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1. Introduction. In the theory of linear ordinary differential equations
in the complex domain, the only possible singular points of the solutions
are those of the coefficients, namely, the points where Cauchy's theorem
does not hold. In the theory of partial differential equations, the singu-
larities of the solutions of the Cauchy problem propagate along the
characteristics of the equations, and they emanate from the initial data
or the inhomogeneous term or the initial manifold. The corresponding
Cauchy-Kowalevskaya's theorem can not be applied to a Cauchy problem
when either the initial data or the inhomogeneous term is singular or
when there are characteristic points in the initial manifold. The corres-
ponding situation in the theory of ordinary differential equations is the
case of inhomogeneous equations with singular inhomogeneous term in
the former case, or when the point in question is a singular point of the
coefficient in the latter.

J. Leray [4] studied Cauchy problems with holomorphic initial data
given on the manifold which includes characteristic points. He used
singular transformations of the independent variables to reduce the
characteristic initial value problem to a non-characteristic one. On the
other hand, Hamada [2], Wagschal [5] and others studied non-characteristic
problems when the initial data or the inhomogeneous term have singularities
of the regular singular type. In this note, we give an answer to the
natural questions: What will happen when the initial data or the inhomo-
geneous term have singularities of the regular singular type given on a
manifold containing the characteristic points of the differential equation,
when the order of the equation is two.

2. Statement of the results. We denote by x = (xίf x2, •••,$») a
point in the ^-dimensional complex space Cn.

We consider a linear partial differential operator of order 2 whose
coefficients are holomorphic in a neighborhood of x = 0:
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αίx; -£•) = Σ aa(x)
\ ox / ι«ι^2ox f l

where α stands for the multi-index (αlf α2, , αn) with a length | α \ =
cd + + αn. We denote the characteristic polynomial of α(x; d/dx) by
h(x; ζ).

Throughout this paper, we assume the following three conditions (a),
(b) and (c).

(a) Let T; xί = x2 — 0 be the set of all characteristic points of the
initial manifold S; xγ — 0. Then any bicharacteristic curve issuing from
T never becomes tangential to Γ.

(b) If MO, , 0; flf 1,0,.. , 0) = 0(resp. A(0, ••-,<>; 1, f2, 0, ., 0) = 0),
then (d/dξMO, , 0; ξ19 1, 0, . . , 0) Φ 0(resp. (d/dξjh(θ, , 0; 1, f2, 0, ,
0) Φ 0).

From the assumption (b), we shall show in the next section that
there exist two sheets of simple characteristic surfaces K3:

Kd = {x; q>j{x) = 0} grad φά(x) i = 1, 2)

issuing from T in a neighborhood of x — 0.
(c) Ki is the only characteristic surface which becomes tangential

to S along T. Its degree of contact is p — l(p ^ 2).
In order to state our results, it is convenient to introduce the following

notation H(r, s, t) (r, s, t)eC x Z x N, s ^ 0.

DEFINITION. A complex valued function f(x) defined in a neighbor-
hood of x = 0 in Cn belongs to H(r, s, t) if and only if

] 1 / t , χ; log

log φ2(x))

w h e n reC — Z o r r ^ 0 ,

lφί(x)]r/tPί.Ul<Pi(x)]1/i, x; log φι(x))
fix) = >

when 0 > r e Z , 8 ^ 1 ,

\P&<Pi(x)\ut> x) when 0>reZ, s = 0,

where P3f8(Z, x; αή(j = 1, 2) are polynomials in ω of degree ^ s whose
coefficients are holomorphic in a neighborhood of (ζ, x) = 0 and P0(C> #)
is a function holomorphic in a neighborhood of (ζ, x) = 0. Moreover, we
simply denote ί ί(r, s, 1) by H(r, s).
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Now we state our theorem.

THEOREM. Consider the Cauchy problem:

/ 3 \
α l /γ \/)/(Ύ\ — 'ΪJI'ΎM

all the derivatives of u(x) — w(x) up to order 1

vanish on S — T .

