ON THE COMPACTNESS OF OPERATORS OF HANKEL TYPE

AKIHITO UCHIYAMA

(Received December 22, 1976)

Nehari [5], Hartman [3], and Coifman, Rochberg and Weiss [1] considered some properties of the Hankel operators. In this paper we are concerned with the following theorems.

THEOREM A ([5], [2]). L_{φ} is a bounded operator from H^2 to H^2 if and only if $\varphi \in BMO$. Furthermore the operator norm $||L_{\varphi}||$ is equivalent to $||\varphi||_{BMO}$.

Theorem B ([3], [7]). L_{φ} is a compact operator if and only if $\varphi \in \text{CMO}$.

The definitions of BMO, BMO-norm and CMO will be given at the end of Section 1. We note that more general situations are considered in [1].

In the following all the functions considered will be real valued functions defined on R^n . For a measurable function b we define B(f)=bf. As pointed out in [1] for the one dimensional case the study of [H, B] = HB - BH, where H is the Hilbert transform, is often essentially equivalent to that of L_{φ} .

Suppose that K is a Caldéron-Zygmund singular integral operator with smooth kernel. That is, there is an $\Omega(x)$ which is homogeneous of degree zero, which satisfies $\int_{|x|=1}^{\infty} \Omega=0$, $\Omega\not\equiv 0$ and $|\Omega(x)-\Omega(y)|\leq |x-y|$ when |x|=|y|=1, and that

$$(Kf)(x) = P.V. \int_{\overline{|x-y|^n}}^{\underline{\Omega(x-y)}} f(y) dy.$$

THEOREM A' ([1]). If b is in BMO, then [K, B] is a bounded map of $L^p(\mathbb{R}^n)$ to itself, $1 , with operator norm <math>||[K, B]||_{(p)} \le C_{K,p}||b||_{BMO}$. Conversely, if $[B, R_i]$, where R_1, R_2, \dots, R_n are the Riesz transforms,

are bounded on $L^p(\mathbb{R}^n)$ for some p, $1 and <math>i = 1, \dots, n$ then b is in BMO and $||b||_{BMO} \leq A \sum_{i=1}^n ||[B, R_i]||_{(p)}$.

We shall improve Theorem A' in Section 2 and extend Theorem B on \mathbb{R}^n in Section 3. In the latter case we shall find some difficulties in the functions of CMO over \mathbb{R}^n which do not occur in the unit circle case. To avoid it we shall use the characterization of CMO over \mathbb{R}^n which is announced in Neri [6].

NOTATION. i,j,k and m mean always integers. A dyadic cube is a cube of the form $\{x=(x_1,\cdots,x_n)\in R^n\,|\,k_i2^j{\le}x_i{<}(k_i+1)2^j\text{ for }i{=}1,\cdots,n\}$. For a measurable set $E,|E|,m(f,E),\bar{E}$ and χ_E mean the Lebesgue measure of $E,|E|^{-1}\int_E f(y)dy$, the closure of E and the characteristic function of E respectively. For a cube Q in $R^n,M(f,Q)$ means $\inf\left\{|Q|^{-1}\int_Q|f(y)-c|\,dy\,|c\in R\right\}$. R_p and R(x,a,b) mean $\{x\in R^n\,|\,|x_i|<2^p\text{ for }i=1,\cdots,n\}$ and $\{y\in R^n\,|\,a<|x-y|< b\}$ respectively.

DEFINITION. For $f \in L^1_{loc}(R^n)$, $||f||_{\rm BMO}$ will denote $\sup\{M(f,Q)|Q \text{ is a cube in } R^n\}$. Identifying functions which differ by a constant, the set of functions satisfying $||f||_{\rm BMO} < \infty$ is a Banach space under the norm $||\cdot||_{\rm BMO}$ and we call this space BMO. The BMO-closure of \mathscr{D} , where \mathscr{D} is the set of C^∞ -functions with compact support, is denoted by CMO. [See [6], p 186.]

