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1. Introduction. A Brieskorn manifold is by definition a (2n — 1)-
dimensional submanif old Σ2n~τ(a0, a19 , an) in a complex space Cn+1 with
complex coordinates zot zί9 , zn which is defined by equations

(1.1) z0

α° + z?1 + + zl« = 0

and

(1.2) ZOZQ + *& + + znzn = 1 ,

where α0, a19 •••, an are positive integers.
Recently, K. Abe [1] introduced an almost contact structure for every

Brieskorn manifold, i.e. a triple (φ, £, η) of a (1, l)-tensor field φ, a vector
field ξ and a 1-form η such that

(1.3) φ*X= -X+η(X)ξ, η(ξ) = l .

He studied the structure with special emphasis of the non-regularity of
the 1-dimensional foliation generated by the vector field ξ in general.

A differentiate manifold M2n~* is said to be a contact manifold if
there exists a 1-form ζ on M2n~l such that

(1.4) CΛW 1- 1^ 0

and ζ is called a contact form. A contact manifold admits an almost
contact structure closely related with the contact form.

The main result of this paper is the following

MAIN THEOREM. Every Brieskorn manifold is a contact manifold.

It is well known that the set of all Brieskorn manifolds of dimension
2n — 1 (n ̂  2) contains all homotopy (2n — l)-spheres which are boundaries
of compact orientable parallelizable manifolds. [2] [3]

In § 2, we shall find a candidate of a contact form on Σ2n~\aQ, aίf

•• ,an). In §3, we shall prove the main theorem by showing that the
candidate is really a contact form.

Besides the almost contact structure (φ, ξ, η) defined by K. Abe on
Σ2n~l(a,Q, alt •• ,αj, we can naturally define an almost contact structure
(Φ'> £', rf) on the same Brieskorn manifold as the latter is a hypersurface
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of a Kahlerian manifold. In § 4, we give necessary and sufficient condition
for the coincidence of two 1-dimensional foliations generated by the vector
fields ξ and f.

2. To find a candidate of a contact form. We denote the hyper-
surface in Cn+1 defined by (1.1) by V. If all aa ̂  2 (a = 0,1, , n),
then V has an isolated singularity at the origin 0. We call V — {0} a
Brieskorn variety and denote it by B2n(a0, aL, •••,»») or simply by B2n.
The Brieskorn manifold Σ2n~l(aQ, a19 , an) is the intersection of B2n with
the unit hypersphere S2n+1. We denote it simply by Σ2n~l too.

Let us consider the C-action on Cn+1 defined by

(2.1) £ = emw/a«za ,

where m is the least common multiple of the integers α0, aL, •••, an and
w is a complex variable. We can easily see that the C-action fixes the
origin 0 and transforms B2n onto itself. Therefore, restricting w to its
real part s and differentiating z'a(s) at s = 0 we see that

(2.2)

is a tangent vector of B2n at z. In the same way, restricting w to its
purely imaginary part it (t: real), we see that

(2.3) = iUl = (ΊUL iz\ z e B2n

\aa /

is a tangent vector of B2n at z orthogonal to uλ. When we restrict w to
it, (2.1) gives a Section on CTO+i and the SP-action leaves B2n, S2n+l and
so their intersection Σ2n~l. Therefore, if z e Σ2n~\ the orbit of the point
z under this action lies on Σ2n^ and so uz is a tangent vector of Σ2n~l.

Now, denoting the differential at a point z on B2n by dz, we get by
(1.1)

(2.4) Σf^ = 0 ,
dza

where f ( z Q , z ί f •••,£„) means the polynomial on the left hand side of

(1.1). (2.4) is equivalent with (dfjdz, dz} = 0, where the bracket means

the inner product of two vectors df/dz (the complex conjugate of df/dz)
and dz in Cn+l. So, we have

- , dz = 0 , i -, dz = 0 .
dz / \ dz
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These equations tell us that

