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Abstract. If η > 0 and / is in a certain space of generalized functions,
define

It is shown that

in the weak distributional sense.

Introduction. If / is a function in L°°(— °°, oo), then its Hubert
transform is defined to be

Hf(x) =
J-~ t - x

where the " P " denotes a principal-value integral. The inversion formula
is

(1) -±-H(H(f)) = f ,

and it can be shown [9, Chap. 5] that

Hf(x) = li
v-+o+)-o°(t —

the limit being in the topology of Lp(— oo, co), from which it follows
that

( 2 )
7Γ2 \ J - - o ( ί - χ)2 + rf)

In this paper we shall explore the possibilities of extending these
results to certain spaces of generalized functions. It will be shown that
the "approximate" inversion formula (2) holds for distributions, but the
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classical inversion formula (1) involves some subtle questions of inter-
pretation. There is some overlap with the results of [2] and [4]; how-
ever, our results are not restricted to distributions of compact support,
and are more constructive than those of [4].

The notation and terminology follows that of [11]. The set of real
numbers is denoted by R, and t, x and y are real variables unless other-
wise stated. If / is a generalized function, then the notation f(t) is
used to indicate that the testing functions on which / is defined have
t as their variable. The pairing between a testing-function space and
its dual is denoted by </, φ). The space of C°° functions on R having
compact support is denoted by &. Its dual is the space of Schwartz
distributions on R. [8, Vol. I, p. 65]. We use the terms "distribution"
and "generalized function" interchangeably.

I. The testing function space Ha. Let a be a fixed real number
satisfying 0 < a < 1. A complex-valued C°°-function φ on (— oo, oo) is said
to belong to H if for each k = 0, 1, 2, , Ύk(φ) = sup ί6i2 \ξ(t)φ{k)(t)\ < oo,
where ξ(t) is a positive C°° function satisfying

The topology of Ha is generated by the seminorms {Ύk} in the usual
manner [9; p. 8]. In particular, a sequence {φn} converges to a function
φ in the topology of Ha if and only if ξ(t)φ{k)(t)-> ξ(t)φ{k)(t) as n->oo,
uniformly in t, for all k = 0, 1, 2, , . It can be shown that Ha is a
locally convex, sequentially complete Hausdorίf topological vector space,
closed under differentiation. It is easy to check that for fixed rj > 0 and
complex y with Imy Φ ±η, the function (y — t)/((y — tf + rf) belongs to
Ha. If / is in the distribution space H'a, we define a function Fη(y) =
</(<)> (v — t)l((y — 02 + V2))> which may be thought of as an approxima-
tion to the Hubert transform.

THEOREM 1. Let rj > 0, let Ω be the complex domain {Im z Φ ± rj),
and let y e Ω. Then Fv(y) as defined above is analytic in Ω, and

(y - tf +

In addition, if y is considered a real variable, then Fη(y), as a func-
tion of y and η, is harmonic in the upper half-plane.

The theorem may be proved by a technique similar to that of [5,
Theorem 1].



APPROXIMATE HILBERT TRANSFORM 499

The main result of this paper is the following theorem, which will
be proved in Section III.

THEOREM 2. For fixed αe(0, 1), η > 0, and feHά, we have

lim lim - JLP Γ IM^ = ,<„)
v-^o+ N-+™ π J-N x — yJ-N x — y

in the weak distributional sense.

II. Some lemmas. The following results are preliminaries to the
proof of the inversion formula, Theorem 2.

LEMMA 1. For fixed real y, η > 0, define

*V In {y " * " ε ) 2 + ^ .
(t-yf

Then as ε—^0 + , ψ8(t)-+O in the topology of Ha.

PROOF. One can check that

( 3 ) In (V - t - ε)2 + rf
(y-t + eγ + rf

as ε—>0+ , uniformly in t.

Hence ξ(t)φ,(t)-+O as ε—>0 + , uniformly in t. By an inductive argu-
ment whose details we omit one now shows that ζ(t)ψ{

ε

k)(t) —> 0 as ε—•() + ,
uniformly in t, for each k = 0, 1, 2, , which proves the lemma. For
details of the proof, see [7].

LEMMA 2. For fixed η > 0 and real x, the function

tan"1 ( * ~ a ? + ε ) - tan"1 (* ~ x ~ ε^j~+ o in Ha as e-+0+ .) (

The proof is straightforward and will be omitted.