(1) The Cauchy problem (CP)ι has a unique solution u(x) e
H(p(r — 2) + 1, s, p) for w = 0 and

[<Pi(#)]r~2[log φί(x)YFί(x) when s ^ 0 and

v(x) = either r-2eC-Zor r - 2 ^ 0 ,

[ ^ i ( ^ ) ] r ~ 2 [ l o g φ ι { ^ ) Y ~ ι F x { x ) w h e n 0 > r - 2 e Z , s ^ l ,

where F^x) is a holomorphic function defined in a neighborhood of

( 2 ) The Cauchy problem {CP)X has a unique solution u(x) e
H(r — 1, s, p) for w — 0 and

[φλ^)Y~\^g φ2{x)YF2{x) when s ^ 0 and

v(x) = either r — 2eC — Z or r — 2 ^ 0 ,

[ ^ > 2 ( ^ ) ] r ~ 2 [ l o g φ 2 { x ) Y ~ ι F 2 { x ) w h e n 0 > r - 2 e Z , s ^ l ,

where F2(x) is a holomorphic function defined in a neighborhood of

( 3 ) The Cauchy problem {CP\ has a unique solution u(x) e H(p(r — 1),
s, p) + H(pr — 1, s, p) + H(r, s) for v = 0 and

x)Y[log φ^YG^x) when s ^ 0 and

either reC — Z or r ^ O ,

# ) ] r [ l o g φί(x)Y~1Gί(x) w h e n 0 > r e Z , s ^ l ,

where Gt(x) is a holomorphic function defined in a neighborhood of x = 0.
(4) The Cauchy problem (CP)1 has a unique solution u(x) e

H(r — 1, s, p) + H(r, s) for v = 0 cmώ

|

[<p2(#)]r[log ^2(^)]SG2(^) wfrβw s ^ 0 α^cί either

reC — Z o r r ^ O ,

[ ^ > 2 ( α ; ) ] [ l o g ^ ί ^ ) ] 8 " 1 ^ ^ ) w h e n 0 > r e Z , s ^ l ,

where G2(x) is a holomorphic function defined in a neighborhood of
x = 0.

Consequently, combining (1) ~ (4), £foe Cauchy problem (CP)1 has a



526 G. NAKAMURA AND T. SASAI

unique solution u(x) e H(r — 1, s, p) + H(p(r — 2) + 1, s, p) + H(p(r — 1),
s, p) + H(pr — 1, s, p) + H(r, s) for the given v{x) e H(r — 2, s) and w(x) 6
H(r, s).

3. Construction of the characteristic surfaces Kj(j = 1, 2). Our
method of constructing the characteristic surfaces Kj(j = 1, 2) is quite
similar to that of Hamada [2]. But it slightly differs in details. We
first construct the characteristic surface K1 issuing from T. For this
purpose, consider the Cauchy problem:

(3.1)
k(x; grad φ^x)) = 0

The Cauchy problem (3.1) can be solved by the well-known Cauchy's
characteristic method. Before we explain this method, we note that,
from the assumption (b), the algebraic equation h(x; ζ) = 0 with respect
to ζ2 has a simple root β(x; ξίf £8, •••,£») for sufficiently small \x\ and

1 ^ - 1 1 + |f8| + ••• + I f J .
Pursuing Cauchy's characteristic method, we consider the bicharac-

teristic equation associated to (3.1):

(3.2)
dt

= -J-h(x; ζ)
X

i = 1,2,

dt

with initial conditions:

i- = 2k(x; ξ)

= 0, 3,(0) =

- 1, ί,(0) = i8(»lf 0, »„

, 3.(0) = yn ,

., ?/.; 1, 0, , 0) ,

Since h(x; ξ) is the first integral for (3.2), we can write the solution of
(3.2) in the form

(xt = xt(t; yί9 0, y3, , yn) (i = 1, 2 , %) ,

From (3.2) and the assumption (b), we obtain
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D(x19 x2, a?3, , xn)
D(t, ylfys, - ,yn)

/i, o, ys, yn; 1, β(vl9 0, y3, , yn; l, o , . . . , 0), o, . . . , o)

for sufficiently small \yγ\ + \yz\ + ••• + \yn\.
The implicit function theorem shows t h a t there exists in a neighborhood

of x — 0 a set of holomorphic functions:

t = t ( x l f •••, x n )

which satisfy the previous relations », = &,(£; y l f 0, /̂3, , 2/n)(i = l, 2, , n).
Hence φx(x) = 2/i(#i, , xn) and it is obvious that grad φx{x) Φ 0 holds
in a neighborhood of x = 0. From the assumption (a), Kx is generated
by bicharacteristic curves issuing from T. So Kx = {#; ^(a?) = 0}. This
also shows that the assumption (c) itself has a thorough meaning.

