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1. Introduction. Let (Λf, φ, ξ, η, g) be a Sasakian manifold which ad-
mits an infinitesimal automorphism μ. Under further conditions of μ we
will show that we can construct a deformation of a Sasakian structure with
respect to μ. When μ = a-ξ for some real number a such that 1 + a > 0,
then the deformation with respect to μ is called Z>-deformation where D
is a distribution defined by η = 0. Denote by (Λf, φ, f, rj, g) the Sasakian
manifold deformed with respect to μ, we will find that D is also defined by
γj = o. From this fact our deformation is a generalization of Z>-deforma-
tion. But we can find many deformations which are not D-deformations.
In those cases the trajectories of f may be different from those of ξ and
in many cases there exist trajectories with infinite length.

Recently a contact structure on a Brieskorn manifold is studied by
K. Abe, C. J. Hsu and S. Sasaki [1], [4]. And in [1] K. Abe proved
that there exist Sasakian structures on Brieskorn manifolds. For the
application of the deformation of Sasakian manifolds we will give another
proof to his result. For this, we apply these deformations on the
standard Sasakian spheres and show that Brieskorn manifolds have almost
contact metric structures so that Brieskorn manifolds are invariant sub-
manifolds of these deformed spheres. Because it is known that an
invariant submanifold of a Sasakian manifold is also a Sasakian manifold
[2], we conclude that every Brieskorn manifold has a Sasakian structure.

2. The deformations of Sasakian manifolds. (Λf, φ, ξ, η> g) is called
a Sasakian manifold when the following relations hold for the structure
tensor fields, η is a 1-form, ξ is a vector field, ψ is a (1, l)-tensor field
and g is a Riemannian metric on M such that

(2)

(3) dy(X, Y) = g(φ(X), Y)

( 4 ) g(ξ, f) = 1
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( 5 ) N(X, Γ) = 0

where X and Y are arbitrary vector fields over M and N(X, Y) is a
vector field defined by

(6) N(X, Y) = [X, Y] + ftφX, Y] + Φ[X, ΦY]- [φX, ΦY]

This tensor field N is called the torsion tensor field of the almost
contact structure (φ, ξf *η).

THEOREM A. Let (ikf, φ, ξ, η, g) be a Sasakίan manifold and μ be a
vector field over M which satisfies the next three conditions

(7)

(8) [ftf] = 0

( 9 ) 1 + 7){μ) > 0

where £fμ is the Lie differentiation with respect to μ.
New structure tensor fields denoted by (φ, ξ, ϊ}9 g) are defined by the

next equations

Φ{X) - φ{x - η(X)ξ), v - (i + v(μ)Γ-v f I - f + μ

and

where X and Y are vector fields over M.
Then (M, φt f, Ί}9 g) is also a Sasakian manifold.

PROOF. Let D be the distribution defined by η = 0. By the defini-
tion of Ύj we see D is also defined by η = 0. We prove that the struc-
ture tensor fields (φ, ξ, rj, g) satisfy the relations similar to (1), (2), (3),
(4) and (5). The relations (1) and (4) hold obviously by the definitions
of η and g. For the vector field X which belongs to D we have
η(X) = 0, V-φ(X) = 0 and φ\X) = -X, hence

= φ(Φ(X - y(X)ξ))

- φ(φ(X) - V(φ(X))ξ)

- Φ\X)
-y-

Because φ(ξ) = 0 and the above equation holds for any vector field which
belongs to D, we can conclude
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for any vector field X on M. Next we will prove that the torsion
tensor field N with respect to the almost contact structure (φ, ξ, η)
vanishes on M. As (φ, ξ, η) are structure tensor fields of a Sasakian
manifold, the tensor field N with respect to the almost contact structure
(Φ> ζ> V) vanishes and from this it is easily seen that the next three tensor
fields vanish.

