ON THE COMPACTNESS OF OPERATORS OF HANKEL TYPE

Akihito Uchiyama

(Received December 22, 1976)

1. Introduction. Let P be the orthogonal projection from $L^{2}(T)$ onto $H^{2}(T)$, where $T=\{z \in C| | z \mid=1\}$ and $H^{2}(T)$ is the Hardy space on T, that is, $\left\{f \in L^{2}(T) \mid \int_{T} f\left(e^{i \theta}\right) e^{-i k \theta} d \theta=0, k=-1,-2, \cdots\right\}$. For a function $\varphi \in H^{2}(T)$ satisfying $\int_{\rho} \rho d \theta=0$ the Hankel operator L_{φ} is defined by $L_{\varphi}(\psi)=P(\rho \bar{\psi}), \psi \in H^{2}(T) \cap L^{\infty}(T)$, where the bar denotes complex conjugation.

Nehari [5], Hartman [3], and Coifman, Rochberg and Weiss [1] considered some properties of the Hankel operators. In this paper we are concerned with the following theorems.

Theorem A ([5], [2]). $\quad L_{\varphi}$ is a bounded operator from H^{2} to H^{2} if and only if $\varphi \in \mathrm{BMO}$. Furthermore the operator norm $\left\|L_{\varphi}\right\|$ is equivalent to $\|\varphi\|_{\text {вмо }}$.

THEOREM B ([3], [7]). L_{φ} is a compact operator if and only if $\varphi \in$ CMO.

The definitions of BMO, BMO-norm and CMO will be given at the end of Section 1. We note that more general situations are considered in [1].

In the following all the functions considered will be real valued functions defined on R^{n}. For a measurable function b we define $B(f)=b f$. As pointed out in [1] for the one dimensional case the study of $[H, B]=H B-B H$, where H is the Hilbert transform, is often essentially equivalent to that of L_{φ}.

Suppose that K is a Caldéron-Zygmund singular integral operator with smooth kernel. That is, there is an $\Omega(x)$ which is homogeneous of degree zero, which satisfies $\int_{|x|=1} \Omega=0, \Omega \not \equiv 0$ and $|\Omega(x)-\Omega(y)| \leqq|x-y|$ when $|x|=|y|=1$, and that

$$
(K f)(x)=P \cdot V \cdot \int \frac{\Omega(x-y)}{|x-y|^{n}} f(y) d y
$$

Theorem A^{\prime} ([1]). If b is in BMO, then $[K, B]$ is a bounded map of $L^{p}\left(R^{n}\right)$ to itself, $1<p<\infty$, with operator norm $\|[K, B]\|_{(p)} \leqq C_{K, p}\|b\|_{\text {вмо }}$. Conversely, if $\left[B, R_{i}\right]$, where $R_{1}, R_{2}, \cdots, R_{n}$ are the Riesz transforms,
are bounded on $L^{p}\left(R^{n}\right)$ for some $p, 1<p<\infty$ and $i=1, \cdots, n$ then b is in BMO and $\|b\|_{\text {вмо }} \leqq A \sum_{i=1}^{n}\left\|\left[B, R_{i}\right]\right\|_{(p)}$.

We shall improve Theorem A^{\prime} in Section 2 and extend Theorem B on R^{n} in Section 3. In the latter case we shall find some difficulties in the functions of CMO over R^{n} which do not occur in the unit circle case. To avoid it we shall use the characterization of CMO over R^{n} which is announced in Neri [6].

Notation. i, j, k and m mean always integers. A dyadic cube is a cube of the form $\left\{x=\left(x_{1}, \cdots, x_{n}\right) \in R^{n} \mid k_{i} 2^{j} \leqq x_{i}<\left(k_{i}+1\right) 2^{j}\right.$ for $\left.i=1, \cdots, n\right\}$. For a measurable set $E,|E|, m(f, E), \bar{E}$ and χ_{E} mean the Lebesgue measure of $E,|E|^{-1} \int_{E} f(y) d y$, the closure of E and the characteristic function of E respectively. For a cube Q in $R^{n}, M(f, Q)$ means $\inf \left\{|Q|^{-1} \int_{Q}|f(y)-c| d y \mid c \in R\right\} . \quad R_{p}$ and $R(x, a, b)$ mean $\left\{x \in R^{n}| | x_{i} \mid<2^{p}\right.$ for $i=1, \cdots, n\}$ and $\left\{y \in R^{n}|a<|x-y|<b\}\right.$ respectively.

