{\omega}_{k} \wedge \cdots \wedge \omega_{n-2} \wedge\left(z_{n-1} d \bar{z}_{n-1}-\bar{z}_{n-1} d z_{n-1}\right) \wedge \omega_{n}
$$

Substituting (3.3) and ($\overline{3.3}$) into the last equation we have

$$
\begin{aligned}
B_{2}= & \sum_{k=0}^{n-2}\left\{z_{n-1} l_{k} \bar{l}_{k} \omega_{0} \wedge \cdots \wedge \omega_{n-2} \wedge d \bar{z}_{n-1}\right. \\
& -z_{n-1} \bar{l}_{k} l_{n-1} \omega_{0} \wedge \cdots \wedge \omega_{k-1} \wedge d \bar{z}_{k} \wedge \omega_{k+1} \wedge \cdots \wedge \omega_{n-1} \\
& -\bar{z}_{n-1} l_{k} \bar{l}_{k} \omega_{0} \wedge \cdots \wedge \omega_{n-2} \wedge d z_{n-1} \\
& \left.+\bar{z}_{n-1} l_{k} l_{n-1} \omega_{0} \wedge \cdots \wedge \omega_{k-1} \wedge d z_{k} \wedge \omega_{k+1} \wedge \cdots \wedge \omega_{n-1}\right\}
\end{aligned}
$$

By virtue of (3.9), this is transformed to

$$
\begin{align*}
B_{2}= & \frac{1}{\bar{m}_{n-1}} \sum_{k=0}^{n-2}\left\{z_{n-1} \bar{l}_{k}\left(l_{n-1} m_{k}-l_{k} m_{n-1}\right)\right. \tag{3.22}\\
& \left.+\bar{z}_{n-1} l_{k}\left(\bar{l}_{n-1} \bar{m}_{k}-\bar{l}_{k} \bar{m}_{n-1}\right)\right\} \Omega .
\end{align*}
$$

(iii) Calculation of C. Clearly, C can be written as

$$
\begin{equation*}
C=C_{1}+C_{2}, \tag{3.23}
\end{equation*}
$$

where C_{1} and C_{2} are $(2 n-1)$-forms with the following additional properties:
C_{1} : the monomial which contains $z_{n} d \bar{z}_{n}-\bar{z}_{n} d z_{n}$ as its factor, but does not contain $d z_{n-1} \wedge d \bar{z}_{n-1}$ as its factor:
C_{2} : the sum of monomials each of which contains both of $z_{n} d \bar{z}_{n}-$ $\bar{z}_{n} d z_{n}$ and $d z_{n-1} \wedge d \bar{z}_{n-1}$ as its factors.

First, we see that

$$
C_{1}=\omega_{0} \wedge \cdots \wedge \omega_{n-2} \wedge\left(z_{n} d \bar{z}_{n}-\bar{z}_{n} d z_{n}\right)
$$

Substituting (3.3) and (3.3) into the last equation, we have

$$
\begin{aligned}
C_{1}= & -z_{n} \bar{l}_{n-1} \omega_{0} \wedge \cdots \wedge \omega_{n-2} \wedge d \bar{z}_{n-1} \\
& +\bar{z}_{n} l_{n-1} \omega_{0} \wedge \cdots \wedge \omega_{n-2} \wedge d z_{n-1}
\end{aligned}
$$

By virtue of (3.9), this reduces to

$$
\begin{equation*}
C_{1}=\frac{1}{\bar{m}_{n-1}}\left(z_{n} \bar{l}_{n-1} m_{n-1}+\bar{z}_{n} l_{n-1} \bar{m}_{n-1}\right) \Omega \tag{3.24}
\end{equation*}
$$

Next, we see that

$$
\begin{aligned}
C_{2}=\sum_{k=1}^{n-2} \omega_{0} & \wedge \cdots \wedge \hat{\omega}_{k} \wedge \cdots \wedge \omega_{n-2} \\
& \wedge \omega_{n-1} \wedge\left(z_{n} d \bar{z}_{n}-\bar{z}_{n} d z_{n}\right)
\end{aligned}
$$

