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Introduction. Let G be a Chevalley-Demazure group scheme associated
with a connected complex semi-simple Lie group G, (as for definition,
see [1] 1.1), 4 be the root system associated with G and a maximal torus
T of G, and R be a commutative ring with a unit. We shall fix a
fundamental root system /7 of 4 once for all. Denote by z.(f) the unipotent
element of G(R) associated with a root a of 4 and teR. Let V(R) be
the subgroup of G(R) generated by xz.(t) for all negative roots a of 4
and all te B. Then a subgroup P of G(R) containing V(R)T(R) is called
a parabolic subgroup of G(R) associated with /7. Following J. Tits, it
is well known that if R is a field, then the set of parabolic subgroups of
G(R) associated with /7 is lattice isomorphic to the family of subsets
of II.

N. S. Romanovskii [4] has given a discription of parabolic subgroups
of GL,(R) for a local ring R. In this note, for a simple Chevalley-
Demazure group scheme G and a local ring R, we shall give a general-
ization of the Tits’ theorem in the same situation as Romanovskii’s result.
The main theorem is stated in Section 1, and we shall prove our main
theorem in Sections 2 and 3. The author wishes to express his hearty
thanks to professor E. Abe for his many helpful comments and encour-
agement.

1. The statement of the main theorem.

1.1. Let G be a Chevalley-Demazure group scheme and R be a
commutative ring with a unit. A collection of ideals {¥,}.., Which
corresponds bijectively to the set 4 of roots, is called a carpet of R
associated with 4. Furthermore, a carpet {¥,}.., is called a permissible
(resp. semi-permissible) carpet associated with (4, I), if the following
conditions (1) and (2) (resp. (1) and (2')) are satisfied,

(1) for any roots @ and B of 4 such that a« + Be4

%a%ﬁ c g[al+15
(2) for each negative root a of 4, U, = R,
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(2 if %A, is a proper ideal of R, then 2A_, = R.

1.2. Assume G is simple. Let R be a local ring, It be the maximal
ideal of R, k be the residue class field R/ and ch(k) be the characteristic
of k. We shall set up the following assumptions,

(a) ch(k) # 2 for any type of G,

(b) if G are of types A, B,.(m =2), C,, D,(n = 3) and F,, then
k = F, where F, is a field with three elements and if G is of type G,
then ch(k) = 3. Then our main theorem is the following.

1.3. THEOREM. Let G be a stmple Chevalley-Demazure group scheme
and R be a local ring. Assume G and R satisfy (a) and (b) in 1.2.
Let P be a parabolic subgroup of G(R) associated with II and denote
A, = {t e R| x,(t) e P} for each root a of 4. Then {W,}secs 18 @ Dermissible
carpet, and further, the mapping ¥: P— {U}.cs is a bijection of the set
of parabolic subgroups of G(R) associated with II onto the set of per-
maissible carpets associated with (4, IT).

REMARK. If G is not simple, examining the proof of lemma in 2.5,
we can see that, if we assume ch(k) = 2 and ch(k) = 3 instead of (a) and
(b) in 1.2, our main theorem also holds.

Throughout the following section, let G be a Chevalley-Demazure
group scheme, and let R be a local ring and I be the maximal ideal of R.
Denote by 4 the root system associated with G and a maximal torus T
of G, by II a system of fundamental roots of 4, by 4% (resp. 47) the
set of positive (resp. negative) roots of 4. Let S be a closed subset of
4% and & = {2 }.cs be a carpet of R associated with 4. Then we denote
by Uy®) the subgroup of G(R) generated by x,(t) for all te¥,, aeS.
In particular, if %, = A for all aeS, we denote Uy(R) by UyN), and if
S = 4%, denote Ug(Y) by U(). In the above notation, replacing 4* by
4-, we can construct V(®), V(%) and V(A) which are same as UyR),
Uy(Y) and U(A) respectively.

2. Proof of injectivity.

2.1. LEMMA. Let R be a local ring in which 2 is wnvertible. Let
N be a subgroup of G(R) normalized by the maximal torus T(R). Then,
for each root & of 4, N, = {t € R | x,(t) e N} is an ideal of R.