Definition. For $f \in L_{\text {ioc }}^{1}\left(R^{n}\right),\|f\|_{\text {вмо }}$ will denote $\sup \{M(f, Q) \mid Q$ is a cube in $\left.R^{n}\right\}$. Identifying functions which differ by a constant, the set of functions satisfying $\|f\|_{\text {вмо }}<\infty$ is a Banach space under the norm $\|\cdot\|_{\text {вмо }}$ and we call this space BMO. The BMO-closure of \mathscr{D}, where \mathscr{D} is the set of C^{∞}-functions with compact support, is denoted by CMO. [See [6], p 186.]
2. Theorem 1. Let $1<p<\infty$ and $b \in \bigcup_{q>1} L_{\text {ioc }}^{q}\left(R^{n}\right)$. Then $\|b\|_{\text {вмо }} \leqq$ $A(p, K)\|[K, B]\|_{(p)}$.

Proof. In this proof for $i=1, \cdots, 10 A_{i}$ is a positive constant depending only on K, p and $A_{j}(1 \leqq j<i)$. We may assume $\|[K, B]\|_{(p)}=1$. We want to prove

$$
\begin{equation*}
\sup _{Q} M(b, Q) \leqq A(p, K) \tag{*}
\end{equation*}
$$

Since $\|[K, B]\|_{(p)}=\left\|\left[K, B_{r, x_{0}}\right]\right\|_{(p)}$ for every $x_{0} \in R^{n}$ and $r \in R_{+}$, where $B_{r, x_{0}}(f)(x)=b\left(r^{-1} x+x_{0}\right) f(x)$, it suffices to prove the inequality (*) for $Q=Q_{1}=\left\{x \in R^{n}| | x_{j} \mid<(2 \sqrt{n})^{-1}\right.$ for $\left.j=1, \cdots, n\right\}$. Let $M=M\left(b, Q_{1}\right)=\left|Q_{1}\right|^{-1}$ $\int_{Q_{1}}\left|b(y)-a_{0}\right| d y$. Since $\left[K, B-a_{0}\right]=[K, B]$, we may assume $a_{0}=0$. Let
ψ.

$$
\begin{aligned}
& \|\psi\|_{L^{\infty}}=1 \\
& \operatorname{supp} \psi \subset Q_{1} \\
& \int \psi d x=0
\end{aligned}
$$

and

$$
\begin{gathered}
\psi(x) b(x) \geqq 0 \\
\left|Q_{1}\right|^{-1} \int \psi(x) b(x) d x=M
\end{gathered}
$$

Let \sum_{K}, a closed subset of $\Sigma=\left\{x \in R^{n}| | x \mid=1\right\}$, and A_{1}, a positive number, be such that $m\left(\sum_{K}\right)>0$, where m is the measure on \sum which is induced from the Lebesgue measure on R^{n}, and $|\Omega(x)-\Omega(y)|<2^{-1} \Omega(x)$ for every $x \in \sum_{K}$ and every $y \in \sum$ satisfying $|x-y|<A_{1}$. Then for $x \in G=\left\{x \in R^{n}| | x \mid>A_{2}=2 A_{1}^{-1}+1\right.$ and $\left.|x|^{-1} x \in \sum_{k}\right\}$

$$
\begin{gathered}
|[K, B] \psi(x)| \geqq|K(b \psi)(x)|-|b(x) K(\psi)(x)| \\
\geqq A_{3} M|x|^{-n}-A_{4}|b(x)||x|^{-n-1}
\end{gathered}
$$

