ALMOST CONTACT STRUCTURES ON BRIESKORN MANIFOLDS

SHIGEO SASAKI AND TOSHIO TAKAHASHI

(Received November 13, 1975)

1. Introduction. Let a_0, a_1, \dots, a_n be positive integers and let $X^{2n} = X^{2n}(a_0, a_1, \dots, a_n)$ be the algebraic variety given by $X^{2n}(a_0, a_1, \dots, a_n) = \{z = (z_0, z_1, \dots, z_n) \in C^{n+1} | z_0^{a_0} + z_1^{a_1} + \dots + z_n^{a_n} = 0\}$. The only possible singularity of X^{2n} is the origin 0 of C^{n+1} , and $B^{2n} = B^{2n}(a_0, a_1, \dots, a_n) = X^{2n}(a_0, a_1, \dots, a_n) - \{0\}$ is a complex hypersurface of C^{n+1} . Let $\Sigma^{2n-1} = \Sigma^{2n-1}(a_0, a_1, \dots, a_n)$ be the intersection of B^{2n} and the unit sphere $S^{2n+1} = \{z \in C^{n+1} | z_0 \overline{z}_0 + z_1 \overline{z}_1 + \dots + z_n \overline{z}_n = 1\}$, which we call a Brieskorn manifold.

A Brieskorn manifold Σ^{2n-1} is a real hypersurface of the complex manifold B^{2n} , and it is also a submanifold of the unit sphere S^{2n+1} with codimension 2. K. Abe [1] introduced an almost contact structure on Σ^{2n-1} by using a property that $\Sigma^{2n-1} \times R$ is diffeomorphic with B^{2n} , and discussed about the non-regularity of the almost contact structure. On the other hand, C. J. Hsu and one of the authors [6] introduced a contact structure on Σ^{2n-1} by using a property that Σ^{2n-1} is a submanifold of B^{2n} and S^{2n+1} , and gave a necessary and sufficient condition that the almost contact structure given by K. Abe and the almost contact structure given in [6] coincide. K. Abe and J. Erbacher [2] also introduced contact structures on a wide class of submanifolds which contain Brieskorn manifolds as a special case.

In this note, first we give a simplified definition of the almost contact structure introduced by K. Abe, and the criterions for its non-regularity and regularity. Secondly we show that our almost contact structure is normal.

2. Definition of an almost contact structure for Brieskorn manifold Σ^{2n-1} . Let $\{f_s\}(s \in R)$ be the 1-parameter group of holomorphic transformations of the complex manifold B^{2n} given by

$$(2.1) f_s(z_0, z_1, \cdots, z_n) = (e^{b_0 s} z_0, e^{b_1 s} z_1, \cdots, e^{b_n s} z_n),$$

where $b_0 = m/a_0$, $b_1 = m/a_1$, \cdots , $b_n = m/a_n$ and m is the L.C.M. of a_0 , a_1 , \cdots , a_n . Let a be the vector field on B^{2n} which is induced by the 1-parameter group $\{f_s\}(s \in R)$. It is easy to see that a is transversal and Ja is tangent to the Brieskorn manifold Σ^{2n-1} , where J is the induced complex structure

of B^{2n} from the standard complex structure of C^{n+1} . Hence we get a direct sum decomposition of tangent spaces along Σ^{2n-1} :

$$(2.2) T_x B^{2n} = T_x \Sigma^{2n-1} \bigoplus \{\mathfrak{a}_x\}, \quad x \in \Sigma^{2n-1}.$$

Let ξ be a vector field on Σ^{2n-1} defined by

(2.3)
$$\xi_x = J\mathfrak{a}_x$$
 , $x \in \Sigma^{2n-1}$,

and let ϕ be a (1, 1) type tensor field and η be a 1-form on Σ^{2n-1} given by

for any tangent vector X of Σ^{2n-1} , where the right hand side of (2.3) is the direct sum decomposition of JX according to (2.2). Applying J to the both sides of (2.4), we get

(2.5)
$$\begin{cases} \phi^2 X = -X + \eta(X)\xi \\ \eta(\phi X) = 0 \end{cases}.$$

If we put $X = \xi$ in (2.4), we get

(2.6)
$$\begin{cases} \eta(\xi) = 1 \\ \phi \xi = 0 \end{cases}$$

Hence (ϕ, ξ, η) is an almost contact structure of the Brieskorn manifold Σ^{2n-1} , which is essentially the same as the one given by K. Abe [1]. As the group of diffeomorphisms of Σ^{2n-1} generated by the vector field ξ is the restriction of the 1-parameter group of holomorphic transformations $\{g_t\}(t \in R)$ of B^{2n} given by

$$(2.7) g_t(z_0, z_1, \cdots, z_n) = (e^{b_0 i t} z_0, e^{b_1 i t} z_1, \cdots, e^{b_n i t} z_n),$$

leaves of the foliation determined by orbits of the group (=integral curves of ξ) are closed curves.