2. Theorem 1. Let $1 and <math>b \in \bigcup_{q>1} L^q_{loc}(R^n)$. Then $||b||_{BMO} \le A(p, K) ||[K, B]||_{(p)}$.

PROOF. In this proof for $i=1, \cdots, 10$ A_i is a positive constant depending only on K, p and $A_i (1 \leq j < i)$. We may assume $||[K, B]||_{(p)} = 1$. We want to prove

$$\sup_{Q} M(b, Q) \leq A(p, K) .$$

Since $||[K, B]||_{(p)} = ||[K, B_{r,x_0}]||_{(p)}$ for every $x_0 \in R^n$ and $r \in R_+$, where $B_{r,x_0}(f)(x) = b(r^{-1}x + x_0)f(x)$, it suffices to prove the inequality (*) for $Q = Q_1 = \{x \in R^n \mid |x_j| < (2\sqrt{n})^{-1} \text{ for } j = 1, \dots, n\}$. Let $M = M(b, Q_1) = |Q_1|^{-1} \int_{Q_1} |b(y) - a_0| \, dy$. Since $[K, B - a_0] = [K, B]$, we may assume $a_0 = 0$. Let ψ be such that

$$\|\psi\|_{{\scriptscriptstyle L^{\infty}}}=1$$
 , $\mathrm{supp}\,\psi\subset Q_{{\scriptscriptstyle 1}}$, $\int\!\psi\,dx=0$,

$$\psi(x)b(x) \geqq 0$$
 $\mid Q_{\scriptscriptstyle 1} \mid^{\scriptscriptstyle -1} \!\! iggl(\psi(x)b(x) dx = M egin{array}{c} . \end{array}$

and

Let \sum_K , a closed subset of $\sum = \{x \in R^n \mid |x| = 1\}$, and A_1 , a positive number, be such that $m(\sum_K) > 0$, where m is the measure on \sum which is induced from the Lebesgue measure on R^n , and $|\Omega(x) - \Omega(y)| < 2^{-1}\Omega(x)$ for every $x \in \sum_K$ and every $y \in \sum$ satisfying $|x - y| < A_1$. Then for $x \in G = \{x \in R^n \mid |x| > A_2 = 2A_1^{-1} + 1 \text{ and } |x|^{-1}x \in \sum_K\}$

$$|[K, B]\psi(x)| \ge |K(b\psi)(x)| - |b(x)K(\psi)(x)|$$

 $\ge A_3M|x|^{-n} - A_4|b(x)||x|^{-n-1}.$

Let

$$F = \{x \in G \mid |b(x)| > (MA_3/2A_4) \mid x \mid \text{ and } \mid x \mid < M^{p'/n} \}$$
,

where $p^{-1} + p'^{-1} = 1$, then

$$\begin{split} 1 & \geqq \int_{\mathbb{R}^n} |[K,\,B] \psi(x)|^p \, dx \\ & \geqq \int_{(G \setminus F) \cap \{|x| < M^{p''}n\}} (2^{-1}A_3M \, |x|^{-n})^p dx \\ & \geqq \int_{(A_5 (|F| + A_2^n)^{1/n} < |x| < M^{p''}n\} \cap G} (2^{-1}A_3M \, |x|^{-n})^p dx \; . \end{split}$$

Thus

$$|F| \ge A_6 M^{p'} - A_2^n \ge A_6 M^{p'}/2$$
 if $M > (2A_2^n A_6^{-1})^{1/p'}$.

Let $g(x) = (\operatorname{sgn}(b(x)K(x)))\chi_{\scriptscriptstyle F}(x)$, then for $x \in Q_{\scriptscriptstyle 1}$

$$|[K^*, B]g(x)| \ge A_7 \int_F |y|^{-n} (A_3 M/2 A_4) |y| dy - |b(x)| |K^*(g)(x)|$$

 $\ge A_8 M^{1+p'/n} - A_9 |b(x)| \log M$,

where $K^*f(x) = P.V. \int \Omega(y-x) |y-x|^{-n} f(y) dy$. Since $[K^*, B]$ is the adjoint operator of $[K, B], ||[K^*, B]||_{(p')} = 1$. Thus

$$egin{aligned} A_{10}M &\geq ||g||_{p'} \geq ||[K^*,\,B]g||_{p'} \ &\geq \int_{Q_1} |[K^*,\,B]g(x)|\,dx \ &\geq \int_{Q_1\cap\{b(x)<2M\}} |[K^*,\,B]g(x)|\,dx \ &\geq 2^{-1}(A_8M^{1+p'/n}-2A_9M\log M) \;. \end{aligned}$$

Then, $M \leq A(K, p)$.

COROLLARY. For f in $H^{1}(\mathbb{R}^{n})$

$$egin{aligned} A(K)\,||\,f\,||_{H^1} & \leq \inf\left\{\sum_{i=1}^\infty\,||\,g_i\,||_{L^2}\,||\,h_i\,||_{L^2}\,|
ight.\ f & = \sum_{i=1}^\infty\,(g_iK(h_i)\,-\,K^*(g_i)h_i)
ight\} \leq A(K)'||\,f\,||_{H^1} \;. \end{aligned}$$

For the definition of $H^1(\mathbb{R}^n)$ we refer to [2]. The corollary will be proved in the same way as in Theorem II of [1] using Theorem A' and Theorem 1.