Let $\quad F=\left\{x \in G| | b(x)\left|>\left(M A_{3} / 2 A_{4}\right)\right| x \mid\right.$ and $\left.|x|<M^{p^{\prime} / n}\right\}$,
where $p^{-1}+p^{\prime-1}=1$, then

$$
\begin{aligned}
1 & \geqq \int_{R^{n}}|[K, B] \psi(x)|^{p} d x \\
& \geqq \int_{(G \backslash F) \cap| | x \mid<M^{p^{\prime} / n}}\left(2^{-1} A_{3} M|x|^{-n}\right)^{p} d x \\
& \geqq \int_{\mid A_{5}^{\left(\left||F|+A_{2}^{n}\right)^{1 / n}<|x|<M^{p^{\prime} / n_{1 \cap G}}\right.}}\left(2^{-1} A_{3} M|x|^{-n}\right)^{p} d x
\end{aligned}
$$

Thus

$$
|F| \geqq A_{6} M^{p^{\prime}}-A_{2}^{n} \geqq A_{6} M^{p^{\prime}} / 2 \quad \text { if } M>\left(2 A_{2}^{n} A_{6}^{-1}\right)^{1 / p^{\prime}} .
$$

Let $g(x)=(\operatorname{sgn}(b(x) K(x))) \chi_{F}(x)$, then for $x \in Q_{1}$

$$
\begin{gathered}
\left|\left[K^{*}, B\right] g(x)\right| \geqq A_{7} \int_{F}|y|^{-n}\left(A_{3} M / 2 A_{4}\right)|y| d y-|b(x)|\left|K^{*}(g)(x)\right| \\
\geqq A_{8} M^{1+p^{\prime} / n}-A_{9}|b(x)| \log M
\end{gathered}
$$

where $K^{*} f(x)=P . V \cdot \int \Omega(y-x)|y-x|^{-n} f(y) d y$. Since $\left[K^{*}, B\right]$ is the adjoint operator of $[K, B],\left\|\left[K^{*}, B\right]\right\|_{\left(p^{\prime}\right)}=1$. Thus

$$
\begin{aligned}
& A_{10} M \geqq\|g\|_{p^{\prime}} \geqq \mid\left\|\left[K^{*}, B\right] g\right\|_{p^{\prime}} \\
\geqq & \int_{Q_{1}}\left|\left[K^{*}, B\right] g(x)\right| d x \\
\geqq & \int_{Q_{1} \cap(b(x)<2 M)}\left|\left[K^{*}, B\right] g(x)\right| d x \\
\geqq & 2^{-1}\left(A_{8} M^{1+p^{\prime} / n}-2 A_{9} M \log M\right) .
\end{aligned}
$$

Then, $M \leqq A(K, p)$.
Corollary. For f in $H^{1}\left(R^{n}\right)$

$$
\begin{aligned}
& A(K)\|f\|_{H^{1}} \leqq \inf \left\{\sum_{i=1}^{\infty}\left\|g_{i}\right\|_{L^{2}}\left\|h_{i}\right\|_{L^{2}} \mid\right. \\
& \left.\quad f=\sum_{i=1}^{\infty}\left(g_{i} K\left(h_{i}\right)-K^{*}\left(g_{i}\right) h_{i}\right)\right\} \leqq A(K)^{\prime} \mid\|f\|_{H^{1}}
\end{aligned}
$$

For the definition of $H^{1}\left(R^{n}\right)$ we refer to [2]. The corollary will be proved in the same way as in Theorem II of [1] using Theorem A^{\prime} and Theorem 1.
3. Lemma. Let $f \in \operatorname{BMO}$. Then $f \in \mathrm{CMO}$ if and only if f satisfies the following three conditions.
(i) $\lim _{a \downarrow 0} \sup _{|Q|=a} M(f, Q)=0$.
(ii) $\lim _{a \neq \infty} \sup _{|Q|=a} M(f, Q)=0$.
(iii) $\lim _{x \rightarrow \infty} M(f, Q+x)=0$ for each Q.