(10) N,(X) - [ξ, φX) - φ[ξ, X) - 0

(11) MX, Y) = -η([φX, Y]) - η([X, φY\) + (φX) V(Y) - (φY)V(X) = 0

(12) Nt(X) - ξ η(X) - η{[ξ, X]) = 0

for any vector fields X and Y on M. For the vector fields X and Y
which belong to D, we get from (11)

N2(X, Y) = -ydφX, Y]) - y([X, φY]) = 0.

Because φ(X) = φ(X) and Ύ)(X) ~ 0 for the vector field X which belongs
to D, using the above equation we conclude

(13) ff(Xf Y) = [X, Y] + ${[φX, Π) + φ{[X, φY}) - [φX, φY]

= N(X, Y) - φ{rj{[φXf Y])ξ + 1}<\X, φY])ξ)

= N(X, Y) + (1 + η(μ)Γ N2(X, Y)φ(ζ) = 0

where X and Y belong to D.
Because of (10) and (12), we get ^fξφ = 0 and ^fς7] = 0 and from

these facts and (7), (8) and (3), we get βSfjφ = 0 and ̂ fjη = 0. Hence
we get

sftf - (l + viμT^jv - o
and

- Φll X].

- Φ([1 X] - 9([IP *])f) - o

From these two equations we find for a vector field X on M, we have

(14) Ml, X) - [?, X] + φ[l φX] = 0.

The equations (13) and (14) show that the torsion tensor field N with
respect to (φ, ξ9 rj) vanishes on M.

Next we will prove that the relation (3) with respect to (φt η, g)
holds. Since {φ, ξ, η, g) is structure tensor fields of a Sasakian manifold,
the next equation holds for any vector fields X and F.

2g(φX, Y) = 2dy(X, Y) - X.y(Y) - Y-η{X) - η{[X9 Y]) .
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Hence for the vector fields X and Y belonging to D, we have

(15) 2dy(X, Y) - χ.ff(Y) - γ.η(X) - η{[X, Y])

= 2(1 + V(μ)Γg(φX, Y)

- 2(1 + η{μ)Γg{φXy Y)

= 2^~X, Y)

because of the definitions of η and #, ̂ (X) = φ(X) and )?(X) = ^(X) = 0.
Furthermore since Jifjrj = 0, the equation

(16) 2dy(lX)= -

hold for any vector field X belonging to D. By (15) and (16), it was
proved that the relation (3) holds. Thus we have proved that the rela-
tions (1), (2), (3), (4) and (5) for (Λf, φ, f, rj, g) hold good. So we can
introduce the new Sasakian structure (φ, f, ηf g) on M. (M, φ, f, φ, g) is
called a Sasakian manifold deformed with respect to μ.

EXAMPLE. Let (S2n+ι, φ, ξ, η, g) be the unit sphere with the standard
Sasakian structure and be imbedded in the Euclidean space E2n+2 with
coordinates (a?1, y\ •••, xn+ι, yn+ι). At the point P on S2?t+1 we put

ξp - Σ (*W - Vjdxύ) and ηP = Σ ( ^ ^ - Vsdx*)
3=1 3=1

where dxj and dyj are vector fields over E2n+2 usually denoted by d/dxj and
dfdy* respectively and (as1, y\ , xn+\ yn+1) is the coordinates of the point
P. When we introduce a complex structure / on E2n+2 as zj = xj + iyj

for i = 1, 2, •••,« + ]., then φ is defined as the restriction of J on D
which is the orthogonal complement of R*ξ in the tangent space at
each point on SZn+1 and 0 on R-ξ. The Riemannian metric g on S2n+ι is
induced by that of E2n+2.