- 3. Lemma. Let $f \in BMO$. Then $f \in CMO$ if and only if f satisfies the following three conditions.
 - (i) $\lim_{A \to 0} \sup_{A \to 0} M(f, Q) = 0$.
 - (ii) $\lim_{a \uparrow \infty} \sup_{|Q|=a} M(f, Q) = 0$.
 - (iii) $\lim_{x\to\infty} M(f, Q+x) = 0$ for each Q.

This lemma, which seems to be due to Herz, Strichartz and Sarason, is announced in Neri [6] without proof.

PROOF. In this proof A is a positive constant depending only on n. From the definition of CMO, it is trivial that CMO satisfies (i) (ii) and (iii). In the following we prove that if f satisfies (i) (ii) and (iii), then for any $\varepsilon > 0$ there exists $g_{\varepsilon} \in \mathrm{BMO}$ such that

$$\inf_{h \in \mathscr{Q}} ||g_{arepsilon} - h||_{ ext{BMO}} < A arepsilon$$
 .

and

$$||g_{\varepsilon} - f||_{\scriptscriptstyle \mathrm{BMO}} < A \varepsilon$$
 .

From (i) and (ii) there exist i_{ε} and k_{ε} such that

$$\sup \{M(f,Q) | |Q| \leq 2^{ni_{\varepsilon}}\} < \varepsilon$$

and

$$\sup \{M(f,Q) | |Q| \ge 2^{nk_{\varepsilon}}\} < \varepsilon.$$

From (i), (ii) and (iii) there exists j_{ϵ} such that $j_{\epsilon} > i_{\epsilon}$, k_{ϵ} and

$$\sup \{ \mathit{M}(f, \mathit{Q}) \, | \, \mathit{Q} \cap \mathit{R}_{j_{\epsilon}} = \varnothing \} < \varepsilon$$
 .

We define Q_x as follows. If $x \in R_{j_{\epsilon}}$, Q_x means the dyadic cube of side length $2^{i_{\epsilon}}$ that contains x. If $x \in R_m \backslash R_{m-1}$ where $j_{\epsilon} < m$, Q_x means the dyadic cube of side length $2^{i_{\epsilon}+m-j_{\epsilon}}$. We set $g'_{\epsilon}(x) = m(f, Q_x)$. From (ii) there exists $m_{\epsilon} > j_{\epsilon}$ such that

$$\sup\{|g_{\varepsilon}'(x)-g_{\varepsilon}'(y)|\,|\,x,\,y\in R_{m_{\varepsilon}}\backslash R_{m_{\varepsilon}-1}\}<\varepsilon\;.$$

If $x \in R_{m_{\varepsilon}}$, we define $g_{\varepsilon}(x) = g'_{\varepsilon}(x)$ and if $x \in R_{m_{\varepsilon}}$, we define $g_{\varepsilon}(x) =$

 $m(f, R_{m_{\varepsilon}} \setminus R_{m_{\varepsilon}-1})$. Note the fact that

$$\text{if} \quad \bar{Q}_x \cap \bar{Q}_y \neq \varnothing \; , \quad \text{diam } Q_x \leqq 2 \; \text{diam } Q_y \; .$$

Then by the definition of i_{ε} , j_{ε} and m_{ε} , if $\bar{Q}_x \cap \bar{Q}_y \neq \emptyset$ or $x, y \in R^c_{m_{\varepsilon}-1}$, then

$$|g_{\varepsilon}(x) - g_{\varepsilon}(y)| < A\varepsilon.$$

Thus (1) is obvious. From the definition of i_{ε} and j_{ε}

$$\int_{Q_x} |f(y) - g_{\varepsilon}(y)| \, dy \le A\varepsilon \, |Q_x|$$

for every $x \in R_{m_{\varepsilon}}$. Let Q be an arbitrary cube in R^n . First we consider the case such that $Q \subset R_{m_{\varepsilon}}$ and max $\{\text{diam } Q_x | Q_x \cap Q \neq \emptyset\} > 4 \text{ diam } Q$. Then by (3) the number of Q_x such that $Q_x \cap Q \neq \emptyset$ is bounded by A, and if $Q \cap R_{j_{\varepsilon}} \neq \emptyset$, |Q| is less than $2^{n_{\varepsilon}}$. Thus from (4) and the definition of i_{ε} and j_{ε} , $M(f - g_{\varepsilon}, Q) < A\varepsilon$. Second if $Q \subset R_{m_{\varepsilon}}$ and max $\{\text{diam } Q_x | Q_x \cap Q \neq \emptyset\} \leq 4 \text{ diam } Q$,