This lemma, which seems to be due to Herz, Strichartz and Sarason, is announced in Neri [6] without proof.

Proof. In this proof A is a positive constant depending only on n. From the definition of CMO, it is trivial that CMO satisfies (i) (ii) and (iii). In the following we prove that if f satisfies (i) (ii) and (iii), then for any $\varepsilon>0$ there exists $g_{\varepsilon} \in$ BMO such that

$$
\begin{equation*}
\inf _{h \in \mathscr{G}}\left\|g_{\varepsilon}-h\right\|_{\text {вмо }}<A \varepsilon \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|g_{\varepsilon}-f\right\|_{\text {вмо }}<A \varepsilon \tag{2}
\end{equation*}
$$

From (i) and (ii) there exist i_{ε} and k_{ε} such that

$$
\sup \left\{M(f, Q)\left||Q| \leqq 2^{n i_{\varepsilon}}\right\}<\varepsilon\right.
$$

and

$$
\sup \left\{M(f, Q)\left||Q| \geqq 2^{n k_{c}}\right\}<\varepsilon\right.
$$

From (i), (ii) and (iii) there exists j_{ε} such that $j_{\varepsilon}>i_{s}, k_{\varepsilon}$ and

$$
\sup \left\{M(f, Q) \mid Q \cap R_{j_{\varepsilon}}=\varnothing\right\}<\varepsilon
$$

We define Q_{x} as follows. If $x \in R_{j_{e}}, Q_{x}$ means the dyadic cube of side length $2^{i^{e}}$ that contains x. If $x \in R_{m} \backslash R_{m-1}$ where $j_{\varepsilon}<m, Q_{x}$ means the dyadic cube of side length $2^{i_{e}+m-j_{s}}$. We set $g_{\varepsilon}^{\prime}(x)=m\left(f, Q_{x}\right)$. From (ii) there exists $m_{\varepsilon}>j_{\varepsilon}$ such that

$$
\sup \left\{\left|g_{s}^{\prime}(x)-g_{s}^{\prime}(y)\right| \mid x, y \in R_{m_{s}} \backslash R_{m_{\varepsilon}-1}\right\}<\varepsilon
$$

If $x \in R_{m_{s}}$, we define $g_{s}(x)=g_{\varepsilon}^{\prime}(x)$ and if $x \in R_{m_{\varepsilon}}{ }^{c}$, we define $g_{\varepsilon}(x)=$
$m\left(f, R_{m_{c}} \backslash R_{m_{\varepsilon}-1}\right)$. Note the fact that

$$
\begin{equation*}
\text { if } \quad \bar{Q}_{x} \cap \bar{Q}_{y} \neq \varnothing, \quad \operatorname{diam} Q_{x} \leqq 2 \operatorname{diam} Q_{y} \tag{3}
\end{equation*}
$$

Then by the definition of i_{s}, j_{ε} and m_{s}, if $\bar{Q}_{x} \cap \bar{Q}_{y} \neq \varnothing$ or $x, y \in R_{m_{\varepsilon}-1}^{c}$, then

$$
\begin{equation*}
\left|g_{\varepsilon}(x)-g_{\varepsilon}(y)\right|<A \varepsilon \tag{4}
\end{equation*}
$$

Thus (1) is obvious. From the definition of i_{ε} and j_{ε}

$$
\begin{equation*}
\int_{Q_{x}}\left|f(y)-g_{\varepsilon}(y)\right| d y \leqq A \varepsilon\left|Q_{x}\right| \tag{5}
\end{equation*}
$$