ProoF. Assume «.(t) € N, then it is sufficient to prove z,(bt)e N for
any be R. Every element b of R can be written in the form

- (42 - (52,
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Thus it is sufficient to show that z,(a*)e N for any acR. If a is
invertible, setting w.(a) = z(a)r_(—a )z (a) and h(a) = w(a)w.(—1), we
have hJa)r(t)ha)™" = za(a’t)e N. If a is not invertible, then a® + 1,
a® — 1 are invertible, and we have

et = (#5530~ (25

Thus our assertion can be reduced to the former (cf. [4] Lemma 1).
q.e.d.

For roots @ and B of 4, write {a, B) = 2(a, B)/(B, B), and these are
called Cartan integers where (a, 8) is the scalar product of a and 5.
Then we have the following lemma.

2.2. LEMMA. Let 4 be of rank > 1. If a and B are any positive
roots of 4 and a + B, then there exists a root Y €4 such that

(a) la, V) = £2, (B,7)=0
or
(b) {a,7) =1, {By7) =0(mod2).

Proor. If (a, ) =0, then taking ¥ = a, we have (@, ) =2 and
(B, > =0. Suppose (&, B) = 0, then we have a + fec4. Let 4, be a
subsystem of roots in 4 of rank 2 consisting of the roots i« + jB, 1, j € Z,
then our assurtion follows easily from the following tables of Cartan
integers with respect to the roots of 4,.

4, of type A, 4 = {a, a, a, + ay}

a, a, a, + a,
@, 2 -1 1
a, —1 2 1
a, + a, 1 1 2
4,: of type B, 47 = {a, a,, a, + o, a, + 20}
a, a, a +a, a + 2a,
a, 2 —2 2 0
a, -1 2 0 1
a + a, 1 0 2 1
o, + 2a, 0 2 2 2
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4;: of type G, 4f = {a,, &, @, + @, 2a, + a,, 3@, + Ay, 3a; + 20}

a, a, a +a, 2a +a 3a +a, 3 + 2,
a, 2 -1 —1 1 1 0
a, -3 2 3 0 -1 1
a, + «a, 1 1 2 1 0 1
2a, + a, 1 0 1 2 1 1
3a, + a, 3 -1 0 3 2 1
3a, + 2a, 0 1 3 0 1 2
q.e.d.

2.3. COROLLARY. Let 4 be a simple root system of type A, 1 =2
l+3, Ey E, or E,. Then for any positive root o and B of 4, there
exists a root Y €4 such that {a,7) =1, (B, 7> = 0(mod 2).

Proor. Assume (a, 8) = 0, then the subsystem 4, of 4 generated by
« and B is of type 4,. Thus our assertion can be checked by the table
of Cartan integers of type A,. Suppose (a,8) =0. Since {(a, B) =
(wa, wB) for any element w of the Weyl group W, we may assume
a =qa, where Il ={a,, -++, a;}, 1 = 4. Thus Z(a;) = {ved|(a;,, 7) = 0}
is a simple subsystem of type A,_, A4;, D, or E,, if 41is of type A,, E;, E,
or E, respectively (cf. M. R. Stein [5]). Therefore there exists an element
w of W such that w(a) = a;, w(8) = a;_,. Thus, there exists a subsystem
4" of type A, in which we may assume a = «,, 8 = a,, Where {a,, a,, a,, a,}
is a fundamental system of 4. Taking ¥ = «, + «, + a;, we have

<0f, 7> Elv <,8, 7> EO(ITlOdz).
q.e.d.

2.4. LEMMA. Let & = {}.cs be a carpet of R associated with 4
such that AW, N, s for a, B and a + Bed, and S be a closed subset
of 4*. Let B, ++-, By be any given ordering of S. Then each element

* In the proof of above corollary, we shall set the fundamental root system as follows

(4y)
a;  ag a_, a;
(Dl) a; g
a;  ap a \
12 Noq,
(EY)
ay Ay ay 243 al_l al
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of Ug(R) is expressed in the form

%5,(8;) * g, (8x)
where s, €Wp, 1 =1, --+, M.
Proor. Let U’ be the set of elements expressible in the form as
stated in the lemma. To prove our assertion, it is sufficient to show

that z,(t)U’' c U’ for any z.(t), te ¥, and a¢€S. By the same way as in
[1] 2.7, we can show this easily. g.e.d.

