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1. Introduction. Let X be a Banach space. We denote by B(X)
the set of all bounded linear operators on X to X A one-parameter
family C = {C(t); teR = (— oo, oo)} in B(X) is called a cosine function

on X if it satisfies the following three conditions:
( i ) C(t + s) + C(t - s) = 2C(t)C(s) for all t, seR;
(ii) C(0) = 1 (the identity operator);
(iii) C(t) is strongly continuous in t.

The sine function associated with a cosine function C is a family S =
{S(t);teR} in B(X), where S(t) is defined by

S(t) = [C(s)ds .
Jo

To define the (infinitesimal) generator A of a consine function C, set

D(A) - μ i ; C"(0)x - lim 2hΓ\C(h) - l]x exists} .
Λ 0

Then A is defined by A = C"(0) on Z?(4). We denote by ^(A) and R(X; A)
the resolvent set and the resolvent of A, respectively: R(X; A) = (λ — A)~\
X 6 |θ(A). In terms of the generator a cosine function is characterized
by the following generation theorem established independently by Sova
[10], Da Prato-Giusti [1] and Fattorini [2].

THEOREM 1.1. Let A be a linear operator in X. Then A is the
generator of a cosine function on X if and only if

( I ) A is closed and densely defined,
( I I ) there is a constant ω^O such that for X > ω, X2ep(A),
(III) there is a constant M > 0 such that for X > ω,

This theorem can be regarded as an analogue of the Hille-Yosida theorem
on the generation of semigroups of class (Co).

The purpose of this note is to prove a cosine function analogue of
a theorem of Miyadera [6]-[8] (Theorem 2 in [6]) on the perturbation of
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semigroups of class (Co). Here it should be noted that the proof of the
Miyadera theorem is fairly simplified in the third paper [8], In fact,
the first proof in [6] depends on the Trotter-Kato convergence theorem,
while the second one in [8] requires only the generation theorem. Ac-
cordingly, the proof of our result is also based on the generation theorem
(Theorem 1.1 above), though we have obtained another one by using a
convergence theorem of Konishi [4], The result is related to those of
Konishi-Tezuka [5] and Nagy [9],

2. Preliminaries. Let C be a cosine function on X and S be the
associated sine function. Then by condition (i), we have

(2.1) C(t) = C(~t) , S(t) = - S ( - ί ) , teR .

Consequently, C(t)C(s) = C(s)C(t) and hence C(t)S(s) = S(s)C(t), S(t)S(s) =
S(s)S(t). Now let A be the generator of C. Then we have that for
x e D(A) and t e R,

(2.2) AC(t)x - C(t)Ax , C'(t)x = AS(t)x - S(t)Ax .

LEMMA 2.1. Under the assumption of Theorem 1.1, we have

(2.3)

(2.4)

and hence

(2.5)

(2.6)

\\C(t)\\ ^ Me"'" ,

XR(X*;A) = ("e-χtC(t)dt
Jo

||S(ί)|| ^ M\t\e«^ ,

i?(λ2;y4) = \°° e~uS(t)dt ,
Jo

teR ,

, X > ω

teR ,

λ > a)

LEMMA 2.2. The following relations hold:
(a) S(t + s) + S(t -s) = 2S(t)C(s),
(b) S(t + s) - S(t - β) = 2C(t)S(s),
( c ) S(t)C(s) + C(t)S(s) = S(t + s),
(d) C(t + s) - C(t - s) = 2AS(t)S(s),
( e ) C(t)C(s) + AS(t)S(s) = C{t + s).

PROOF, (b) follows from (a) and (2.1). (c) is a direct consequence
of (a) and (b). (e) is clear from (d) and condition (i). So, it suffices to
prove (a) and (d). By definition we have

2S(t)C(s) = \* [C(r + s) + C(r - s)]dr
Jo

= S'+ί C(r)dr - \' C(r)dr + \*" C(r)dr + [ C(r)dr
JO JO Jo J-s

= S(t + s) + S(t - s) .
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This proves (a). Now differentiation of (b) with respect to t gives

C(t + s)x - C(t - β)x - 2C'(t)S(s)x , x e D(A) .