for every $x \in R_{m_{\varepsilon}}$. Let Q be an arbitrary cube in R^{n}. First we consider the case such that $Q \subset R_{m_{e}}$ and $\max \left\{\operatorname{diam} Q_{x} \mid Q_{x} \cap Q \neq \varnothing\right\}>4 \operatorname{diam} Q$. Then by (3) the number of Q_{x} such that $Q_{x} \cap Q \neq \varnothing$ is bounded by A, and if $Q \cap R_{j_{\varepsilon}} \neq \varnothing,|Q|$ is less than $2^{n i_{e}}$. Thus from (4) and the definition of i_{ε} and $j_{\varepsilon}, M\left(f-g_{\varepsilon}, Q\right)<A \varepsilon$. Second if $Q \subset R_{m_{\varepsilon}}$ and $\max \left\{\operatorname{diam} Q_{x} \mid Q_{x} \cap\right.$ $Q \neq \varnothing\} \leqq 4 \operatorname{diam} Q$,

$$
M\left(f-g_{\varepsilon}, Q\right) \leqq|Q|^{-1} \sum_{Q_{x} n_{Q \neq \phi}} \int_{Q_{x}}\left|f(y)-g_{\varepsilon}(y)\right| d y \leqq A \varepsilon
$$

by (5). Third if $Q \subset R_{m_{\varepsilon}-1}^{c}$, by the definition of m_{ε}

$$
M\left(f-g_{\varepsilon}, Q\right) \leqq M(f, Q)+A \varepsilon \leqq(1+A) \varepsilon .
$$

Lastly we consider the case $Q \cap R_{m_{\varepsilon}}^{c} \neq \varnothing$ and $Q \cap R_{m_{\varepsilon}-1} \neq \varnothing$. Let p_{Q} be the smallest integer satisfying $Q \subset R_{p_{Q}}$, then

$$
M\left(f-g_{\mathrm{s}}, Q\right) \leqq A M\left(f-g_{\mathrm{c}}, R_{p_{Q}}\right)
$$

Since $m_{\varepsilon}>k_{\varepsilon},\left|m\left(f, R_{q}\right)-m\left(f, R_{q-1}\right)\right|<A \varepsilon$ for every integer q such that $m_{\varepsilon} \leqq q$. Then

$$
\begin{aligned}
& M\left(f-g_{\varepsilon}, R_{p_{Q}}\right)\left|R_{p_{Q}}\right| \leqq \int_{R_{p_{Q}} \backslash R_{m_{\varepsilon}}}\left|f(y)-m\left(f, R_{p_{Q}}\right)\right| d y \\
& +\left|m\left(f, R_{p_{Q}}\right)-m\left(f, R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}\right)\right|\left|R_{m_{\varepsilon}}\right|+\sum_{Q_{x} \in R_{m_{\varepsilon}}} \int_{Q_{x}}\left|f(y)-g_{\varepsilon}(y)\right| d y \\
& \leqq \S\left|R_{p_{Q}}\right|+A \varepsilon\left(p_{Q}-m_{\varepsilon}\right)\left|R_{m_{\varepsilon}}\right|+A \varepsilon\left|R_{m_{\varepsilon}}\right| \\
& \leqq(1+2 A) \varepsilon\left|R_{p_{Q}}\right| .
\end{aligned}
$$

Thus (2) is proved.
THEOREM 2. Let $b \in \bigcup_{q>1} L_{\mathrm{ioc}}^{q}\left(R^{n}\right)$. Then $[K, B]$ is a compact operator from L^{p} to itself, $1<p<\infty$, if and only if $b \in$ CMO.

Proof. If $[K, B]$ is a compact operator, then from Theorem 1 $b \in$ BMO. Thus we may assume $\|b\|_{\text {вмо }}=1$. First suppose that b does
not satisfy (i) of the previous lemma. Then there exist $\hat{o}>0$ and a sequence of cubes $\left\{Q_{j}\right\}_{j=1}^{\infty}$ such that

$$
\begin{equation*}
M\left(b, Q_{j}\right)>\delta \tag{11}
\end{equation*}
$$

for every j and $\lim _{j \rightarrow \infty} q_{j}=0$ where q_{j} is the diameter of Q_{j}. In the following for $i=20, \cdots, 36 A_{i}$ is a positive constant depending only on K, p, δ and $A_{j}(20 \leqq j<i)$. Let b_{j} be a real number such that $M\left(b, Q_{j}\right)=\left|Q_{j}\right|^{-1} \int_{Q_{j}}\left|b(y)-b_{j}\right| d y$ and x_{i} the center of Q_{j}. We define f_{j} as follows