An almost contact structure (ϕ, ξ, η) is said to be regular if the foliation determined by maximal integral curves of ξ is regular. Otherwise, it is said to be non-regular. In the next section, we shall study the problem of regularity of the almost contact structure on Σ^{2n-1} defined in this section.

3. A criterion for regularity. First, we explain some notational conventions: For positive integers $p_1, p_2, \dots, p_k (k \ge 2)$, the L.C.M. of p_1, p_2, \dots, p_k and the G.C.M. of p_1, p_2, \dots, p_k are respectively denoted by (p_1, p_2, \dots, p_k) and $\langle p_1, p_2, \dots, p_k \rangle$.

LEMMA 1. Let a_0, a_1, \dots, a_n be positive integers and put $m = (a_0, a_1, \dots, a_n)$, $b_0 = m/a_0$, $b_1 = m/a_1$, \dots , $b_n = m/a_n$. Then $(a_\lambda, a_\mu) = (a_\lambda, a_\mu, a_\nu)$

holds for any triplet a_{λ} , a_{μ} , a_{ν} among a_0 , a_1 , \cdots , a_n if and only if $\langle b_{\lambda_0}$, b_{λ_1} , \cdots , $b_{\lambda_k} \rangle = \langle b_0, b_1, \cdots, b_n \rangle \equiv 1$ holds for any subset $\{b_{\lambda_0}, b_{\lambda_1}, \cdots, b_{\lambda_k}\}$ of $\{b_0, b_1, \cdots, b_n\}$, $k \ge 1$.

PROOF. Suppose $(a_{\lambda}, a_{\mu}) = (a_{\lambda}, a_{\mu}, a_{\nu})$ holds for any triplet $a_{\lambda}, a_{\mu}, a_{\nu}$. Take any subset $\{b_{\lambda_0}, b_{\lambda_1}, \dots, b_{\lambda_k}\}$ of $\{b_0, b_1, \dots, b_n\}, k \ge 1$, and put $l = (a_{\lambda_0}, a_{\lambda_1})$. Then we get $l \le m$. On the other hand, since we have $(a_{\lambda_0}, a_{\lambda_1}) = (a_{\lambda_0}, a_{\lambda_1}, a_{\mu})$ for any a_{μ} , we see that l is a common multiple of a_0, a_1, \dots, a_n , and hence we get l = m. Thus we get $1 = \langle b_{\lambda_0}, b_{\lambda_1} \rangle \ge \langle b_{\lambda_0}, b_{\lambda_1}, \dots, b_{\lambda_k} \rangle \ge \langle b_0, b_1, \dots, b_n \rangle \equiv 1$.

Conversely, suppose $\langle b_{\lambda_0}, b_{\lambda_1}, \dots, b_{\lambda_k} \rangle = 1$ holds for any subset $\{b_{\lambda_0}, b_{\lambda_1}, \dots, b_{\lambda_k}\}$ of $\{b_0, b_1, \dots, b_n\}$. Then we have, in particular, $\langle b_{\lambda}, b_{\mu} \rangle = 1$ for any pair b_{λ}, b_{μ} . Take arbitrary triplet $a_{\lambda}, a_{\mu}, a_{\nu}$. Then $\langle b_{\lambda}, b_{\mu} \rangle = 1$ and $a_{\lambda}b_{\lambda} = a_{\mu}b_{\mu} = m$ imply $(a_{\lambda}, a_{\mu}) = m$. Hence we get $m = (a_{\lambda}, a_{\mu}) \leq (a_{\lambda}, a_{\mu}, a_{\nu}) \leq (a_0, a_1, \dots, a_n) = m$, which completes the proof.

Now, we state the criterion for the non-regularity of our almost contact structure.

THEOREM 1. Let $\Sigma^{2n-1} = \Sigma^{2n-1}(a_0, a_1, \dots, a_n)$ be a Brieskorn manifold and let (ϕ, ξ, η) be the almost contact structure on Σ^{2n-1} defined by (2.3) and (2.4). A necessary and sufficient condition for the almost contact structure (ϕ, ξ, η) to be non-regular is that there exist three positive integers $a_{\lambda}, a_{\mu}, a_{\nu}$ among a_0, a_1, \dots, a_n such that the L. C. M. of a_{λ}, a_{μ} is different from the L. C. M. of $a_{\lambda}, a_{\mu}, a_{\nu}$.