2.5. LEMMA. Assume that G is simple, and G and R satisfy (a)
and (b) in 1.2. Let N be a subgroup of U(R) normalized by T(R). If
we express an element x of N in the form

r= xpl(sl) 0t xpM(SM)
where B, < +++ < By be any regular ordering of 4%, then wxs(s;)€ N for
1=12, .-+, M.
ProoF. For a unit element w of R, we have
[7r(w), 24()] = @s((u® — 1))

where [a, b] = aba™'b™* for a, be G(R). If there exists €4 such that
By 7> =1,{Bs 7) = 0(mod 2), then by 2.4, we obtain the following,

[A(=1), 2] = [~(—=1), 2 (s)]°2:V[B(—1), 25,(s,)]
conmp 0T gy -0 (—1), xﬂM(Su)]

= @p(—28,)2p(85) * - - X5, (Sh) €N

where “y = aya™. If w and w* — 1 are units of R and there exists a
root ¥ € 4 such that (B, ¥) = +2, {8, 7> =0, then we have the following,

[h(w), @] = [Ri(w), @5, (s)]"2 " [Ry(u), @p,(s2)]
.. -”ﬂl(“l)""ﬂM—x(aM_l)[hr(u)y .’L‘pM(SM)]
= 5, (w** — 1)8,)ws(83) -+ - @p,(su) EN .

By Lemma 2.2, its Corollary 2.8 and the assumptions (a) and (b) in 1.2,
we can see easily that, repeating the above process, we obtain x,(vs)e N
for some unit element v of R. Thus by 2.1, we have w,(s))eN. By
induction on the indices ¢ of roots B,, we have wx,(s;)e N for i =1, 2,

., M. q.e.d.

2.6. PROPOSITION. Let P be a parabolic subgroup of G(R). Then
P is generated by the elements of B(R) and PN U(R) where B(R)=
V(R)T(R).
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PrOOF. Let ¢ be a group homomorphism G(R)— G(k) induced by
the natural ring homomorphism ¢: R—k = R/, then (P)= P’ is a
parabolic subgroup of G(R) and by Tits’ theorem, we have that P’ is
generated by B(k) and z,(1) for all root a €I where I is a subset of 7.
On the other hand, since Ker ¢ = V(M)T(M)U(M) (cf. [1] 3.3), we can
choose generators of P among the elements of B(R) and U(R). q.e.d.

2.7. Proof of injectivity. Let P be a parabolic subgroup and set
up A, = {te R | z(t) € P} for each root a of 4. By 2.1 and the definition
of P, it is clear that 2, is an ideal of R for each ac 4, and %, = R for
each negative roots a of 4. On the other hand, let « and 8 be roots of
4 such that & + g€ 4, and 4, be the subsystem of 4 of rank = 2 generated
by @ and 8. If @ >0 and B < 0, then there is an element w of the
Weyl group W, of 4, such that w(a) > 0 and w(B) > 0. Thus, by the
commutator relations for x,(t), te%,, a4 (cf. [1] 2.2) and by 2.5, we
see easily UMW, for any roots &« and B of 4. That is, {W}ecs is a
permissible carpet. From 2.4, 2.5 and 2.6, it is clear that P is generated
by x.t), teU,, a€4 and T(R). Namely, the mapping ¥: {P} — {{Wa}aca}
is injective. q.e.d.

3. Proof of surjectivity. Now in order to prove that the mapping
¥ in 2.7 is surjective, we shall first prove the following lemmas.