$$
\begin{gather*}
f_{j}\left(b-b_{j}\right) \geqq 0 \tag{12}\\
\operatorname{supp} f_{j} \subset Q_{j} \tag{13}\\
\int f_{j} d y=0 \tag{14}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|f_{j}(y)\right|=\left|Q_{j}\right|^{-1 / p} \tag{15}
\end{equation*}
$$

for every $y \in Q_{j}$. Note that $[K, B] f=K\left(\left(b-b_{j}\right) f\right)-\left(b-b_{j}\right) K(f)$. From (13) and (15)

$$
\begin{equation*}
\left|K\left(\left(b-b_{j}\right) f_{j}\right)(y)\right| \leqq A_{2 n}\left|Q_{j}\right|^{1-1 / p}\left|x_{j}-y\right|^{-n} \tag{16}
\end{equation*}
$$

for $y \notin A_{21} Q_{j} . \quad$ By (11), (12) and the continuity of the kernel

$$
\begin{equation*}
\left|K\left(\left(b-b_{j}\right) f_{j}\right)(y)\right| \geqq A_{22} \delta\left|Q_{j}\right|^{1-1 / p}\left|x_{j}-y\right|^{-n} \tag{17}
\end{equation*}
$$

for $y \in\left(A_{21} Q_{j}\right)^{e} \cap\left\{y \| x_{j}-\left.y\right|^{-1}\left(x_{j}-y\right) \in \sum_{K}\right\}$, where \sum_{K} is as in the proof of Theorem 1. On the other hand, by (14) and the smoothness of the kernel

$$
\begin{equation*}
\left|\left(b(y)-b_{j}\right) K\left(f_{j}\right)(y)\right| \leqq A_{23}\left|b(y)-b_{j}\right|\left|x_{j}-y\right|^{-n-1} q_{j}\left|Q_{j}\right|^{1-1 / p} \tag{18}
\end{equation*}
$$

for $y \notin A_{21} Q_{j}$. \quad Since $\|b\|_{\text {вмо }}=1$,

$$
\int_{R\left(x_{j}, 2^{k} q_{j}, 2^{k+1}{ }_{q_{j}}\right)}\left|b(y)-b_{j}\right|^{p} d y \leqq A_{24}{ }^{k n}\left|Q_{j}\right| k^{p}
$$

[See for example [2][4].] Thus if $\alpha>A_{21}$

$$
\begin{aligned}
& \int_{\left|x_{j}-y\right|>\alpha q_{j}}\left|\left(b(y)-b_{j}\right) K\left(f_{j}\right)(y)\right|^{p} d y \\
& \quad \leqq A_{23}^{p} A_{24} q_{j}^{p}\left|Q_{j}\right|^{p-1} \sum_{k=10 \mathrm{log} \alpha}^{\infty}\left(2^{k} q_{j}\right)^{-p(n+1)} 2^{k n}\left|Q_{j}\right| k^{p} \\
& \quad \leqq A_{25} \sum_{k=10 g \alpha}^{\infty} l k^{p} 2^{-k(p n+p-n)}
\end{aligned}
$$

$$
\begin{aligned}
& \leqq A_{28} \sum_{k=\log \alpha}^{\infty} 2^{-k\{p n+p-n-p / 2\}} \\
& \leqq A_{27} \alpha^{-((p-1) n+p / 2)}
\end{aligned}
$$

Then from (17), for $\beta>\alpha>A_{21}$

$$
\begin{aligned}
& \left(\int_{R\left(x_{j}, \alpha q_{j}, \beta q_{j}\right)}\left|[K, B] f_{j}\right|^{p} d y\right)^{1 / p} \\
& \quad \geqq A_{28} \delta\left(\alpha^{-p n+n}-\beta^{-p n+n}\right)^{1 / p}-A_{27}^{11 p} \alpha^{-(1 / 2+n(p-1) / p)}
\end{aligned}
$$