PROOF. Suppose $(a_{\lambda}, a_{\mu}) \neq (a_{\lambda}, a_{\mu}, a_{\nu})$ holds for some $a_{\lambda}, a_{\mu}, a_{\nu}$. Without any loss of generality, we may assume that $\lambda = 0$, $\mu = 1$, $\nu = 2$. Applying Lemma 1 to the case when n = 2, we see that $(a_0, a_1) \neq (a_0, a_1, a_2)$ implies $\langle b_0, b_1 \rangle \neq \langle b_0, b_1, b_2 \rangle$. Now, the orbit of ξ passing through the point $(z_0, z_1, 0, 0, \dots, 0)$ of Σ^{2n-1} is of the form $(e^{b_0 i t} z_0, e^{b_1 i t} z_1, 0, 0, \dots, 0)$, and its period is $2\pi/\langle b_0, b_1 \rangle$. Similarly, the orbit of ξ passing through the point $(z'_0, z'_1, z'_2, 0, \dots, 0)$ which is very close to the first point $(z_0, z_1, 0, 0, \dots, 0)$, is of the form $(e^{b_0 i t} z'_0, e^{b_1 i t} z'_1, e^{b_2 i t} z'_2, 0, \dots, 0)$ and lies very close to the first orbit. Its period is $2\pi/\langle b_0, b_1, b_2 \rangle$. Hence our almost contact structure is non-regular.

Conversely, suppose $(a_{\lambda}, a_{\mu}) = (a_{\lambda}, a_{\mu}, a_{\nu})$ holds for any triplet $a_{\lambda}, a_{\mu}, a_{\nu}$ among a_0, a_1, \dots, a_n . Then, since the orbit of ξ passing through the point (z_0, z_1, \dots, z_n) of Σ^{2n-1} is of the form $(e^{b_0 t t} z_0, e^{b_1 t t} z_1, \dots, e^{b_n t t} z_n)$, Lemma 1 implies that any orbit of ξ has the same period 2π , and hence our almost contact structure is regular. q.e.d.

The following is the criterion for the regularity, which is equivalent

to Theorem 1.

COROLLARY. The almost contact structure in Theorem 1 is regular if and only if for each triplet a_{λ} , a_{μ} , a_{ν} among a_0 , a_1 , \cdots , a_n , the L.C.M.s of a_{λ} , a_{μ} and a_{λ} , a_{μ} , a_{ν} are the same.

EXAMPLE. Let p_1, p_2, \dots, p_n be mutually prime positive integers. Put $a_0 = p_1 p_2 \dots p_n$, $a_1 = p_2 p_3 \dots p_n$, $a_2 = p_1 p_3 p_4 \dots p_n$, \dots , $a_n = p_1 p_2 \dots p_{n-1}$. Then for each triplet $a_{\lambda}, a_{\mu}, a_{\nu}$, the L. C. M. s of a_{λ}, a_{μ} and $a_{\lambda}, a_{\mu}, a_{\nu}$ are the same number $p_1 p_2 \dots p_n$. Thus, in this case, our almost contact structure of the Brieskorn manifold $\Sigma^{2n-1}(a_0, a_1, \dots, a_n)$ is regular.

4. The normality. For vector fields X and Y on a differentiable manifold with an almost contact structure (ϕ, ξ, η) , we put

(4.1)
$$N(X, Y) = [X, Y] + \phi[\phi X, Y] + \phi[X, \phi Y] - [\phi X, \phi Y] - [X \cdot \eta(Y) - Y \cdot \eta(X)] \xi .$$

When the tensor field N vanishes everywhere, we call the almost contact structure (ϕ, ξ, η) to be normal (S. Sasaki and Y. Hatakeyama [5]). To show that the almost contact structure (ϕ, ξ, η) on the Brieskorn manifold Σ^{2n-1} constructed by (2.3) and (2.4) is normal, we first extend the structure tensors ϕ, ξ, η to the tensors $\tilde{\phi}, \tilde{\xi}, \tilde{\eta}$ on the complex manifold B^{2n} .