(2.5) v, = (J£) - (aaz««-1) ,

are normal vectors of B2n at the point 2. We can easily show that uί9

u2, Vj. and vz are mutually orthogonal.
Let us restrict the point z to the one on Σ2n~l. Then the unit normal

vector n of S2n+ί has za as its components. v19 vz and n are normals to
J2n-l in ,̂+1^

They are linearly independent. For if there is a relation of the form
n = pVi + tfΐλj, then we have

zα = (p + σϊ)aazl«-^ ,

which shows us that

and so 2α = 0, contradictory to the fact that z e Σ2n l. We define \, μ
by

(2.6) \- -

Then, we can easily verify that vl9 v2 and

(2.7) v = n + \vt + μv2

are normal vectors of Σ2n~l in Cn+1 orthogonal with each other. Hence,
v is a normal vector of Σ2n~l which lies in the tangent space of B2n at
each point z e J?2*"1.

52Λ inherits the complex structure from that of CΛ+1. If we denote
the Kahlerian inner product by {(,}}, we have

((iv, dz)) = 3ΐe<ίv, dz) .

On account of (2.4) and (2.5), this reduces to

((iv, dz}} = 4 Σ (Zadza - zadza) .
2 «=0

The real 1-form ζ on Σ**-1^ aί9 , an) defined by

(2.8) ζ - Σ M*α
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i.e. the restriction of the real 1-form on Cn+1 defined by the right hand
side of (2.8) to ΣZn~l is a candidate of a contact form for the Brieskorn
manifold in consideration. The geometrical meaning of ζ is given as

(2.9) ζ = ((iv, dz)} = ((in, dz}) .

3. A proof of the main theorem. We shall show that the 1-form
ζ on ΣZn~\a,Q, aif , an) defined by (2.8) is a contact form.

From (2.8) we have

(3.1) dζ = iΣdzaΛdza.
α=0

So, we get

(3.2) ζ Λ (CT1 = -£) Σ (*«dza - M*.)} Λ (Σ dzβ Λ d

Λ JΣ (dz* Λ dzQ) Λ Λ (dzβ Λ
i^<r

Λ (dzr Λ ώ^r) Λ Λ (dzn Λ (Z2») j | ,Λ

where roofs mean factors which should be omitted.
To show (1.4), we may first restrict ourselves on the domain Dn on

P""1 where zn Φ 0.
On Dn we have by (1.1)

(3.3) dzn = -Σlpdzp ,
p=0

where we have put

(3.4) lp = ̂  , ίβ = αβa;;«-1 .
tn

We denote the equation complex conjugate to (3.3) by (3.3). On the other
hand, we have by (1.2)

n

Σ (zadza + zadza) = 0
α=0

on B2n~\ Putting (3.3) and (Ό) into the last equation, we have

n—l _

(3.5) Σ (mpdzp + mpdZp) = 0 ,
3>=0

where we have put
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(3.6) mp = zp - znlp , mp = zp - zjp .

The functions m0, m^ , mn.γ defined on Dn can not vanish simultaneously
at any point of Dn. For, if m0, mί9 •••, mΛ_1 vanish simultaneously at a
point z on Dn, we have

(3.7)

which tells us that

α0 «ι α* αα

by (1.1). This implies that z is the origin of CΛ+1, contrary to our
assumption that z e Dn. Hence we may consider the subdomain £>„,„_! in
Dn such that

(3.8) mn_, Φ 0 .

Then, we see that

(3.9) dzn_, = -̂ ί

holds good on Dntn^.
Now, if we pay attention to the domain Dn>n^ on Σ2n~\ (3.2) can be

written as

(3.10) ζ Λ (ώζ)*-1 = - (A + B + C)
Z

where A, -B and C are (2n — l)-forms defined as follows:
A: the sum of monomials each of which contains zkdzk — zkdzk (k =

0,1, , n — 2) as its factor,
B: the sum of monomials each of which contains zn-$zn-^ — zΛ_ιώzΛ-ι

as its factor, and
C: the sum of monomials each of which contains zndzn — zndzn as its

factor.
We shall calculate A, B and C on Dn>n_i. For the convenience of

printing, we put

(3.11) ωa = dzaf\dza .