$$M(f-g_{\epsilon},Q) \leq |Q|^{-1} \sum_{Q_{\sigma} \cap Q \neq \phi} \int_{Q_{\sigma}} |f(y)-g_{\epsilon}(y)| \, dy \leq A \varepsilon$$

by (5). Third if $Q \subset R_{m_{\varepsilon-1}}^c$, by the definition of m_{ε}

$$M(f-g_{\varepsilon},Q) \leq M(f,Q) + A\varepsilon \leq (1+A)\varepsilon$$
.

Lastly we consider the case $Q \cap R_{m_{\varepsilon}}^{e} \neq \emptyset$ and $Q \cap R_{m_{\varepsilon-1}} \neq \emptyset$. Let p_{Q} be the smallest integer satisfying $Q \subset R_{p_{Q}}$, then

$$M(f-g_{\epsilon},Q) \leq AM(f-g_{\epsilon},R_{p_{Q}})$$
.

Since $m_{\varepsilon} > k_{\varepsilon}$, $|m(f, R_q) - m(f, R_{q-1})| < A\varepsilon$ for every integer q such that $m_{\varepsilon} \leq q$. Then

$$egin{aligned} M(f-g_{\epsilon},R_{p_{Q}})|R_{p_{Q}}| & \leq \int_{R_{p_{Q}}\setminus R_{m_{arepsilon}}} |f(y)-m(f,R_{p_{Q}})|\,dy \ & + |m(f,R_{p_{Q}})-m(f,R_{m_{arepsilon}}\setminus R_{m_{arepsilon}})|\,|R_{m_{arepsilon}}| + \sum_{Q_{oldsymbol{x}} \subset R_{m_{arepsilon}}} \int_{Q_{oldsymbol{x}}} |f(y)-g_{arepsilon}(y)|\,dy \ & \leq & arepsilon \, |R_{p_{Q}}| + Aarepsilon(p_{Q}-m_{arepsilon})\,|R_{m_{arepsilon}}| + Aarepsilon \, |R_{m_{arepsilon}}| \ & \leq & (1+2A)arepsilon \, |R_{p_{Q}}| \ . \end{aligned}$$

Thus (2) is proved.

THEOREM 2. Let $b \in \bigcup_{q>1} L^q_{loc}(R^n)$. Then [K, B] is a compact operator from L^p to itself, $1 , if and only if <math>b \in CMO$.

PROOF. If [K, B] is a compact operator, then from Theorem 1 $b \in BMO$. Thus we may assume $||b||_{BMO} = 1$. First suppose that b does

not satisfy (i) of the previous lemma. Then there exist $\delta > 0$ and a sequence of cubes $\{Q_i\}_{i=1}^{\infty}$ such that

(11)
$$M(b, Q_i) > \delta$$

for every j and $\lim_{j\to\infty}q_j=0$ where q_j is the diameter of Q_j . In the following for $i=20,\,\cdots,\,36$ A_i is a positive constant depending only on $K,\,p,\,\delta$ and $A_j(20\leqq j< i)$. Let b_j be a real number such that $M(b,\,Q_j)=|Q_j|^{-1}\int_{Q_j}|b(y)-b_j|\,dy$ and x_j the center of Q_j . We define f_j as follows

$$(12) f_i(b-b_i) \ge 0 ,$$

$$\operatorname{supp} f_i \subset Q_i$$

$$\int f_j \, dy = 0$$

and

$$|f_i(y)| = |Q_i|^{-1/p}$$

for every $y \in Q_j$. Note that $[K, B]f = K((b - b_j)f) - (b - b_j)K(f)$. From (13) and (15)

$$|K((b-b_j)f_j)(y)| \leq A_{2^n} |Q_j|^{1-1/p} |x_j-y|^{-n}$$

for $y \notin A_{2i}Q_j$. By (11), (12) and the continuity of the kernel

$$|K((b-b_j)f_j)(y)| \ge A_{22}\delta |Q_j|^{1-1/p} |x_j-y|^{-n}$$

for $y \in (A_{2i}Q_j)^{\circ} \cap \{y \mid |x_j - y|^{-1}(x_j - y) \in \sum_K\}$, where \sum_K is as in the proof of Theorem 1. On the other hand, by (14) and the smoothness of the kernel

$$|(b(y) - b_j)K(f_j)(y)| \le A_{23} |b(y) - b_j| |x_j - y|^{-n-1} q_j |Q_j|^{1-1/p}$$

for $y \notin A_{21}Q_j$. Since $||b||_{BMO} = 1$,

$$\int_{R(x_j,2^kq_j,2^{k+1}q_j)} |b(y)-b_j|^p \, dy \leqq A_{24} 2^{kn} |Q_j| \, k^p .$$