Put $\Sigma_0 = \Sigma^{2n-1}$ and put $\Sigma_s = f_s \Sigma_0$, a real hypersurface of B^{2n} for each $s \in R$, where $f_s, s \in R$, is a holomorphic transformation of B^{2n} defined by (2.1). Then we get $B^{2n} = \bigcup_{s \in R} \Sigma_s$. Since the vector field \mathfrak{a} , defined in §2, is invariant by the 1-parameter group of holomorphic transformations $\{f_s\}$ generated by $\mathfrak{a}, \mathfrak{a}_{\widetilde{x}}$ is transversal and $J\mathfrak{a}_{\widetilde{x}}$ is tangent to the hypersurface Σ_s such that $\widetilde{x} \in \Sigma_s$, because \mathfrak{a}_x is transversal and $J\mathfrak{a}_x$ is tangent to $\Sigma_0 = \Sigma^{2n-1}$ if $x \in \Sigma_0$. Hence, for each $\widetilde{x} \in \Sigma_s \subset B^{2n}$, we get the direct sum decomposition

$$(4.2) T_{\widetilde{x}}B^{2n} = T_{\widetilde{x}}\Sigma_s \oplus \{\mathfrak{a}_{\widetilde{x}}\}.$$

Now we define a vector field $\tilde{\xi}$, (1, 1) type tensor field ϕ and 1-form $\tilde{\eta}$ on B^{2n} , which are extensions of ξ , ϕ and η , as follows:

for a tangent vector \tilde{X} of B^{2n} , where the right hand side of the second equality is the direct sum decomposition of $J\tilde{X}$ according to (4.2). $\tilde{\phi}, \tilde{\xi}$ and $\tilde{\gamma}$ satisfy analogous equations with those of (2.5), (2.6) and

(4.4)
$$\widetilde{\phi}\mathfrak{a}=\widetilde{\xi}\;,\qquad \widetilde{\eta}(\mathfrak{a})=0\;.$$

LEMMA 2. $\tilde{\phi}, \tilde{\xi}, \tilde{\eta}$ satisfy

(4.5) $\mathcal{L}(\mathfrak{a})\tilde{\phi} = 0$, $\mathcal{L}(\mathfrak{a})\tilde{\xi} = 0$, $\mathcal{L}(\mathfrak{a})\tilde{\eta} = 0$.

PROOF. Since the complex structure J and the vector field \mathfrak{a} are invariant by each holomorphic transformation f_s , we have $f_{s*}\xi = f_{s*}J\mathfrak{a} = Jf_{s*}\mathfrak{a} = J\mathfrak{a} = \tilde{\xi}$, i.e. $\tilde{\xi}$ is invariant by f_s , and this implies (4.5)₂.

Next, applying (4.3) to both sides of $f_{s*}J\widetilde{X} = Jf_{s*}\widetilde{X}$, we see that $\tilde{\phi}$ and $\tilde{\eta}$ are invariant by f_s , and hence (4.5), and (4.5), hold good. q.e.d.

Now, we shall prove the following:

THEOREM 2. The almost contact structure (ϕ, ξ, η), constructed by (2.3) and (2.4), of a Brieskorn manifold Σ^{2n-1} is normal.

PROOF. Take an arbitrary point x of $\Sigma = \Sigma^{2n-1}$ and a small neighborhood V of x on Σ , and let X, Y be vector fields on V tangent to Σ . Then, to prove the normality of the almost contact structure (ϕ, ξ, η) on Σ , it is sufficient to show N(X, Y) = 0.

To show it, we first take a small neighborhood U of x on B^{2n} so that $V = U \cap \Sigma$ and extend X, Y to vector fields \tilde{X}, \tilde{Y} on U so that their restriction to V coincide with X, Y. We remark that the restriction of $[\tilde{X}, \tilde{Y}]$ to V coincides with $i_*[X, Y]$, where $i: V \rightarrow U$ is the inclusion map.

Now, as the torsion tensor field N_J of the complex structure J of B^{2n} vanishes identically, we have

$$N_J(\widetilde{X}, \ \widetilde{Y}) = [\widetilde{X}, \ \widetilde{Y}] + J[J\widetilde{X}, \ \widetilde{Y}] + J[\widetilde{X}, J\widetilde{Y}] - [J\widetilde{X}, J\widetilde{Y}] = 0$$
.