Next we construct K2 so as to fit for the later purpose of constructing
the formal solution. From the assumption (c) and the fact K1Π
{x; x2 = 0} = T, there exists in a neighborhood of x = 0 a non-vanishing
holomorphic function σ(x) such that S is expressed in S; φ^x) — xξσ(x) = 0.
We choose a branch of σ(x)ί/p and set τ(x) = σ(α?)1/p. Then S is given
by S; φάx) — (^2

τ(^))p = 0. We note that from the assumption (b) the
algebraic equation h(x; £) = 0 with respect to ζ± has a simple root
a(x; ζ2, •••, f«) for sufficiently small \x\ and \ξ2 — 1| + |£ 8 | + + IfJ

(3.3)

Now we consider the Cauchy problem:

h(x; grad φ2{x)) = 0 ,

, xn) .

Replacing φ1 by φ2, the bicharacteristic equation associated to (3.3) is
the same as (3.2) under the initial conditions:

^ ( 0 ) - 0, x2(0) = »„••-, xn(0) = yn ,

fi(0) = α'(0, »'; τ(0, y') + 2/2-|^-(0, »' |
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f2(0) = τ(0, v')

ίs(O) = VrP-
dy

d, y')

, V') ,

, v'),

e (o) =

where y' = (y2, " ,yn). The solution of this Cauchy problem can be
written in the form

x t = xi(t; 0 , 2 / ' ) ( i = 1 , 2 , • • - , » ) ,

Thus we obtain

Φ, y') + Vi-jH0' v')> ,2/'),

Since h(x; ζ) is homogeneous of degree 2, the right hand side becomes
r(0)(3Λ/%)(0; α(0; 1, 0, , 0), 1, 0, . , 0) for y' = 0. Thus, from the
assumption (b),

D ( x l f α?8, > " , x n )

for sufficiently small y'.
Repeating the same argument just we have done for Klf we can

construct the characteristic surface K2 = {x', <Pz(x) = 0}, where grad
φ2(x) Φ 0.

We note that Kx and K2 are transversal in a neighborhood of x — 0.
In the following sections, we shall only prove the assertion (3) of

the theorem. The others are proved in a similar manner.

4. The reduction to the normal form. We choose a local coordinate
system:
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(4.1) X1 = φSx), %2 = XiC(x)9 $3 = %s, , X« = Xn .

Then i^, S and Γ become

(4.2) Kγ = {ί; ^ = 0}, S = {£; x, - xl = 0}, T - {£; £L = α8 = 0} .

For simplifying the notations, we rewrite these independent variables
x = (βu , ίw) by a? = (a?!, , flcΛ). We assume that the Cauchy problem
{CP)ι is given in this local coordinate system x corresponding to ί. In
this situation Kί and K2 are given by Kx = {x) x^ — 0} and K2{x; φ2(x) = 0},
where grad φ2(x) Φ 0 in a neighborhood of cc = 0. Here we also emphasize
the fact that Kx and K2 are transversal. Since the assumption (a) is
invariant under the change of the independent variables, we may assume
without loss of generality that aa{x) = 1 for a = (1, 1, 0, , 0). Moreover,
from the process of constructing the characteristic surface K19 aa(x) = 0
holds in a neighborhood of x = 0 for a = (2, 0, 0).

In order to uniformize the solution of (CP)19 we use the following
singular transformation:

(4.3) xx = 7/f, £2 = y2, , xn = yn .

Let J be the Jacobian Dfo, x')/D(y19 y
f) = pyΓ1 of (4.3), then 3/3^ =

(l/J)d/dVl.
We have:

(4.4) 3 / 1 I
3y \ J 3»

where c£ = (<x2, , an) and αα(j/)f u(y) are simply the functions aa(x\ u(x)
expressed in the variable y, respectively. In the following, we use the symbol
" ~ " to indicate the /̂-space interpretation. We write (4.4) in the form:

dy

where

B0(y; -£τ)u(v) = 0
\ dy'

dy' ) i«W""" IXC" dy7"'
nj I X rt

and
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Next we introduce new dependent variables uμ(y) = ((l/J)d/dyι)
μu(y) (μ =

0, 1) and reduce the problem (CP), to the following Cauchy problem (CP)2

for a system of equations in the ^/-space:

(4.5) (CP)2

-J

Bo

u.

all the derivatives of uμ(y) — wμ(y)

up to order 1 — μ vanish on S — f,

where wμ(y) is the ^-space interpretation of (dμ/dxμ)w(x). The system
(4.5) is a Volevicϊ system associated with the operator matrix

μ I o , i
v->0, 1

dy2

in regard to the set of integers:

nμ = /i + 1, m, = v (0 ^ /i, v ^ 1) .