3.1. Let & = {,},cs be a permissible carpet of R with respect to
(4, IT). Setting 4y, = {ae4|A, = R} and 4y = {aecd|A, # R}, we have
that i) 4D 4~ and 4y c 4%, ii) 4; and 4} are closed, iii) 4y is an ideal
of 4%, thatis, if aec4y, Be4* and a + Be 4, then @ + Be 4. Thus we
can see easily the following lemma.

3.2. LEMMA. Using the same notation as in 3.1, we have the follow-
ng. '

i) Let o be a positive root, them a € 4y if and only if there exists
a root a;€dy N Il such that n,+0 for a=ma, + -+ + n,& where
I = {«a, , ai},

i) we set Z*dy={mpB, + --- + nB,|n,€Z%, B; €4y} and Zt4y =
{my, + - +my, | m; € Z*, v; € 4y} where Z* is the set of positive rational
integers. Then we have Z 4, N\ Z4Y = @& .

3.3. LEMMA. Let & = {W,}.cs be a permissible carpet of R associated
with (4, II) and 4y, 47 be the same as in 3.1. Let Q be a subgroup of

G(R) generated by x,(t) for all te R, e 4, and elements of T(R). Then
we have QN UA;{(R) = {1}.

PrOOF. Let &, be a simple Lie algebra over the complex field C,
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(do, V) be a faithful representation of &, with &,-module V over C,
{Hep, +++, Hypy X,y a€ 4} be a Chevalley basis of &, and V,; be an admissible
lattice of V, then for any root a and ¢ € R, we can construct a unipotent
automorphism z,(t) = exptdo(X,) of V,X R. Let {A} be the set of
weights of do and denote by V* a weight space associated with a weight
A, then we have V, = 3>,,@ V? where V= V,N V* For any element
ve Vi do(X,)ve Vite (cf. Steinberg [6]). Therefore, for each z.(t),

2ty = v + tdo(X.)v + tZ%dp(X)v g

=v+Uu

where u €3, @ Vit *Q R. On the other hand, for any i(y) € T(R) and
ve VA W(x)v = ¢; v for some ¢; ;€ R. Thus for any x€@Qn U%.(R) and

ve Vi we have ave€cv + Juesrs, D VI QR and avev + X,z D
V***® R, thus by 8.2 ii), xv = v. Since A can be chosen arbitrary, we
have x = 1. q.e.d.

3.4. PROPOSITION. Let & = {W,}ucs be a permissible carpet, and use
the same notation as in 3.3. Then UA;},(R)Q 18 a subgroup of G(R).

Proor. To prove the proposition, it is sufficient to show the follow-
ing,
(a) (1) Us(R) < Uy (R)Q

for all teU,, acd. Assume acd’. Since 4y is an ideal of 4+, Uy (R)

is a normal subgroup of U(R), thus (a) holds. For a negative root «
of 4, (a) follows from the following two lemmas.

3.5. LEMMA. Let 8 = {W}ecs be a semi-permissible carpet. Set
A = 47N 4y and 497 = 4T N 4. Then we have

(b) &)U+ (R) C Uy () Usu(M)z_(R) T(R)
for any acll and tc_,.
PrOOF. By 2.4, any element z of U J§l+(.@) is expressed by the form
x = wp(s) - xﬁM(sM)

where {8, -+, By} = 4¢" and s, €N,, =1, ---, M. Set up z; = x,,(s;)
-+ @, (sy). Then we shall prove (b) by induction on 7. If B, , = a, we
have
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T_o(8)%;_, = x_o(t)2s,_(8:-));
= x5, ,(8:-1) .1;1)0 x—ja+kﬁi_1(ci,ktjs’;—i)x—-a(t)xi
J»

where —ja + kB8,_, > 0 and c¢;,,t%s%_, € U jpurs,, N M. If B, = a then
T_o(B)2;-y = T_o(B)2a(8:-1)2; = 2u(V)T_o(w)7,2

where v €%, and z¢€ T(R). Therefore by 2.4 and the assumption of the
induction, we have

2t} € Uy () U (MR T(R) .
g.e.d.