Putting (4.3) into the last equation and making use of (4.4), we get

$$egin{aligned} & [\widetilde{X},\ \widetilde{Y}]+\widetilde{\phi}[\widetilde{\phi}\widetilde{X},\ \widetilde{Y}]+\widetilde{\phi}[\widetilde{X},\phi\widetilde{Y}]-[\widetilde{\phi}\widetilde{X},\widetilde{\phi}\ \widetilde{Y}]-\{\widetilde{X}\cdot\widetilde{\eta}(\widetilde{Y})-\ \widetilde{Y}\cdot\widetilde{\eta}(\widetilde{X})\}\widetilde{\xi}\ +\widetilde{\eta}(\widetilde{X})(\mathcal{L}(\mathfrak{a})\widetilde{\phi})\widetilde{Y}-\widetilde{\eta}(\widetilde{Y})(\mathcal{L}(\mathfrak{a})\widetilde{\phi})\widetilde{X}+(*)\mathfrak{a}=0\ , \end{aligned}$$

where (*) is a function on U such that we do not need to know its exact value. If we consider vector fields on the left hand side of the last equation only on Σ , we see by a remark stated above and (4.5) that

$$i_*N(X, Y) + (*)a = 0$$

holds good. This gives us N(X, Y) = 0.

Looking carefully at the proof of Theorem 2, we see that, in general, the following theorem holds good:

THEOREM 3. Let M^{2n-1} be a real hypersurface of a complex manifold W^{2n} with complex structure J. Suppose there exists a transversal vector field a along M^{2n-1} such that Ja is tangent to M^{2n-1} and a is induced by a local 1-parameter group of holomorphic transformations

q.e.d.

S. SASAKI AND T. TAKAHASHI

of W^{2n} . Then M^{2n-1} admits a normal almost contact structure. EXAMPLE. The weighted homogeneous manifold.

Let w_0, w_1, \dots, w_n be positive rational numbers. Let the polynomial $F(z_0, z_1, \dots, z_n)$ be weighted homogeneous of type (w_0, w_1, \dots, w_n) ; that is, it can be expressed as a linear combination of monomials $z_0^{i_0} z_1^{i_1} \cdots z_n^{i_n}$ for which $i_0/w_0 + i_1/w_1 + \cdots + i_n/w_n = 1$. Let $X = X(w_0, w_1, \cdots, w_n)$ be the algebraic variety given by $X(w_0, w_1, \cdots, w_n) = \{(z_0, z_1, \cdots, z_n) \in$ $C^{n+1}|F(z_0, z_1, \dots, z_n) = 0\}$. Suppose X has only possible singularity at the origin 0 of C^{n+1} , then $V^{2n} = V^{2n}(w_0, w_1, \dots, w_n) = X(w_0, w_1, \dots, w_n) - V(w_0, w_1, \dots, w_n)$ $\{0\}$ is a Kählerian submanifold of C^{n+1} . The weighted homogeneous manifold $\Sigma^{2n-1} = \Sigma^{2n-1}(w_0, w_1, \dots, w_n)$ is by definition the intersection of $V^{\scriptscriptstyle 2n}$ with the sphere $S^{\scriptscriptstyle 2n+1}$ of sufficiently small radius arepsilon having the origin 0 as its center. Let $\{f_s\}(s \in R)$ be the 1-parameter group of holomorphic transformations of V^{2n} given by $f_s(z_0, z_1, \dots, z_n) = (e^{s/w_0}z_0, e^{s/w_1}z_1, \dots, e^{s/w_n}z_n)$. Let a be the vector field induced by $\{f_s\}(s \in R)$. It is easy to see that a is transversal and Ja is tangent to the weighted homogeneous manifold Σ^{2n-1} , where J is the induced complex structure of V^{2n} . Using the same method as in the case of the Brieskorn manifold, we can define an almost contact structure on Σ^{2n-1} , and by Theorem 3 we see that it is normal.

According to A. Morimoto [4], a product manifold of two manifolds with normal almost contact structures admits a complex structure. Hence Theorem 2 implies a theorem of E. Brieskorn and A. Van de Ven [3] to the effect that a product manifold of two Brieskorn manifolds admits a complex structure.

References

- [1] K. ABE, Some examples of non-regular almost contact structure on exotic spheres, to appear.
- [2] K. ABE AND J. ERBACHER, Non-regular contact structures on Brieskorn manifolds, Bull. Amer. Math. Soc., 81 (1975), 407-409.
- [3] E. BRIESKORN AND A. VAN DE VEN, Some complex structures on products of homotopy spheres, Topology 7 (1968), 389-393.
- [4] A. MORIMOTO, On normal almost contact structures, J. Math. Soc. Japan 15 (1963), 420-436.
- [5] S. SASAKI AND Y. HATAKEYAMA, On differentiable manifolds with certain structures which are closely related to almost contact structure, Tôhoku Math. J., 13 (1961), 281-294.
- [6] S. SASAKI AND C. J. HSU, On a property of Brieskorn manifolds, Tôhoku Math. J. 28 (1976), 67-78.

KUMAMOTO UNIVERSITY