The characteristic polynomial #(#; ̂ ) of the system (4.5) is

g(v; V) = + ) v") + Wv; ?/)]

where δo(2/; )y') and 6̂ 1/; ^") are the principal symbols of the operators
Bo(V> 3jdyf) and B^y; d/dy), respectively. Here we used the convention
rf = (7ji9 ..., ηn) and rf' — (ηz, , ηn). Taking account of the facts that
bί(y, V") is a homogeneous polynomial in rff of degree 1 and /vanishes on f,
we can easily see that the initial manifold S = {y; yγ — y2 = 0} is non-charac-
teristic. Since ^W^ + 6i(ί/ί V")VJJ + &o(ί/; ^') corresponds to the ^-space
interpretation of the characteristic polynomial in the #-space, the form
of g(y, y) shows that the characteristic surfaces through f are Kx =
{y, Vi = 0} and K2 = {y; Φ2{y) = 0}. These surfaces are regular. In fact,
from the transversality of Kγ and K2, we have on T

(4.6) gra,dyφ2(y) = *(ψ- φ2(x)
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J
1

0

0

•
1 0

\ o

V)

1

1 0

There is an another important fact we have to remark here. Namely,
from the process of constructing Kx and K2, we have

(4.7) = yι on § .

We shall later use this.
We need one more transformation of the dependent variables to

reduce the system (4.5) to a normal system. Let Gΐ(y; rj) be the (μ, v)-
cofactor of the matrix {aμ(y; η)). Introduce a new set of the dependent
variables (U0(y), U^y)) by

(4.8) = Σ Gζ(y; -f

Then the system (4.5) becomes:

(4.9) „(„; j - V) + Σ C'μ(y; -^

= Vμ(.y) (μ = l

where Cμ(y; djdy){μ, v = 0, 1) are linear differential operators of the respec-
tive order ^ μ — v + 1 whose coefficients are holomorphic in a neighborhood
of y = 0, and the inhomogeneous terms Vμ(y)(μ = 0, 1) are defined by

(4.10)

Now consider the Cauchy problem (CP)3 for the system (4.9) with
initial condition: All the derivatives of Uμ(y) up to order 1 vanish on
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S — f. Then we have the following elementary lemma (cf. Wagschal
[5]).

LEMMA 4.1. // Uμ(y)(μ = 0, 1) are the solutions of (CP)3, then the
solutions uXy)(v = 0, 1) of (CP)2 are given by the relations (4.8).

PROOF. What we only have to prove is whether uXy)(v = 0, 1) defined
by the relations (4.8) satisfy the initial conditions of the Cauchy problem
(CP)2. Since the respective order of the differential operators Gμ(y; d/dy)(0 ̂
μ, v ^ 1) is not greater than 1 — μ + v9 it is sufficient to prove that all
the derivatives of Uμ(y) up to order 2 — μ vanish on S — f. This is
obvious for U^y). We assume that all the derivatives of UQ(y) up to
order λ vanish on S — T. Since S is non-characteristic with respect to
the operator g(y; d/dy), λ — 2 ^ min {λ — 1, 1} follows from the equation
(4.9). Rewriting the inequality λ — 2 ^ min {λ — 1, 1} in the form λ — 3 ^
min {λ — 2, 0}, we obtain λ ^ 2. q.e.d.

Our next aim is to show that the Cauchy problem (CP)3 admits a
solution (U0(y), UM) e (H(pr, s) + H(p(r - 1) + 1, β), H(pr - 1, s) +
H(p(r - 1), 8)).