( i ) Calculation of A. If we fix the value of k, any non-zero
monomial in (3.2) which contains zkdzk — zkdzk does not contain dzk Λ dzk

as its factor. So A can be written as
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(3.12) A = Λ + A2 + A 3,

where A19 A2 and A3 are (2n — l)-forms with the following additional
properties:

Aj the sum of monomials each of which contains dzn_^ Λ dz«-ι as
its factor, but does not contain dznAdzn as its factor,

A2: the sum of monomials each of which contains dzn Λ dzn as its
factor, but does not contain dzn^ Λ d^-i as its factor,

A3: the sum of monomials each of which contains both of dzn^ Λ ώ^-i
and dzn Λ dzn as its factors.

First, we see easily that
n—2 __

-Ai = Σ ωo Λ Λωk-ί Λ (zkdzk — zkdzk) Λ ωk+1 Λ Λ ωw_x .

Substituting (3.9) into the last equation, we get

(3.13) A^-^Σ

where we have put

(3.14) Ω = ω0 Λ α^ Λ Λ ωu_2 Λ ώ^Λ_ι .

Next, we see that
n-2 _ _

A2 = Σ ω0 Λ Λ ω^ Λ («fcώfc - zkdzk) Λ ωfc+1
λ=0

Λ Λ ωn-2 Λ ωΛ .

Substituting (3.3) and (3.3) into the last equation we get
n-2 _ _

A2 = Σ (-Zkhln-^o Λ Λ ωΛ_2 Λ dzn_,
k = Q

+ zkln-Jn-iMo Λ Λ ω^ Λ dzk A ωfc+1 Λ Λ

+ «*Z—J»-ift>o Λ Λ ωn-2 Λ ώ^_!

- «Λ-A-i<w0 Λ Λ ωfc-ι Λ ̂ fc Λ ωfe+1 Λ Λ

By virtue of (3.9) this is transformed to

(3.15) A2 = A- Σ {«J
Wfcn-l A=0

+ «*Z»-ι(ϊ't

Thirdly, A3 can be written as

(3.16) Az =

where we have put
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n_2 n— 2

A[ = Σ Σ ω0 Λ Λ ωk-ι Λ (zkdzk - zkdzk)fe=o j=k+ι

Λ ωfc+1 Λ Λ &s Λ Λ ωw_2 Λ (On_, Λ ωπ ,
n— 2 fe— 1

-A" = Σ Σ <*>0 Λ Λ ωh Λ Λ (Ok^fc=0 h=0

Λ (Mz* - zkdzk) Λ ωfc+1 Λ Λ ωu_2 Λ (θn_, Λ α>n .

Substituting (3.3) and (O) into A[ we get

4̂.3 = Σ Σ {-zjJjCύi Λ Λ ω, _1 Λ dzs Λ ωy+1 Λ Λ ω,.,
fc=0 j = fc + l

+ ZkljTjMo Λ Λ ω^ Λ d^ Λ ωk+ι Λ Λ Λ>W-I

+ zklϊϊkωQ Λ Λ ω^ Λ d«, Λ α>,+1 Λ Λ <»»_!

— ZkljljCOo Λ Λ ^A-I Λ cί^fc Λ ωfc+1 Λ Λ ωw_J .

By virtue of (3.9), the last equation is transformed to

(3.17) A!, = -̂ ί-Σ Σ {zJAlimj ~ km*) + Ztl&mj - mJ^Ω .

In the same way A" is transformed to

A" = - — Σ Σ {zjh(lkmh - lhmk) + zklh(Tkmh - Thmk)}Ω .

However, this can be written also as

A" = - — Σ Σ {zjh(lkmh - lhmk) + zklh(ϊkmh - ϊhmk)}Ω .
mw_! h=ok=h+ι

Changing indices h and k to k and j respectively we have

(3.18) A? = -r^

So, by (3.15) - (3.17), we get

(3.19) As = ̂ ί-Σ Σ2 {(i»my - Ijm^zjj - zsϊk)

( i i ) Calculation of 5. Clearly .B can be written as

(3.20) B = B, + B2,

where B± and B2 are (2n — l)-f orms with the following additional proper-
ties:

BI the monomial which contains zn^dz^^ — z^dz^ as its factor,
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but does not contain dzn Λ dzn as its factor,
B2: the sum of monomials each of which contains both of zn^dzn^ —

z^dZn-! and dzn Λ dzn as its factors.
First, we see that

B1 = ω0 Λ ω, Λ Λ ω,_2 Λ (zn.,dzn_, - z^dz^).