Substituting (3.3) and (3.3) into the last equation, we have

$$
\begin{aligned}
C_{2}= & \sum_{k=0}^{n-2}\left(z_{n} \bar{l}_{k} \omega_{0} \wedge \cdots \wedge \omega_{k-1} \wedge d \bar{z}_{k} \wedge \omega_{k+1} \wedge \cdots \wedge \omega_{n-1}\right. \\
& \left.-\bar{z}_{n} l_{k} \omega_{0} \wedge \cdots \wedge \omega_{k-1} \wedge d z_{k} \wedge \omega_{k+1} \wedge \cdots \wedge \omega_{n-1}\right)
\end{aligned}
$$

By virtue of (3.9), this is transformed to

$$
\begin{equation*}
C_{2}=\frac{1}{\bar{m}_{n-1}} \sum_{k=0}^{n-2}\left(z_{n} \bar{l}_{k} m_{k}+\bar{z}_{n} l_{k} \bar{m}_{k}\right) \Omega . \tag{3.25}
\end{equation*}
$$

Now, we define a function F on $D_{n, n-1}$ by

$$
\begin{equation*}
\zeta \wedge(d \zeta)^{n-1}=\frac{(n-1)!(i)^{n}}{2} F \Omega \tag{3.26}
\end{equation*}
$$

Then, by (3.10), (3.12), (3.20) and (3.23) we have

$$
\begin{align*}
F \Omega & =A+B+C \tag{3.27}\\
& =\left(A_{1}+B_{1}\right)+\left(C_{1}+C_{2}\right)+\left\{A_{3}+\left(A_{2}+B_{2}\right)\right\}
\end{align*}
$$

To show (1.4) on $D_{n, n-1}$, it is sufficient to show that $F \neq 0$. By (3.13), (3.21), (3.24) and (3.25), we have

$$
\begin{align*}
& A_{1}+B_{1}=-\frac{1}{\bar{m}_{n-1}} \sum_{p=0}^{n-1}\left(z_{p} m_{p}+\bar{z}_{p} \bar{m}_{p}\right) \Omega \tag{3.28}\\
& C_{1}+C_{2}=\frac{1}{\bar{m}_{n-1}}\left(z_{n} \sum_{p=0}^{n-1} \bar{l}_{p} m_{p}+\bar{z}_{n} \sum_{p=0}^{n-1} l_{p} \bar{m}_{p}\right) \Omega . \tag{3.29}
\end{align*}
$$

Similarly, we have by (3.15) and (3.22)

$$
\begin{aligned}
A_{2}+B_{2}= & \frac{1}{\bar{m}_{n-1}} \sum_{k=0}^{n-2}\left\{\left(l_{k} m_{n-1}-l_{n-1} m_{k}\right)\left(z_{k} \bar{l}_{n-1}-z_{n-1} \bar{l}_{k}\right)\right. \\
& \left.+\left(\bar{l}_{k} \bar{m}_{n-1}-\bar{l}_{n-1} \bar{m}_{k}\right)\left(\bar{z}_{k} l_{n-1}-\bar{z}_{n-1} l_{k}\right)\right\} \Omega .
\end{aligned}
$$

So, we get by (3.19)

$$
\begin{align*}
A_{3}+\left(A_{2}+B_{2}\right)= & \frac{1}{\bar{m}_{n-1}} \sum_{k=0}^{n-2} \sum_{j=k+1}^{n-1}\left\{\left(l_{k} m_{j}-l_{j} m_{k}\right)\left(z_{k} \bar{l}_{j}-z_{j} \bar{i}_{k}\right)\right. \tag{3.30}\\
& \left.+\left(\bar{l}_{k} \bar{m}_{j}-\bar{m}_{k} \bar{l}_{j}\right)\left(\bar{z}_{k} l_{j}-\bar{z}_{j} l_{k}\right)\right\} \Omega .
\end{align*}
$$