LEMMA 3. Let φ be a C°°-funetion on R with compact support con-
tained in (α, 6), and let rj > 0 be fixed. Then

- y)φ(y)dy = Q % m χ of R

yf + τf\(N + tf + γJi«(t -yf

PROOF. We write

f (t) - In (QLzH±j£\ • n(t) -

and

r ft) - * - y
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We want to show that fN(t)g(t)—+O in Ha as JV—• <χ>, which means

(4) ξ(t)Dk

t(fN(t)g(t))->0 as JV— oo , uniformly in ί ,

for each fc = 0, 1, 2, .

First we take k = 0. A lengthy but routine computation shows that if

| ί | ^ VN, then

(N + tf + rf ~ (N- VNf + η2 (N- VNf + η2

If, on the other hand, | ί | > VN, we note that if t ^ max(|α|, |6|), then
|r y(ί) | is monotone decreasing in t, and hence, under the assumption
\t\^VNf we have \ry(t)\ ^ (VN- y)/((VN - yf + rf), if N is suffi-
ciently large. Now we assume t ^ 0; a similar argument holds if t is
negative; we have ((N — tf + γ)/((N + ί)2 + η2) ̂  1; and the minimum
of this function is at t = "l/iV2 + rf \ so that

(iSΓ + VN2 + >f)2 + )?2 ~ (N + ί)2 + V2 ~ 1 '

From this it follows that

(N - t)» + i
( 5 ) In

(N + ί)2 +
,, (iV + T/iV2 + ff2)2 + rf = p

(i\Γ - l/ΛΓ2 + >72)2 + η2 N '

which is bounded in N. So for N sufficiently large, and t ^ VN, we
have

\ζ(t)fΛt)ry(t)\ <: CPNί/^
N-y

[ 2 ,
(1/iSΓ - 2/)2 + ^2

where C is a constant. The right-hand side has the limit zero, uniformly
in y 6 [a, b].

Putting the above together, we find that ξ(t)fN(t)g(t) —> 0 uniformly
in t, as N-+°°. We now consider k = 1: let i^(£) = 2(iV+ t)/((N + tf +
^2). Then a simple computation shows

+ ΛΓ^ί)r,(ί) + KN(-t)ry(t) .

Now (r,(ί)) ̂  I/277, and so for |ί | ̂

(7, wβWίWOI S ( / f ^ ' , , - i - -
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and for \t\ ^V

( 8 )

uniformly in y ea,b .

Similarly one shows that

( 9 ) ζ(t)KN(-t)ry(t) - - 0 as N-* oo , uniformly in t ^ 0 .

Now we see that ξ(t)\ry(t)\ <; 2C/γ for all y and t; by considering sepa-

rately the cases t ^ l/JV and t ^ i/iV, as above, we can show that

(10) ζ{t)fN(t)r'y{t) -> 0 uniformly in t and y e [α, 6] .

From (7), (8), (9) and (10) we now have ξ(t)Dt(fN(t)ry(t))-+Q as N-+ °o
uniformly in t and in y e [α, 6], This is the case fc = 1. We now must
treat the case k > 1, which we do by induction. For any m ^ 1, the
Leibnitz formula yields

And so it suffices to show that

(11) ( i ) ξ(t)fAt)ry

k)(t)->0

(ii) f(t)ίΓJί-1 )(±ί)rί*-< )(ί)^O

as iV—> oo uniformly in t and in y e (α, 6), for all k ^ 1 and i = 1, •••,&.
Assuming now that (11) holds for all k ^ n, we wish to show that it
holds as well for k = n + 1. We note that, for j ^ 1,

ί ^ ~ »)r^*) + (j 2

(t - yf + rf

where gx and q2 are both bounded functions of t.

Now (11) (i) becomes

(12)

uniformly in ί, /̂ as iV—• oo, by the induction hypothesis.
To prove (11) (ii), we first note

(13)
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If 1 ^ i ^ n — 1, then the induction hypothesis applies directly to the
right side of (13). If i = n, we have

which is easily shown to go to zero as
V € [a, b].

If i = n + 1, then K{n)(t) = q k
g2 are bounded functions, and so

yt — y) + /]

—>^9 uniformly in t and in

+ q2(t)K
{n-2)(t); where ?1 and

as

uniformly in ί, and in y e [α, 6], by the induction hypothesis. This com-
pletes the proof of Lemma 3.

LEMMA 4. // φ is as in Lemma 3, then

(14) lim Γ , ( t

yf + rf
In

N+y
= 0 w topology of Ha .

PROOF. It N>b and & ^ 0, we have

In Φ(y)dy

- vf + if
In N-y

N+y
Φ(y)dy

The absolute value of the expression in (15) is bounded by

°S\(J-YΓln
2τ? JαlVdti// L + y

as

LEMMA 5. Lβί ^, ^ 6β as in Lemma 3,
integer. Then

let k ^ 1 be a positive

as N—*°°, uniformly in t.