Substituting (3.9) in it, we get

(3.21) B, = -̂ ί (z^m^ + z^m^Ω .
™»-ι

Next, we see that
n—2

#2 = Σ ω0 Λ Λ ώfc Λ Λ ωw_2 Λ (zn_^dzn_, - zn_,dzn_,) Λ ωn .

Substituting (3.3) and (3.3) into the last equation we have
Λ-2 _

) Λ Λ (t)n-2 Λ dzn_i

!>o Λ Λ (*>k-ι Λ ώzfc Λ o)k+ί Λ Λ ω,

Λ ωw_2 Λ dzn_,

+ zn-J>Jn-i<*>Q Λ Λ (*)k-ι Λ da;fc Λ ωfc+1 Λ Λ ω,

By virtue of (3.9), this is transformed to
n-2 _

(3.22) B2 =

(iii) Calculation of C. Clearly, C can be written as

(3.23) C - C, + C2 ,

where Ci and C2 are (2w — l)-f orms with the following additional proper-
ties:

CΊ: the monomial which contains zndzn — zndzn as its factor, but does
not contain dzn^ Λ dzn_γ as its factor:

C2: the sum of monomials each of which contains both of zndzn —
zndzn and dzn_^ Λ dzn^ as its factors.

First, we see that

C, = ω0 Λ Λ ωn_z Λ (zndzn - zndzn) .

Substituting (3.3) and (3.3) into the last equation, we have

CΊ = -zj^ωo Λ Λ o)n_2 Λ dzn_,

+ Znln-^O Λ Λ «>n-2 Λ ώ^n-!
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By virtue of (3.9), this reduces to

/Q O Λ\ Γ* •*• //v T ΛΛΛ I ^7 7 ^λ \Π{ό.Δ**) LΊ == -33 \Zntn_iτιln^.ί -j- Znlfn_ί17ln_ί)ύά

Next, we see that

C2 = Σ ω0 Λ Λ ωk Λ A ωw_2
k=ί

Λ <*>n-ι Λ (zndzn - zndzn) .

Substituting (3.3) and (3.3) into the last equation, we have

Λ-2 _ __

C2 = Σ (znlkω<> Λ Λ ωk-ι Λ dzk Λ ωfc+1 Λ Λ ω^
fc=0

- znlkω0 Λ Λ ω !̂ Λ ώ^fc Λ ωh+ί Λ Λ ω .̂O

By virtue of (3.9), this is transformed to

(3.25) C2 = — ί-- Σ(znΐkmk + znlkmk)Ω .
mn_, *=o

Now, we define a function F on DΛtn^ by

(3.26) ζ Λ

Then, by (3.10), (3.12), (3.20) and (3.23) we have

(3.27) FΩ = A + B + C

= (Λ + Bt) + (C, + C2) + {A3 + (A,

To show (1.4) on £)»,»_!, it is sufficient to show that F φ 0. By (3.13),
(3.21), (3.24) and (3.25), we have

(3.28) A, + B, = -^— Σ,(zpmp + zpmf)Ω ,

(3.29) C, + C2 = -J^- (
mn_! \

Similarly, we have by (3.15) and (3.22)

1 n-2

+ zn Σ

A2 + B2 =

So, we get by (3.19)
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(3.30) A, + (A2 + B2) = -A- Σ Σ {(Z*m/ - Ijm^zjj - Zjik)
m-k=Q J=k+l