Putting (3.28) $\sim(3.30)$ into (3.27) and substituting m_{p}, \bar{m}_{p} by (3.6), we get

$$
\begin{aligned}
\frac{1}{2} F= & -\sum_{p=0}^{n-1} z_{p} \bar{z}_{p}+\sum_{p=0}^{n-1} z_{p} l_{p} \bar{z}_{n}+\sum_{p=0}^{n-1} \bar{z}_{p} \bar{l}_{p} z_{n}-\sum_{p=0}^{n-1} l_{p} \bar{l}_{p} z_{n} \bar{z}_{n} \\
& -\sum_{k=0}^{n-2} \sum_{j=k+1}^{n-1}\left(z_{k} \bar{l}_{j}-z_{j} \bar{l}_{k}\right)\left(\bar{z}_{k} l_{j}-\bar{z}_{j} l_{k}\right) .
\end{aligned}
$$

By virtue of (3.4), this is transformed to

$$
\begin{aligned}
\frac{1}{2} t_{n} \bar{t}_{n} F= & -\sum_{p=0}^{n-1}\left|t_{n} \bar{z}_{p}\right|^{2}-\sum_{p=0}^{n-1}\left|\bar{t}_{p} z_{n}\right|^{2}+2 \sum_{p=0}^{n-1} \mathfrak{R e}\left(\left(t_{n} \bar{z}_{p}\right) \cdot\left(\bar{t}_{p} z_{n}\right)\right) \\
& -\sum_{k=0}^{n-2} \sum_{j=k+1}^{n-1}\left|z_{k} \bar{t}_{j}-z_{j} \bar{t}_{k}\right|^{2} \\
= & -\sum_{p=0}^{n-1}\left\{\mathfrak{R e}\left(t_{n} \bar{z}_{p}\right)-\Re \mathfrak{R e}\left(\bar{t}_{p} z_{n}\right)\right\}-\sum_{p=0}^{n-1}\left\{\Im \mathfrak{m}\left(t_{n} \bar{z}_{p}\right)\right. \\
& \left.+\mathfrak{J m}\left(\bar{t}_{p} z_{n}\right)\right\}^{2}-\sum_{k=0}^{n-2} \sum_{j=k+1}^{n-1}\left|z_{k} \bar{t}_{j}-z_{j} \bar{t}_{k}\right|^{2} .
\end{aligned}
$$

Thus, we see that $F \leqq 0$ on $D_{n, n-1}$.
We want to show that F does not vanish at any point on $D_{n, n-1}$ by reduction ad absurdum. For the purpose we assume that $F=0$. Then, we have

$$
\mathfrak{R e}\left(t_{n} \overline{\bar{z}}_{p}\right)=\mathfrak{R e}\left(\bar{t}_{p} z_{n}\right), \quad \mathfrak{J m}\left(t_{n} \overline{\bar{z}}_{p}\right)=-\mathfrak{I m}\left(\bar{t}_{p} z_{n}\right)
$$

for $p=0,1, \cdots, n-1$ and

$$
z_{k} \bar{t}_{j}=z_{j} \bar{t}_{k}
$$

for $k=0,1, \cdots, n-2$ and $j=k+1, \cdots, n-1$. As we can easily see, these relations are equivalent with the conjugate of (3.7). So, in the same way as the proof that $m_{0}, m_{1}, \cdots, m_{n-1}$ do not vanish simultaneously, we arrive at a contradiction. Therefore, $F<0$ and so (1.4) holds on $D_{n, n-1}$.

Quite the same argument can be performed for other domains $D_{n, k}(k=0,1, \cdots, n-2)$ similarly defined as $D_{n, n-1}$. So, (1.4) holds on D_{n}.