Then (d) follows from (2.2) and condition (I). q.e.d.

In the rest of this section we consider a class of perturbing opera-
tors for the generator of a cosine function.

DEFINITION 2.3. Let A be the generator of a cosine function C on
X} and B be a linear operator in X. Then B is said to be an operator
of class (B) if

(Bx) D(B) z> D(A) and BR(μ2; A) e B{X) for some μ > ω,
(B2) there exists a constant KQ > 0 such that for all x e D(A),

REMARK 2.4. Since p(A) is nonempty, condition (Bt) is equivalent
to the relative boundedness of B with respect to A (see e.g., Kato [3],
IV-Section 1) and hence BR(X2; A) e B(X) for each λ2 e ρ(A).

Now let λ > 0 and set

(2.7) Kι = sup \^\-χt\\BC(t)x\\dt; \\x\\ ^ l,xeD(A)} .

Then by condition (B2), Kλ is finite. Since Kλ is a nonnegative and mono-
tone decreasing function of λ, ίCo = lim^oo Kx exists and 0 ^ Ka> < Ko.

LEMMA 2.5. Let S be the sine function associated with a cosine
function C on X. Suppose that B is an operator of class (B). Then
for all x e D(A),

(2.8) [e~λt\\BS(t)x\\dt ^ JΓ,||aϊ|| , λ ^ 0 .
Jo

PROOF. Let μ2eρ(A). Then

e-λt\\BS(t)x\\dt - BR(μ2; A) [ C(s)(μ2 - A)xds
Joo0 JO

1Cte'λt\\BC(s)x\\dsdt.

dt

T
o J o

Since e~λt ^ e λs on the triangle: 0 ^ s ^ t, 0 ^ ί ^ 1, we obtain

Le"2'iISC(s)a?]|d« ^ i^||a;|| . q.e.d.( | | ( ) | | [
Jo Jo

LEMMA 2,6. Lei S and B be as in Lemma 2.5. Then for each
λ > ω,
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(2.9) [" β-u\\BS(t)x\\dt ύ Li INI , xeD(A) ,
JO

where Lλ = Kλ[l + M(2ex'ω - l)(ex~a - I)"2], and hence

(2.10) \\BR(X2; A)\\ S Lx, X > ω .

PROOF. First we note that

\" e-"BS(f)xdt = Σ [k+1 e~λtBS(t)xdt.
Jo &=o Jjfc

Changing the variable of integration, we obtain

1 e-χtBS(t)xdt = e~λk [ e"λtBS(t + k)xdt
Jo

= e~λk [ e~λt[BS(t)C(k)x + BC{t)S{k)x\dt ,
J
[
Jo

where we have used Lemma 2.2(c). It then follows from (2.7) and (2.8)
that

^ Kλe-χk[\\C(k)x\

In virtue of (2.3) and (2.5), we obtain (2.9):

Finally, (2.10) follows from (2.6) and (2.9). In fact, we have that
for x e D(A),

(2.11) BR(X2; A)x = \°° e~uBS{t)xdt
Jo

note that BR(X2; A)eB(X) and D{A) is dense in X. q.e.d.

REMARK 2.7. Some perturbation theorems for cosine functions are
announced by Konishi-Tezuka [5] (see also remark after Proposition 4.2
of [4]). But they start from the inequality similar to (2.9). Comparing
our assumption with that of Miyadera [6], we see that Lemmas 2.5 and
2.6 much clarify the analogy between semigroups and cosine functions.
Note further that (2.7) does not in general follow from (2.8) (see Example
4.2 below).

3. Perturbation theorems. Let C be a cosine function on X, with
the generator A. Then for each x e D(A), u(t) = C(t)x is a unique solu-
tion to the Cauchy problem:

w"(ί) = Au{t) , ω(0) - x , w'(0) - 0 .
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Now let B be an operator of class (B), and v(t) be a solution to the
perturbed Cauchy problem:

v"(t) - Av(t) + Bv(t) , v(0) - x , v'(0) = 0 .