So from (16) there exist A_{29}, A_{30} and A_{31} satisfying

$$
\begin{align*}
2< & A_{29}<A_{30}, \tag{19}\\
& \int_{R\left(x_{j}, A_{29} q_{j}, A_{30} q_{j}\right)}\left|[K, B] f_{j}\right|^{p} d y \geqq A_{31}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\left|x_{j}-y\right|>A_{30} q_{j}}\left|[K, B] f_{j}\right|^{p} d y \leqq A_{31} / 4 \tag{20}
\end{equation*}
$$

By the result of [2] and [4],
(21) $\quad\left|\left\{y\left|\left|b(y)-b_{j}\right|>u+A_{32}\right\} \cap R\left(x_{j}, A_{29} q_{j}, A_{30} q_{j}\right)\left|\leqq A_{33}\right| Q_{j} \mid e^{-A_{34} u}\right.\right.$.

Let $E \subset R\left(x_{j}, A_{29} q_{j}, A_{30} q_{j}\right)$ be an arbitrary measurable set. Then by (16), (18), (21) and $\|b\|_{\text {Вмо }}=1$

$$
\int_{E}\left|[K, B] f_{j}\right|^{p} d y \leqq A_{35} \frac{|E|}{\left|Q_{j}\right|}\left(1+\log ^{+} \frac{\left|Q_{j}\right|}{|E|}\right)^{p}
$$

Thus there exists A_{38} such that

$$
\int_{E}\left|[K, B] f_{j}\right|^{p} d y<A_{31} / 4
$$

for every measurable set E satisfying

$$
E \subset R\left(x_{j}, A_{29} q_{j}, A_{30} q_{j}\right) \text { and }|E|<A_{30}^{n} q_{j}^{n}
$$

If we select a subsequence $\left\{Q_{j(k)}\right\}$ satisfying

$$
\begin{equation*}
q_{j(k+1)} / q_{j(k)}<A_{36} / A_{30} \tag{22}
\end{equation*}
$$

then for $m>0$ using (19), (20) and (22) we get

$$
\begin{aligned}
& \left\|[K, B] f_{j(k)}-[K, B] f_{j(k+m)}\right\|_{p}^{p} \\
& \quad \geqq \int_{R\left(x_{j(k)}, A_{29} q_{j(k)}, A_{30} q_{j(k)}\right) \backslash R\left(x_{j(k+m), 0, A_{30} q_{j(k+m)}}\left[[K, B] f_{j(k)}-[K, B] f_{j(k+m)}\right)^{p} d y\right.} \quad \geqq\left(\left(A_{31} / 2\right)^{1 / p}-\left(A_{31} / 4\right)^{1 / p}\right)^{p} \\
& \quad \geqq\left((1 / 2)^{1 / p}-(1 / 4)^{1 / p}\right)^{p} A_{31}
\end{aligned}
$$

Thus $\left\{[K, B] f_{j}\right\}_{j=1}^{\infty}$ is not relatively compact in L^{p}, i.e., $[K, B]$ is not compact. Quite similarly we can prove that if b does not satisfy (ii) or (iii) of the previous lemma, $[K, B]$ is not a compact operator.

Conversely, suppose that $b \in$ CMO. Then for any $\varepsilon>0$ there exists $b_{\varepsilon} \in \mathscr{D}$ such that $\left\|b-b_{s}\right\|_{\text {вмо }}<\varepsilon$. By Theorem A^{\prime}

$$
\left\|[K, B]-\left[K, B_{\varepsilon}\right]\right\|_{(p)}<\varepsilon .
$$

Thus for the proof of the converse part it suffices to prove that $[K, B]$ is a compact operator for $b \in \mathscr{D}$. In the following for $i=40, \cdots, 48 A_{i}$ is a positive constant depending only on b, p, K and $A_{j}(40 \leqq j<i)$. It is clear that

$$
\begin{equation*}
|[K, B] f(x)| \leqq A_{40}\|f\|_{p}|x|^{-n} \tag{31}
\end{equation*}
$$

for $|x|>A_{41}$ and from Theorem A^{\prime}

$$
\begin{equation*}
\|[K, B] f\|_{p} \leqq A_{42}\|f\|_{p} \tag{32}
\end{equation*}
$$