In the same way, we can show that (1.4) holds for domains D_{0}, D_{1}, \cdots, D_{n-1} on $\Sigma^{2 n-1}$ similary defined as D_{n}. Consequently, we can conclude that (1.4) holds over the whole $\Sigma^{2 n-1}$. This completes the proof.
N.B. It will be an interesting problem to study whether odd dimen-
sional homotopy spheres which are not boundaries of compact orientable parallelisable manifolds are contact manifolds or not.
4. A characterization of Brieskorn manifolds with $a_{0}=a_{1}=\cdots=a_{n}$. The almost contact structure (ϕ, ξ, η) on $\Sigma^{2 n-1}\left(a_{0}, a_{1}, \cdots, a_{n}\right)$ introduced by K. Abe has the property that $\xi=u_{2}$. Making use of the fact that the vector field u_{2} generates a 1-dimensional foliation each of whose orbits is a closed curve, he proved that his almost contact structure (the foliation) is in general non-regular.

On the other hand, we can introduce naturally an almost contact structure ($\phi^{\prime}, \xi^{\prime}, \eta^{\prime}$) on the same Brieskorn manifold as follows:

$$
\begin{gathered}
\phi^{\prime} X=J X-\left\langle J X, n_{1}\right\rangle n_{1}, \\
\xi^{\prime}=J n_{1}, \quad \eta^{\prime}(X)=\left\langle\xi^{\prime}, X\right\rangle,
\end{gathered}
$$

where J is the complex structure of the Brieskorn variety $B^{2 n}, X$ is an arbitrary tangent vector of $\Sigma^{2 n-1}$ and $n_{1}=v /\langle v, v\rangle$. Thus, we have interest to study the condition under which two foliations generated by the vector fields ξ and ξ^{\prime} coincide.

Theorem. The two vector fields ξ and ξ^{\prime} generate the same 1-dimensional foliation in $\Sigma^{2 n-1}\left(a_{0}, a_{1}, \cdots, a_{n}\right)$ if and only if $a_{0}=a_{1}=\cdots=a_{n}$.

Proof. The two foliations coincide if and only if the vector fields $i v$ and u_{2} on $\Sigma^{2 n-1}$ are linearly dependent at each point of $\Sigma^{2 n-1}$ and so they coincide if and only if the vector field u_{1} is normal to $\Sigma^{2 n-1}$. Thus, the condition for the coincidence is that

$$
\mathfrak{R e}\left\langle u_{1}, X\right\rangle=0
$$

is satisfied for any X which satisfies

$$
\langle\overline{\partial f}, X\rangle=0, \quad \Re \in\langle z, X\rangle=0
$$

Considering a special point $z^{\prime}=\left(z_{0}, z_{1}, 0, \cdots, 0\right)$, and X such that $X_{0} \neq 0$, we can easily deduce from these equations that $a_{0}=a_{1}$. In the same way, we get $a_{i}=a_{j}(i \neq j) i=0,1, \cdots, n$.
q.e.d.
N.B. 1. As a corollary of the last theorem, we can see that the two almost contact structures (ϕ, ξ, η) and ($\phi^{\prime}, \xi^{\prime}, \eta^{\prime}$) defined on the same Brieskorn manifold $\sum^{2 n-1}\left(a_{0}, a_{1}, \cdots, a_{n}\right)$ coincide if and only if $a_{0}=a_{1}=$ $\cdots=a_{n}$.
N.B. 2. Brieskorn manifold $\sum^{2 n-1}$ with $a_{0}=a_{1}=\cdots=a_{n}$ is a principal circle bundle over the $(2 n-2)$-dimensional manifold (1.1) in $C P^{n}$ and
($\phi^{\prime}, \xi^{\prime}, \eta^{\prime}$) with the induced Riemannian metric g^{\prime} from C^{n+1} is a normal contact metric structure.

References

[1] K. Abe, Some examples of non-regular almost contact structure on exotic spheres, (to appear.)
[2] E. Brieskorn, Beispiele zur Differential-geometrie von Singularitäten, Inventiones Math. 2 (1966), 1-14.
[3] E. Brieskorn and A. Van de Ven, Some complex structures on product of homotopy spheres, Topology 7 (1968), 389-393.

Mathematical Institute
Tôhoku University
Sendai, Japan
AND
Department of Mathematics
Kansas State University
Manhattan, Kansas 66502
U.S.A