Denoting by S the sine function associated with C, we have

(d/ds)[C(t - s)v(s) + S(ί - s)v'(s)] = S(t - β)Bt (β) .

Integrating this equality from s == 0 to s = t, we obtain

- s)Bv(s)ds .
Jo

To solve this integral equation, we apply the method of successive
approximation.

We obtain a sequence {Cn(t)} in B{X). Cn(t) is first defined on D(A)
as Cn(t) and then extended onto X; CJf) denotes the extension of
Cn(t): C0(t) = C(t),

CJt)x = Γ Cw_x(t - s)BS(s)xds
Jo

Γ C= Γ
Jo

, a; e D(A) , n ^ 1 .

We must show that C»(t) is bounded on D(A).

LEMMA 3.1. Let Lλ be as in Lemma 2.6. Then we have

(3.1) l|C.(fc)|| ^ ML*λe
m , λ > α>, Λ ^ 0 ,

hence

(3.2) (°V;ίCw(έ)<Zt = λi2(λ2; ^)[Si2(λ2; A)Y .
J

PROOF. Because of λ > α>, (2.3) implies (3.1) with w = 0. Now
suppose that (3.1) holds. Then we have by Lemma 2.6 that for x e D(A),

\\C%+I(t)x\\

S \t\

e-χ*\\BS(s)x\\ds ^ ML:+Ieλ[tι\\x\\ .
0

Since D{A) is dense in X, we obtain (3.1) with n replaced by n + 1.
Next we prove (3.2). We see by (2.4) that (3.2) holds for n = 0. So,
it suffices to show that for x e D(A),

e~λtCn+ι(t)xdt - ( e~uCn(t)BR(X2; A)xdt .
Jo

Applying the Fubini theorem, we have



112 T. TAKENAKA AND N. OKAZAWA

^ e-λtCn+ί(t)xdt = j % - ' | T Cβ(β)5S(t - s)xds\dt

= Γ e^'C.ίβίΓj00 e

- S°V;8C%($)| Ϊ V

So, the desired equality follows from (2.11). q.e.d.

Our main result is given by

THEOREM 3.2. Let C be a cosine function on X, with the generator
A. Suppose that B is an operator of class (B) (see Definition 2.3) and
Kco — lim ĉo Kλ, where Kλ is defined by (2.7). Then for each ε with
\ε\ < K^t A + εB generates a cosine function {C(t; A + εB)}f where
C(t; A + εB) is given by

(3.3) C(t; A + εB) = Σ e*C.(t) .

Moreover, we have

(3.4) lim \\C(t; A + εB) - C(t)\\ = 0 .
«-»0

In (3.3) and (3.4) the convergence is uniform with respect to t on each
finite subinterval of (~ oo? w).

PROOF. Let jεl"1 > l?^, and L̂  be as in Lemma 2.6. Then, since
Kπ = lim;^ Lλ and Lλ is monotone decreasing, we can find λ0 > ω such
that

(3.5) Lλ£Lh< lei"1, λ ^ λ0 .

Then we obtain from (3.1)

V '«', |e|L io < 1 .

Consequently, the series on the right of (3.3) converges uniformly in ί
on each compact interval:

(3.6) - \e\LJ~1 .

Since Cn(t) is strongly continuous, so is the limit, too.
Next, we show that for each λ > λ0,

(3.7) λi2(λ2; A + εB) = (°° e~u Σ e'CΛ(t)dt .
JO « = 0

It follows from (2.10) and (3.5) that
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\\eBR(X2; A)\\ £ \e\Lλ < 1 , λ ^ λ0 .

Since λ2 - (A + εB) = [1 - εBR(X2; A)](X2 - A), we see that for λ ^ λ0,
λ2 e p{A + εB) and

λi2(λ2; A + εB) = λi2(λ2; 4) Σ e*[Bβ(λa; A)]71 .

Therefore, (3.7) follows from (3.2) and the bounded convergence theorem.
Now m times differentiation of (3.7) gives

JLL[XR(X2; A + εB)] - ( - l ) w Γ tme~λt Σ enCn(t)dt .
dXm Jo n=°

It follows from (3.6) that

~[XR(X2; A + Mm]

L io)(λ -
m > 0 .