Take an arbitrary $2^{-1}>\varepsilon>0$ and $z \in R^{n}$. Then,

$$
\begin{aligned}
& {[K, B] } f(x)-[K, B] f(x+z) \\
& \quad=P \cdot V \cdot \int K(x-y)(b(y)-b(x)) f(y) d y \\
& \quad-P \cdot V \cdot \int K(x+z-y)(b(y)-b(x+z)) f(y) d y \\
& \quad=\int_{|x-y|>\varepsilon^{-1}|z|} K(x-y)(b(x+z)-b(x)) f(y) d y \\
& \quad+\int_{|x-y|>\varepsilon^{-1}|z|}(K(x-y)-K(x+z-y))(b(y)-b(x+z)) f(y) d y \\
& \quad+P \cdot V \cdot \int_{|x-y|<\varepsilon^{-1}|z|} K(x-y)(b(y)-b(x)) f(y) d y \\
&-P \cdot V \cdot \int_{|x-y|<\varepsilon^{-1}|z|} K(x+z-y)(b(y)-b(x+z)) f(y) d y
\end{aligned}
$$

The first term of (33) is dominated by

$$
|b(x+z)-b(x)| K_{*}(f)(x)
$$

where $K_{*}(f)(x)=\sup _{\eta>0}\left|\int_{|x-y|>\eta} K(x-y) f(y) d y\right|$. The second term is dominated by

$$
A_{t s} \int_{|x-y|>\varepsilon}^{-1|z|}|z||x-y|^{-n-1}|f(y)| d y .
$$

The last two terms are dominated by

$$
\begin{aligned}
& A_{44}\left(\int_{|x-y|<\varepsilon-1|z|}|x-y|^{-n+1}|f(y)| d y\right. \\
& \left.\quad+\int_{|x-y|<s^{-1}|z|}|x+z-y|^{-n+1}|f(y)| d y .\right)
\end{aligned}
$$

Note that $\int_{|y|>\varepsilon^{-1}|z|}|z||y|^{-n-1} d y=A_{45} \varepsilon$,

$$
\begin{gathered}
\int_{|y|<\varepsilon^{-1}|z|}|y|^{-n+1} d y=A_{46} \varepsilon^{-1}|z|, \\
\left\|K_{*}(f)\right\|_{p} \leqq A_{47}\|f\|_{p}
\end{gathered}
$$

[see [8], p42] and that b is uniformly continuous. Then by taking $|z|$ sufficiently small depending on ε, we can get

$$
\begin{equation*}
\left(\int|[K, B] f(x)-[K, B] f(x+z)|^{p} d x\right)^{1 / p} \leqq \varepsilon A_{48}\|f\|_{p} \tag{34}
\end{equation*}
$$

Thus from (31), (32), (34) and the theorem of Frechet-Kolmogorov ([9], p275), $[K, B]$ is a compact operator.

References

[1] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635.
[2] C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math. 129 (1972), 137-193.
[3] P. Hartman, On completely continuous Hankel matrices, Proc. Amer. Math. Soc. 9 (1958), 862-866.
[4] F. John and L. Niremberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426.
[5] Z. Nehari, On bounded bilinear forms, Ann. of Math. 65 (1957), 153-162.
[6] U. Neri, Fractional integration on the space H^{1} and its dual, Studia Math., LIII (1975), 175-189.
[7] D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405.
[8] E. M. Stern, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press. 1970.
[9] K. Yosida, Functional Analysis, Springer, 1968.

[^0]
[^0]: Mathematical Institute
 Tômoku University
 Sendaf, Japan