5. Construction of a formal solution of the Cauchy problem (CP)3.
First we clarify the type of the inhomogeneous term V^y). By (4.1)
the initial data w(x) is transformed into

'#Γ(log xtfG[{x) when s ^ 0 and either

w(x) = reC — Z or r ^ O ,

X(log XίY^GΊix) when 0 > r e Z, s ^ 1 ,

where G[{x) is holomorphic at x = 0. From this we can easily see that
the 2/-space interpretation wμ(y) of (dμ/dxμ)w(x) does not include the function
φ2(y) and it belongs to the space H(p(r — μ), s). Consequently the inhomo-
geneous term Vγ{y) = — Σί = 0 al(y; d/dy)wXy) does not include Φ2(y) and it
belongs to the space H(pr — 2, s) + H(p(r — 1), s).

According to the principle of superposition, we can simplify our
problem stated at the end of the Section 4. Namely it is sufficient to
prove that {CP\ admits a unique solution (U0(y), U^y)) e {H{q, s), H{q — l, s))
for the given inhomogeneous terms V0(y) = 0 and

Vx(y) =

when s ^ 0 and either

q - 2eC - Z o r ^ - 2

\yΓ 2(log yd8'1 Vϊ(y) when 0 > ? - 2 e Z , β ^ l ,

where Vίd/) is holomorphic at y = 0. In this section we construct a
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formal solution for this simplified form of (CP\.
In accordance with the above V^y), we define the wave forms (Λ)fcez

as follows. Namely we define (fk)kez by the following relations:

/-.(C) =

4£
dζ

:«-2(log ζ)s when s ^ 0 and either

q - 2 6 C - Z or # - 2 ^ 0 ,

ζ«-2(log ζ)8-1 when 0>q-2eZ,s^l,

.t(ζ) (keZ) .

Though there are many wave forms (fk)keχ which satisfy the above
relations, the explicit forms of (Λ)fcez are not so important in the following
arguments.

Next we show that we can obtain a formal solution Uμ(y) of the form

(5.1) Uμ{y) = Σ Λ-Λlίi) U&(y) + ± /»_„(%(»)) UR(y) .
fc=0 fc = 0

Since y1 = 9i(2/), this becomes

(5.2) t/,(V) =

In the following we shall frequently use this notation to simplify the
discriptions.

Now, if we substitute (5.2) into the equations (4.9) and let the coeffi-
cients of fk(Φj(y))(k sZ; j = 1, 2) equal zero, we have the following transport
equations (5.3) for the distortion factors U$(y)(fl = 0, 1; j = 1, 2; k 6 Z).
Namely, with the convention U$h(y) = 0 for Jc < 0, U(

μ%y){μ = 0, 1; j =
1, 2; k e Z) satisfy

(5.3)

dy / =̂o \ dy

4) u&(v) + MHy> P
dy I \ dy

^Mϊ My; -±)u^Uy) = 0 (k ̂  1) ,

where M\ύ){y; d/dy) and Mμy
Ί(y; d/dy) are linear differential operators of

order ^ £ whose coefficients are holomorphic in a neighborhood of y = 0
and, especially, Λfϊ'%; a/3») = ΣΓ=i (d/dτji)g(y; grad ΦjiyW/dy,) + α(i)(?/).

We also reduce the initial conditions of (CP)3 to the conditions for
the distortion factors U$k(y)(μ = 0, 1; j = 1, 2; fc e Z). Taking account of
the fact (4.7), we have from the form (5.2) the following conditions (5.4)
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for the distortion factors Uμ%y)(μ = 0, 1; j = 1,2; ke Z), by letting the
coefficients of fk(ψj(y))(k e Z; j = .1, 2) equal zero. Namely Uμ

j,{(y)(μ =
0,1; j = l,2;keZ) satisfy

(5.4)
= 0 on § (h = 0,1) ,

on S (k ^ 1) ,

where JD0 is the normal derivative of S and Plj)(y; Do) is a linear diffe-
rential operator of order <; I whose coefficients are holomorphic at y — 0.

It is a routine calculation to derive the equations (5.3) and (5.4). For
further details, see Hamada [2] and Wagschal [5].

Now let us complete the proof of our assertion. It is enough to
show that we can determine the distortion factors UβKy) successively
from (5.3) and (5.4). To see this, we denote the characteristic polyno-
mials of (5.3) by m[j)(y; η)(j = 1, 2). Prom the facts (4.6) and g(y; η) =
ViV* + Hy\ V")Vι + Jbo(y> VΊ we have on f:

ί
—1 when j = 1 ,

^H) Φ 0 when j = 2.
dxL

Thus the initial manifold S; yγ — y2 = 0 is non-characteristic for (5.3).
On the other hand we have on T:

1 when j = 1 ,

0 when j = 2 .