We see by Theorem 1.1 and Lemma 2.1 that A + εB is the generator
of a cosine function {C(<; A + εi?)} and

λi2(λ2; A + εB)

Therefore, (3.3) follows from (3.7) and (3.4) is obvious. q.e.d.

In general, ε in Theorem 3.2 is supposed to be rather small. But
we can take an arbitrary ε if K^ = 0, and this is the case if BeB(X).

COROLLARY 3.3 (see [5], Nagy [9]). Let A be the generator of a
cosine function on X, and let BeB(X). Then A + B is also the genera-
tor of a cosine function on X.

PROOF. Let λ > ω. Then we have

e'u\\BC{t)x\\dt ^ Λf||B|| Ϋe~a~ω)tdt\\x\\
J

and hence Kλ <Ξ Λf||B||(λ — α))"1. So we obtain K^ = 0. Thus, we can
take e = 1 in Theorem 3.2. q.e.d.

4. Examples. Here we consider two examples. The first one shows
that in Theorem 3.2, allowable perturbing operators are not necessarily
bounded (cf. [6], p. 309).

EXAMPLE 4.1. Let X = L\R) and consider the cosine function on X
defined by

(4.1) [C(t)x](p) - hx(v + t) + x(p - t)] .
Δ
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Let A be the generator of {£(£)}. Then D(A) = W\(R) and (Ax)(p) = x"{p)
for x e Z>(A). Let b(p) be a function in L\E) but not belonging to Is*(R).
Then the multiplication operator B is defined by

(Bx)(p) - δ(p)a(ϊ>) ,

whenever the product is also in L\R). Since 5 is closed and D(B)ZD

D(A)> B satisfies condition (BJ. Furthermore, we have that for all
x e D(A)9

[ \\BC(t)x\\dt ^ \\b\\\\x\\ .
Jo

Therefore, I? is an operator of class (B). But, B is obviously unbounded
if we further assume that b(p) is not in L*(R).

The next example shows that the converse of Lemma 2.5 does not
hold.

EXAMPLE 4.2. Let C[— <*>, ©o] be the space of all bounded and con-
tinuous functions on R, with supremum norm. Let X— C[— oo, oo] and
{C(t)} be the cosine function defined by (4.1). Then D(A) = C2[-oo, oo]
and (-AαO(j)) = α?"(p) for a;€ΰ(4). Now let D{B) = Cx[—oo, oo] and set
(J?aO(p) = α'(p) for x 6 D(S). Then B satisfies condition (Bx). Noting
that JBiS(t)a! = C(t)^, we obtain

[\\BS(t)x\\dt^\\x\\,
Jo

Next let h(p) be a function in G"(R) such that h(p) = 1 for |p| <; 2 and
0 ^ h(p) ^ 1 for |p| Ξ> 2. Setting a?w(p) = h(p) sin nπp, we have a sequence
K } in J5(A) such that ||α?β|| - 1. But, since ||BC(t)x.|| ^
(nπ/2)(l + cos 2^ττί) for 0 5Ξ ί ^ 1, we obtain

Thus, condition (B2) is not satisfied.

ADDED IN PROOF. After this paper was accepted for publication,
we received a preprint of [11].

At first glance, the result in [11] seems to be somewhat different
from ours. Fortunately, however, we can unify the results in both
papers. In fact, the main results in both papers are corollaries of the
following theorem:

THEOREM A. Let C be a cosine function on Xf with the generator
A and the associated sine function S. Assume that B is a linear
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operator in X satisfying condition (BJ in Definition 2.3 and
(BO for some λ0 > 0 there exists a constant L(λ0) > 0 such that for

all xeD(A),

Γ
Jo

e-^\\BS(t)x\\dt£L(X0)\\x\\ .

Set L(co) — lim^oo L(λ), where

L(X) = sup ^e-λt\\BS(t)x\\dt; \\x\\ ^ l , x

TAê t for each e with \e\ < L(oo)-1, A + sB is also the generator of a
cosine function.

Note that the proof of Theorem A has been essentially completed in
this paper.
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