PROOF. A simple computation shows that
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^ ( t a n - ' ( ^ ± i ) ) | S 2{k - 1 ) ! for all t, and all))| S

k = 1, 2, 3, .

Denote the expression in (16) by I. For each k we have

For an arbitrary ε > 0, we can find M > 0 such that

(18) |/ | ^ ε for \t\ ^M.

It is easy to check that for each k,

as

uniformly on any compact set of real numbers. The integral

S oo

(Vliiv — if + V2)) I Φ(v) I dy can be bounded by a constant independent
of t, and thus having chosen M as above, we can choose N large enough
to insure that |/ | < ε for all t.

LEMMA 6. For fixed η > 0, real t, and φ(y) e &f,

lim lim i-Γtan- (H±±) + tan-
v-*o+ N^™ %2\_ \ 7] /

x

7]

in the topology of Ha.

PROOF. A simple computation shows that

From Lemma 5 it follows that the expression in (19) has the limit
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uniformly in t as iV—• oo.
The proof therefore reduces to showing that

(20) [tan- (E+l) + tan- (*Llί )]

X

uniformly in £, as J\Γ—• oo and ^—•0+ in succession. Let <5e(0,1) and
divide the range of integration in (20) into subintervals (~oo,t — δ),
(t — δ,t + δ), and (ί + S, °°); denote the corresponding expressions in (20)
by Ilf I2, and I3, respectively. Then since ξ(t) and tan"1 ((N + t)lrj) are
bounded independently of t, N, and η9 there is a constant C such that

S ί + δ

7 dy, (where Λf = sup
^ - o o < ί C < o

Given e > 0, choose <? so that

11,1 ^ 2CP7Γ Γ ^
Jί+δ(^/ — ί )

< ε. Now

y (where P - sup ) |)

- 2CPτr Γ— - tan"1 (—)Ί — 0 as η -> 0+ .

So we find that

lim lim 73 = 0 uniformly in t .

The same argument holds for Ilt so it follows that

lim lim (It + J2 + J3) = 0 , uniformly in £ .

This completes the proof of Lemma 6.

LEMMA 7. IffeH'a, define Fη(x) = </(t), (t - x)l((t - xf + >f)>.
/or 2/ ^β^ϊ &nd N > 0.

N-y
N+y

(ί -yf + rf tan (*Lz±)~\



APPROXIMATE HILBERT TRANSFORM

t-y ln(N-tγ + τf

505

PROOF. Let ε > 0. We note

Fv(x)—-—dx = lim(T~£ + Γ
X — V \J J

dx .
J-ΛΓ X — V t-0+\J-N Jv+e/ X — y

By a Riemann-Sum argument similar to [6, Th. 2], one can show that

(21) (("" + Γ \IM.dx = </(t),GN(t, v) -κN(t,y,e)>,

where

•
l n

(y - t - +
l n

2((ί - ί/)2 + Ϋ) (y - ί + ε)2 + ?2 '
It follows from Lemmas 1 and 2 that KN{t, y, ε) —»• 0 in i ϊ α as s—>-0 + .
Therefore taking limits as ε—>0+ in (21), we have

(22) P\N ™Ux = </(ί), GN(t, y, V))

III. The inversion formula. We now prove Theorem 2:
Let φe£&, with the support of <f> in (α, 6). Then

-*v ••' (t-x.
= «f(t), GN

= ( /(ί), I G^(ί, ?/, r/)φ{y)dy
\ Ja

as in [6, Th. 2].
Now Lemmas 2, 3 and 4 give

lim lirn/ - J-P Γ ^ ^ e t o , φ(y)
9-0+ iv-»oo \ 7jrz J-Nχ — y

by a Riemann-Sum argument

= lim li
77

= </(ί), (̂*)> » by Lemma 6 .

This completes the proof.

The following uniqueness result is an immediate consequence of Theo-
rem 2:

THEOREM 3. If f,geH'a, and Fη(y) = Gη(y) for all real y, and all
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η > 0, then f — g in the sense of equality over 2f.

It is not difficult to show [10, p. 101-102] that the closure of the
space 2f in Ha is the subspace Ha consisting of those functions φeHa

such that

lim φ{k)(x) = 0 for all k = 0, 1, 2, . . .
α-»±oo

It follows that Theorem 3 holds if £& is replaced by Ha. One may not
replace 3f by Ha in Theorem 3, as the counter example of a "Banach
limit" at + oo shows; indeed Ha is the largest testing function space
over which the uniqueness result holds.