Thus the coefficient matrix « ~ ,v ^ ~ / J of (5.4) is non-singular in a

neighborhood of T. Hence, from Cauchy-Kowalevskaya's theorem, we
can determine the distortion factors Uμ

j

t{(y) from (5.3) and (5.4).

6. Convergence of the formal solution. An argument analogous to
Wagschal ([5] p. 385 ~ 391) shows that the formal solutions Uμ(y)(μ = 0,1)
defined by (5.1) belong to the space H(q — μ, s), respectively. We shall
reproduce its essence for the convenience of the readers. For further
details, the readers should refer to WagschaΓs paper [5].

First, we choose a suitable local coordinate system and rewrite the
equations (5.3) and (5.4) in the normal form. In order to explain this
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we also denote by y an another local coordinate system in which the
initial manifold S is given by yγ = 0. For simplifying the notations we
shall use the same symbols Uμ

j\{y){μ = 0, 1; j = l, 2; keZ) and φj(y)(j = lf 2)
to denote the corresponding distortion factors and phase functions,
respectively. In the following the symbol y always stands for the new
local coordinate system introduced above.

Since the initial manifold is non-characteristic for the transport equa-
tions (5.3), we have from (5.3) the following equations for the distortion
factors U£l(y)(μ = 0, 1; j = 1, 2; keZ). Namely, with the convention
Uμ%y) = 0 for k < 0, the distortion factors Uμ

j\(y) satisfy:

(6.1)

dy, dyf

ay

dy

+ Σ '2 '
o ιo

, J-) Ul'Uv)
dy '

where Nϊj)(y; d/dy'), N£j)(y; d/dy) and N^ίj)(y; d/dy) are linear differential
operators of order ^ I whose coefficients are holomorphic in a neighbor-
hood of y = 0 and W?(y) is a holomorphic function defined in a neighborhood
of y = 0.

If we solve the equations (5.4) with respect to the distortion factors
by Cramer's method, we have the following conditions for

(6.2)

y') = Σ Q[j)(v'> -J-i \ dy

where Q[j)(y'; d/dyj is a linear differential operator of order 5Ξ 1 whose
coefficients are holomorphic at yf = 0.

For the later use we denote here without proof an essential lemma
due to Wagschal [5] paraphrased in case of our recurrent formulas (6.1)
and (6.2).

LEMMA 6.1. Let

Then there exist constants R > 0, p ^ 1 and c^l such that the relations
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( ) (μ = 0, 1; j = 1,2; keZ)

are valid for any 0 < r < R.

Now, from the definition of the forms fk(ζ)(k e Z), we can easily see
that each fk-μ(Q(k ^ K) takes the form

(6.3) Λ_,(ζ) = ζ«+*-" Σ -^-cfc_,,,(log ζ)1, <>*_„,, e C
1-0 i\

when i£ is an integer such that Req-\- K — μ ^ O i s valid. In the following
we fix K for a while. If we substitute (6.3) into Σk=κfk-μ(Φs(y))Utfl(y)
and rearrange the terms formally, we have

Next we prove the convergence of the series

(6.4) ΣCH

To see this we also denote without proof an elementary lemma due to
Wagschal [5] which gives an estimate of the coefficients ck_μtl(k^K; 0<^l<^s).

LEMMA 6.2. Define Tk by Tk = maxo^^s \ck_μΛ\ and denote the greatest
integer Re q — μ by q0. There exist a constant c2 > 0 such that

Mk £ e (k^K).
(k )

Combining the Lemmas 6.1 and 6.2, we can easily see the convergence
of the series (6.4). In fact, from those lemmas, we obtain:

0" - 1, 2; & ̂  K; 0 ^ ί ^ s) .

Hence it immediately follows that (6.4) converges compact uniformly in
a neighborhood of y = 0 where c&l&iy)] <r - (ρ\yx\ + Σ2U \yt\) holds.

Finally we shall prove that the formal solution Uμ(y)(μ = 0, 1) belongs
to the space H(q — μ, β), respectively. To see this, we consider three
cases in comparison with the definition of the space H(q — μ, s). Namely,

1. the case when q — μeC — Z or q — μ^O,
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2. the case when 0 > q — μeZ and s ^ 1,
and

3. the case when 0 > q — μ e Z and s — 0.
We only illustrate Uμ(y) e H(q — μ, s)(μ = 0, 1) in the second case. The
others can be proved much easily.