[See for example [2][4].] Thus if $\alpha > A_{21}$

$$egin{aligned} & \int_{|x_j-y|>lpha q_j} |(b(y)-b_j)K(f_j)(y)|^p \, dy \ & \leq A_{23}^p A_{24} q_j^p \, |Q_j|^{p-1} \sum_{k=\log lpha}^\infty (2^k q_j)^{-p(n+1)} 2^{kn} \, |Q_j| \, k^p \ & \leq A_{25} \sum_{k=\log lpha}^\infty k^p 2^{-k(pn+p-n)} \end{aligned}$$

$$\leq A_{26} \sum_{k=\log lpha}^{\infty} 2^{-k(pn+p-n-p/2)} \ \leq A_{27} lpha^{-((p-1)n+p/2)} \ .$$

Then from (17), for $eta>lpha>A_{\scriptscriptstyle 21}$

$$egin{aligned} \left(\int_{R(x_j, \alpha q_j, \beta q_j)} |[K, B] f_j|^p \, dy
ight)^{1/p} \ & \geq A_{28} \delta(lpha^{-p_n+n} - eta^{-p_n+n})^{1/p} - A_{27}^{1/p} lpha^{-(1/2+n(p-1)/p)} \; . \end{aligned}$$

So from (16) there exist A_{29} , A_{30} and A_{31} satisfying

(19)
$$2 < A_{\scriptscriptstyle 29} < A_{\scriptscriptstyle 30}, \\ \int_{R^{(x_j,A_{\scriptscriptstyle 29}q_j,A_{\scriptscriptstyle 30}q_j)}} \lvert [K,B] f_j \rvert^p \, dy \geqq A_{\scriptscriptstyle 31}$$

and

(20)
$$\int_{|x_j-y|>A_{30}q_j} |[K, B]f_j|^p dy \leq A_{31}/4.$$

By the result of [2] and [4],

$$|\{y\,|\,|\,b(y)-b_j|>u\,+\,A_{\scriptscriptstyle 32}\}\cap R(x_j,\,A_{\scriptscriptstyle 29}q_j,\,A_{\scriptscriptstyle 30}q_j)|\leqq A_{\scriptscriptstyle 33}\,|\,Q_j|\,e^{-A_{\scriptscriptstyle 34}u}$$
 .

Let $E \subset R(x_j, A_{20}q_j, A_{30}q_j)$ be an arbitrary measurable set. Then by (16), (18), (21) and $||b||_{\text{BMO}} = 1$

$$\int_{\scriptscriptstyle E} \! |[K,\, B] f_j|^p \, dy \le A_{\scriptscriptstyle 35} \, rac{|E|}{|Q_i|} \! \Big(\! 1 + \log^+ \! rac{|Q_j|}{|E|} \! \Big)^p \; .$$

Thus there exists A_{36} such that

$$\int_E \! |[K,\,B] f_j|^p \, dy < A_{\scriptscriptstyle 31}/4$$

for every measurable set E satisfying

$$E \subset R(x_j, A_{29}q_j, A_{30}q_j)$$
 and $|E| < A_{36}^n q_j^n$.

If we select a subsequence $\{Q_{j(k)}\}$ satisfying

$$q_{j(k+1)}/q_{j(k)} < A_{36}/A_{30} \; ,$$

then for m>0 using (19), (20) and (22) we get

$$egin{align*} ||[K,\,B]f_{j(k)}-[K,\,B]f_{j(k+m)}||_p^p \ &\geqq \int_{R^{(x_{j(k)},A_{20}q_{j(k)})\setminus R^{(x_{j(k+m)},0},A_{30}q_{j(k+m)})}} |[K,\,B]f_{j(k)}-[K,\,B]f_{j(k+m)}|^p\,dy \ &\geqq ((A_{31}/2)^{1/p}-(A_{31}/4)^{1/p})^p \ &\trianglerighteq ((1/2)^{1/p}-(1/4)^{1/p})^pA_{31} \,. \end{split}$$

Thus $\{[K, B]f_j\}_{j=1}^{\infty}$ is not relatively compact in L^p , i.e., [K, B] is not compact. Quite similarly we can prove that if b does not satisfy (ii) or (iii) of the previous lemma, [K, B] is not a compact operator.