Theorem 2 shows that

lim l i m ( - - i
\

We can also move the inner limit inside the brackets and obtain

THEOREM 4. Under the hypotheses of Theorem 3,

(23) lim PI — v ^ x ' x = —π2f(y) , in the weak distributional sense .

>?->o+ J-oo x — y

PROOF. (Outline): We have

S N F (r) I (N t — x 1 \
ηK } dx = ( f (t), P I dx )

-NX - y \ )-N(t - x)z + Ϋ x - y I(by an argument similar to [6, Th. 2])

N-y

N+ y
t-y, 1 t - y

2 (ί f + γ2 (ί - yf + γ (N+ tγ + 7?

> (t-y)

as N—>• oo, by arguments similar to previous lemmas. So we have

-λP r -iM-dx=(/a), i- 2

If φ£&, then

_j^p \ r η\x)ux ^ φ ^ \ = / j,^ _£ v 2 φ(y)dy

π2 J-°° x — y I \ TΓ J-~(ί — yγ + )y2

(by an argument similar to [6, Th. 2])

*-+(ftφ) as 37 —• 0 + , since one can show that
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— \ T, \ -φ(y)dy-+φ(t) as η->0+ , in the topology of Ha .

IV. Discussion. Let Ω be the upper half-plane. If feLp(—°°, <χ>),
we consider the Dirichlet problem:

V2u = 0 in Ω

Φ, 0) = fix).
The solution to this is the Poisson Integral

whose harmonic conjugate is

)

 π j_.(ί _ Xf + ?2

Taking the limit of this as 37—>0 (in the ZAnorm) gives a function
# = — (l/π)Hf. The functions / and # satisfy Hubert's reciprocity rela-
tion g = - (l/π)Hf: / = - (l/π2)Hg. The Hubert transform of /, then,
(ignoring a constant multiple of —1/π) represents the boundary values
of the harmonic conjugate of the solution to the Dirichlet problem for
/. All this is well-known [9] for Lp-functions. In attempting to extend
this theory to distributions it is natural to define the Hubert transform
of a distribution feHά as

(24) lim (f(t), *"*> \ = lim P,f(x)

provided that this limit exists in some suitable sense. It turns out that
the interpretation of the limit is important: for example, if / is taken
to be the <5-function, we get Pηdix) = —x/ix2 + η2). This has an almost-
everywhere pointwise limit, the point function —I/a?. It also has, in the
weak distributional sense, the limit —PV(l/x)f which is a distribution

S oo

(l/x)φ(x)dx defined on the subspace of H,
- 0 0

consisting of those functions φ such that \φ(x)\ = O(l/|a?|) as \x\—>°°.
The inversion properties of these two interpretations are quite dif-

ferent. In the latter case, we have the inversion formula d = —il/π2)HHδ,
as can be seen by direct computation: -il/π2)PηHδ= -il/π2)Pvi-PVil/x)) =
il/π)η/ix2 + rf), which is the Poisson Integral of δ (i.e. l/π(δ(t), η/((t - x)2 +
9j>2)», and which converges to δ as η—»0 + , in the weak distributional
sense. On the other hand, if we take the first interpretation (which, in
this context, is admittedly somewhat unnatural), we find that the in-
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version formula fails. In particular, Hd(x) — — l/x9 and if φ e 3f, with
support in [α, 6], then

P r dx {y)\ = n l n N^JL φ{y)\ = ΓJL l n
. J-NX(X - y) I \y N+y I Uy

{ y ) d y

S
b/N I

a/N Z

1 z φ(Nz)dz->0 as N~+°°.

Thus, interpreting everything in a "pointwise" sense leads to the result
that the Hubert transform of δ inverts not to δ but to the zero distri-
bution (we note in passing that the use of Pη facilitates computation of
H(PV(l/x)), since a "direct" approach, as the counterexample shows,
gives the wrong value).

We can put the results of the paper into operator form as follows.
Theorem 4 says that limv^0+HPηf = f, for all /eJEΓ«. The "H" in this
formula is the "pointwise" Hubert transform applied to Pηf(x) as a
function of x. If one continues to interpret H in this sense, one cannot
move the limit inside the integral in (23), as the above counterexample
shows. But if H is as in (24), with weak convergence, then the formula
-(l/π2)HHf = / holds if / = 8 or if / = PV(l/x). Whether it holds in
general is something we intend to investigate in a later paper, along
with the exact conditions under which limη^0 Pηf exists.
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