Set K = —q + μ. Then we have from the definition of the wave
forms that we can write fk_μ(ζ)(k ^ 0) in the following forms (6.5).
Namely, taking account of the facts 0>q-\-k — μeZ for 0 ^ k <; K — 1
and 0 <^ q + k — μeZ for k^ K, we have with ck_μ>ι eZ

§ 1
1=0 I]

(6.5) /»_„«;)= .
» L ^ K) .

If we substitute (6.5) into (5.1) interpreted by the new local coordinate
system y, we have

(6.6) uμ(y) - Σ \[Φ
3=1 \

x

Thus, taking account of the convergence of the series (6.4), the assertion
Uμ{y) e H(q — μ, s) immediately follows from (6.6). This is also true with
respect to the old local coordinate system y since the space H(q — μ, s) is
invariant under coordinate transformations.

7. Return to the proof of the theorem. We are now in the position
to complete the proof of our theorem. Let's start by reminding what
we have proved in the previous sections. We have proved that (CP)3

admits a solution (U0(y), U^y)) e (H(pr, s) + H(p(r - 1) + 1, s), H(pr - 1, s) +
H(p(r — 1), s)) for the given inhomogeneous terms (V0(y), Vγ{y)) defined by
(4.10). Consequently we can easily see from the Lemma 4.1 that (CP)2

admits a unique solution (uo(y), u^y)) such that

uXy) - wXy) e H(pr - 1 - v, s) + H(p{r - 1) - v, s) (v = 0, 1) .

Here the uniqueness of our solution follows from Cauchy-Kowalevskaya's
theorem for Volevicϊ systems generalized by Garding, Kotake and Leray

[1].
Since (CP)1 and (CP)2 are equivalent, Cauchy-Kowalevskaya's theorem

insures that the α -space interpretation u(x) of uo(y) is a unique solution
of (CP)i for the given data mentioned in the assertion (3) of the theorem.
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Taking account of the coordinate transformation (4.1) and the facts
Φi(y) = φi(%)1/p and φ2(y) = φz{%)> we obtain a unique solution u(x)e
H(p(r - 1), s, p) + H(pr - 1, s, p) + H(r, s) of (CPX This completes the
proof of our theorem.

8. Some examples. We give two examples when the number of
the independent variables is two and K, S, T are given respectively by
K = {(x, y); y = 0},S= {(x, y); y - x2 = 0}, T = {(a?, y); x = y = 0}.

EXAMPLE 1. Consider the Cauchy problem:

d2u = j ^
dxdy yι

( * )

dy = 0 on

where I e JV.
Since the fact that the inhomogeneous term belongs to H( — l, 0) is

invariant under any coordinate transformation, the part (1) of our theorem
shows that the Cauchy problem (*) has a unique solution in the class
H(-2l + 1, 0, 2).

On the other hand a simple calculation shows that the solution u(x, y)
of the Cauchy problem (*) is given by

u(x, y)= — x
ϊ - 1 y1'1 3 y.1-3/2 - 3)

This also belongs to H(-2l + 1, 0, 2).

EXAMPLE 2. Consider the Cauchy problem:

(**)
= 0

where le N.
We introduce the following local coordinate system z = y — x2, w = x.

In this system (**) reduces to the following:

a second order equation ,

z
all the derivatives of u(z, w) —

(z + w2)1

vanishes on z — 0 except where z = w — 0 .

up to order 1
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Here we have denoted the unknown function in the (z, w)-space by
u(z, w).

Since the surface z + w2 = 0 is the characteristic which touches the
initial manifold z = 0, the part (3) of our theorem shows that (**) has
a unique solution in the class H(2( — I — 1), 0, 2) + H( — 21 — 1, 0, 2) +
H(-l,0).

On the other hand a simple calculation shows that the solution u(x, y)
of (**) is given by

I 1 ι 1— 1 y ι 1 I — 1 x 2 { l υ

This also belongs to H(2(-l - 1), 0, 2) + H(-2l - 1, 0, 2) + H(-l, 0).

REMARK. Before we end this note, we should like to give a remark
about our results. For an equation whose order is higher than two, one
can no longer determine the distortion factors from the transport equa-
tions. For this reason, we can not apply our method to a higher order
equation.
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