Putting (3.28) ~ (3.30) into (3.27) and substituting mp, mp by (3.6), we
get

•I tt—1 n—l n—l _ n—l _ _

n—2 n—l _ _
•̂i -̂ι / 7 7 \(~£ 7 ^ 7 \

By virtue of (3.4), this is transformed to

1 _ n—l τι—1 _ n—l _

f + T? — V l / ^ I 2 V I / ^ I 2 4 - 9 V ^Rί>^/ ? ^ . (t ? \\
— Inln F — 2-J \ ̂ nZp | — 2-J I tpZn \ ~Γ Δ 2-1 ^^{.V^n^p) \lpZn))
£ p=0 p=0 p=0

n—2 n—l
_ V V l - y f — o ' F l 2

2Lj ^Lί \ "k^S ^3Lk\

+ Sm(ίp2n)}
2 - Σ Σ I zkt} - z,tt I2 .

fc=0 j = A; + l

Thus, we see that F ^ 0 on Dn>n_,.
We want to show that F does not vanish at any point on /)»,»_,. by

reduction ad absurdum. For the purpose we assume that F = 0. Then,
we have

for p = 0, 1, •••,% — ! and

for k = 0, 1, , n — 2 and j" = fc + 1, , n — 1. As we can easily see,
these relations are equivalent with the conjugate of (3.7). So, in the
same way as the proof that m0, mlf , mn_l do not vanish simultaneously,
we arrive at a contradiction. Therefore, F < 0 and so (1.4) holds on

A..-I.
Quite the same argument can be performed for other domains

DΛ,k(k = 0, 1, , n — 2) similarly defined as Dn>n_v. So, (1.4) holds on Dn.
In the same way, we can show that (1.4) holds for domains D0, Dίf

•• , £)„_! on J2*"1 similary defined as Dn. Consequently, we can conclude
that (1.4) holds over the whole Σ2n~l. This completes the proof.

N.B. It will be an interesting problem to study whether odd dimen-
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sional homotopy spheres which are not boundaries of compact orientable
parallelisable manifolds are contact manifolds or not.

4. A characterization of Brieskorn manifolds with aQ — a^ = = an.
The almost contact structure (ψ, ξ, η) on Σ2n~l (aQ, alf , an) introduced by
K. Abe has the property that £ — u2. Making use of the fact that the
vector field u2 generates a 1-dimensional foliation each of whose orbits
is a closed curve, he proved that his almost contact structure (the
foliation) is in general non-regular.

On the other hand, we can introduce naturally an almost contact
structure (φ'9 ξ', η') on the same Brieskorn manifold as follows:

φ'X = JX - (JX, n,}n, ,

£' = Jn, , η'(X) = <£', X) ,

where J is the complex structure of the Brieskorn variety B2n, X is an
arbitrary tangent vector of Σ2n~l and nt = v/(v, v). Thus, we have
interest to study the condition under which two foliations generated by
the vector fields ξ and ζ' coincide.

THEOREM. The two vector fields ξ and ξ' generate the same ^-dimen-
sional foliation in Σ2™'1- (α0, a19 , an) if and only if α0 = a1 — = an.

PROOF. The two foliations coincide if and only if the vector fields
iv and u2 on Σ2™'1 are linearly dependent at each point of Σ2n~l and so
they coincide if and only if the vector field ut is normal to Σ2"'1. Thus,
the condition for the coincidence is that

jlf xy = o
is satisfied for any X which satisfies

'&, X\ = 0 , 3ie<z, X) = 0 .

Considering a special point z' = (ZQ, z19 Q, , 0), and X such that XQ Φ 0,
we can easily deduce from these equations that α0 = at. In the same way,
we get at — a3 (i Φ j ) i = 0, 1, , n. q.e.d.

N.B. 1. As a corollary of the last theorem, we can see that the
two almost contact structures (φ, ξ, η) and (φf, £', rf) defined on the same
Brieskorn manifold Σ2n~l(aQ, alf •• ,αj coincide if and only if a0 = a± =

N.B. 2. Brieskorn manifold Σ2n~λ with α0 = al = = an is a princi-
pal circle bundle over the (2n — 2)-dimensional manifold (1.1) in CPn and
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(Φ'9 £'ι ?/) with the induced Riemannian metric g' from Cn+1 is a normal
contact metric structure.
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