3.6. LEMMA. We use the same notation as im 3.5. For a given
negative root —a, we assume that

28Uy (8) C Usg () Uy (B V) T(R)2_(R)

for all semi-permissible carpet & = {Wy}eese Then, for any element w
of the Weyl group associated with 4 such that w(a) > 0, we have

T (8) Uggt(R') C Uy (R) U (M) V(D)@ (R) T(R)
where & = {Al},.s 18 any semi-permissible carpet.

PrROOF. Denote by w, the reflection with respect to hyperplane
orthogonal to a root g, then for any element w of the Weyl group W
such that w(a) > 0, we can choose an element w' of W as follows i)
w(a) = w'(e) ii) w' = w,Ww,, -+ w,, where a,ell, 1=1,2,---, L, and
WeWa;,, =+ We (@) >0 for 1 < j < L. Therefore, without-loss of gener-
ality, we may assume w = w, for some gell. Let & = {¥},., be any
semi-permissible carpet. For each element 2 of UWR,,,L(R') we write
& = xp(8) + - 5,(5y) Where {8, -+, By} = 447, s, e}, (¢ =1, -+, N) and
Bi#0,1=1 ---, N—1. Now, taking the conjugation of x,(t)x with
w(1), we have

(x) 2_o(Ew)ewd)™ = 2 (£)Tui(E£8) -+ Tusy(E8y)

where w(B;) >0 for ¢t =1, ---, N—1 and w(By) <0 (resp. > 0)if By =0
(resp. By # o). Setting A, = A, 5, we have semi-permissible carpet {2}, s
First assume B, = 0. Then, using the assumption of this lemma, (x) is
equal to

(**) xw(ﬁp(%) tee xw(ﬂN._l)(vN—l)le(ul) T er(uu)erﬂ(uuﬂ)
oo @ (Ur)T_o(B)2_o(sh)2
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where v, -+, 7, are positive, Y., -+, 7 are negative, v, €Uy 1=1,
ey, N—1, u;e?d;, N M, j=1,---, T, syelnAy,, and ze T(R). By
2.4, we may assume 7, = ¢ and V,,, = —0a, and (xx) is equal to

(%xx) xw(ﬂl)('vx) ce xw(ﬂN_l)(vN—l)le(ul) ce x—ﬂ(v)xa(y)xrﬂ[+2(u;‘l+2)
oo 2y (ur)e_ (t)2

where veA_,NM, yeA,NM, w;eA,, j=M+2,---, T, and 2’ € T(R).
Taking the conjugation of the above form with w(l) again, and using
2.4, we have

Lo ()% € Uy oK) Usp (M) V(M) o (B) T(R)

If By # 0, we can prove our assertion by the same way as above with-
out calculation (xxx). q.e.d.

3.7. LEMMA. Let {U,}.cs be a permissible carpet of R with respect
to (4, IT), and let 4, 47 and @ be same as in 3.1 and 3.3 respectively.
Then we have Q N U(R) = Uy(R).

Proor. To prove our lemma, it is sufficient to show Q N U(R)C
Usys(B). If xe QN U(R), then by 2.4, we have x = yz where y € U, (R),

Z€ UA;{,(R). Since z2e€Q, we have ye@n U, (R), and by 3.3, vy =1.
Therefore we have x € Uy .(R). q.e.d.

3.8. PROOF OF SURJECTIVITY. Let & = {,}.., be any permissible
carpet of R associated with (4, II), and P be a parabolic subgroup of
G(R) generated by w.(t) for all te,, a«cd and elements of T(R). Set
N, ={teR|x (t)e P}. Then, to show our assertion, it is sufficient to
prove that U, = A, for all roots ac4d. It is clear A, cA.,. If a <O,
then A, = A, = R. In order to prove 2A,D A, for a >0, from 2.5, it is
sufficient to show PN U(R) = Us;+«(8). By 8.4, we have P = UAH(R)Q,
thus, for any xe PN U(R), * = yz Where y € U%/(R), ze @, and from 3.7,
2c UR)N Q c U+(R), therefore ze U,+(R), that is PN UR)c Us(R).
On the other hand, it is clear that PN U(R)D U,+(8!). Thus we have
Pn UR) = Ups(R). g.e.d.
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