Conversely, suppose that $b \in \text{CMO}$. Then for any $\varepsilon > 0$ there exists $b_{\varepsilon} \in \mathscr{D}$ such that $||b - b_{\varepsilon}||_{\text{BMO}} < \varepsilon$. By Theorem A'

$$||[K, B] - [K, B_{\varepsilon}]||_{(p)} < \varepsilon$$
 .

Thus for the proof of the converse part it suffices to prove that [K, B] is a compact operator for $b \in \mathcal{D}$. In the following for $i = 40, \dots, 48$ A_i is a positive constant depending only on b, p, K and A_j ($40 \le j < i$). It is clear that

$$||K, B|f(x)| \le A_{40} ||f||_{p} |x|^{-n}$$

for $|x| > A_4$ and from Theorem A'

(32)
$$||[K, B]f||_p \leq A_{42} ||f||_p.$$

Take an arbitrary $2^{-1} > \varepsilon > 0$ and $z \in \mathbb{R}^n$. Then,

$$[K, B]f(x) - [K, B]f(x + z)$$

$$= P. V. \int K(x - y)(b(y) - b(x))f(y)dy$$

$$- P. V. \int K(x + z - y)(b(y) - b(x + z))f(y)dy$$

$$= \int_{|x-y|>\varepsilon^{-1}|z|} K(x - y)(b(x + z) - b(x))f(y)dy$$

$$+ \int_{|x-y|>\varepsilon^{-1}|z|} (K(x - y) - K(x + z - y))(b(y) - b(x + z))f(y)dy$$

$$+ P. V. \int_{|x-y|<\varepsilon^{-1}|z|} K(x - y)(b(y) - b(x))f(y)dy$$

$$- P. V. \int_{|x-y|<\varepsilon^{-1}|z|} K(x + z - y)(b(y) - b(x + z))f(y)dy.$$

The first term of (33) is dominated by

$$|b(x+z)-b(x)|K_*(f)(x)$$

where $K_*(f)(x) = \sup_{\eta>0} \left| \int_{|x-y|>\eta} K(x-y) f(y) dy \right|$. The second term is dominated by

$$A_{43} \! \int_{|x-y|>\varepsilon^{-1}|z|} \! |z| |x-y|^{-n-1} |f(y)| \, dy$$
 .

The last two terms are dominated by

$$egin{align} A_{44} & \left(\int_{|x-y| < arepsilon^{-1}|z|} |x-y|^{-n+1} |f(y)| \, dy
ight. \ & + \int_{|x-y| < arepsilon^{-1}|z|} |x+z-y|^{-n+1} |f(y)| \, dy \; .
ight) \end{array}$$

Note that $\int_{\|y\|>arepsilon^{-1}|z|}|z|\,|y|^{-n-1}dy=A_{4\delta}arepsilon$,

$$\int_{|y| , $||K_*(f)||_p \leq A_{47}\,||f||_p$$$

[see [8], p42] and that b is uniformly continuous. Then by taking |z| sufficiently small depending on ε , we can get

(34)
$$\left(\int |[K,B]f(x)-[K,B]f(x+z)|^p dx \right)^{1/p} \leq \varepsilon A_{48} ||f||_p.$$

Thus from (31), (32), (34) and the theorem of Frechet-Kolmogorov ([9], p275), [K, B] is a compact operator.

REFERENCES

- R. R. COIFMAN, R. ROCHBERG AND G. WEISS, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635.
- [2] C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137-193.
- [3] P. Hartman, On completely continuous Hankel matrices, Proc. Amer. Math. Soc. 9 (1958), 862-866.
- [4] F. JOHN AND L. NIREMBERG, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426.
- [5] Z. NEHARI, On bounded bilinear forms, Ann. of Math. 65 (1957), 153-162.
- [6] U. NERI, Fractional integration on the space H^1 and its dual, Studia Math., LIII (1975), 175-189.
- [7] D. SARASON, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405.
- [8] E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press. 1970.
- [9] K. Yosida, Functional Analysis, Springer, 1968.

MATHEMATICAL INSTITUTE

Tôhoku University

SENDAI, JAPAN