When we put

+

," = Σ rs(x'dy* —

where (r l f r2, •••, rn + 1) is a (w + l)-tuple of real numbers such that

V + W ) > o
on S*n+1, then /i satisfies the conditions of Theorem A. And the new
trajectory of ξ with the initial condition P is given by
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x*(t) = x
j
 cos (1 + Tj)t — y

j
 sin (1 + r

s
)t

y
j
(t) = x* sin (1 + r

ό
)t + y

j
 cos (1 + r

s
)t

for j = 1, 2, •••, n + 1-

3. Sasakian structures for the Brieskorn manifolds. Let Cn+1 be
the complex vector space of (n + l)-tuples of complex numbers Z =
(«« «a> •» « +i) a n ( i (αi» α2> Ί αn+1) be a (^ + l)-tuple of positive integers.
Then the Brieskorn manifold Bin~\a19 a2t •• ,α ί l + 1 ) is defined as a sub-
manifold of Cn+1 by the following two equations.

(17) GO'1 + . + (s.+ 1)
β +i = 0 .

(18) «i » i + '•• + «.+ 1 «.+i = 0 .

We define a mapping F of Cw+L onto C by

Then an analytic subvariety in Cn+1 defined by F — 0 may have singularity
only at the origin 0 of C*+1. If we consider S*n+1 as the unit sphere in Cn+ί

defined by (18), B2n'\a,, •, αβ+1) = S2n+1 n F-'φ) and B2n~\au , α.+1) is a
(2w- — 1) dimensional submanifold in S2*+1. Denoting by a?!, ylf f xn+19 yn+1

the real coordinates of Cn+1 such that zβ — xj + i y ^ i = 1, , w + 1), we
defins a real vector field | on Cn+ί by

^ n+i

f = Σ Aj(xjdyj — yβxj)

where Aά = (αi)-1A for a positive constant A, (j = 1, •••, w + 1). This
vector field is tangent to S2n+ι. From the example of §2, we know that
I satisfies the conditions of the theorem A and furthermore μ — ξ — ξ
also satisfies the same conditions because of 1 + η(μ) = η(ξ) > 0. We
define μ = f — ξ and apply the theorem A to (S2 Λ + 1, φ, ξ, η, g) with respect
to μ and denote by (S2n+ι, φ, f, 9, 30 the deformed Sasakian sphere with
respect to μ. The explicit formulas of fj and ξ are given by

9 = .

and

f = j=i

where ίΓ(a;lf yw , xn+1, yn+ί) = Σ * ί ί ^ i((^i)2 + (ί/y)2)-
N e x t we construct an contact metr ic s t r u c t u r e on B2n~Xalf , α n + 1 ) . We
will show t h a t the above vector field ξ is t a n g e n t to B2n~\alf •••, α w + 1 ) .
Let P and Q be real valued functions on Cn+1 defined by
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P(xlf ylf •, xn+li j/n+1) - the real part of F(zlf , zn+ι)

and

O(ί»i, »» , α«+» y«+i) = the imaginary part of F(zlf -, 2n+1) ,

then it is easy to see that fP = — ^.Q and fQ = AP. These prove that
the restriction of the vector field ξ to B2n"\aιt •• f α , + 1 ) is tangent to
J32*"1 where B2n~\alf •••, αw+1) is denoted simply by B2*"1. We denote by
c the inclusion mapping from B2n~ι and by ** the induced mapping from
the differential forms over S2n+1 to those of B2n~\ We define four tensor
fields (φ, I, η, g) on J52"-1 by the next equations

(19) φ = £ I f l .- i , I - ξlB2n-i , £ - <*9 and g^c*g .

We will prove that these four tensor fields define a contact metric struc-
ture on \B2n~K Because of the definitions (19), it is sufficient to show
that the restriction $[B**-\. is well defined. Since the restrictions of φ,
φ and J to D are the same mapping and F~\ϋ) ~ {0} is a complex sub-
manifold of Cn+ί, for any tangent vector X of B*71"1 which belongs to D
on S2n+1 we get

(20) Φ(X)(F) - (J(X))(F) - i X(F) - 0

because of the Cauchy-Riemann equations for the complex analytic func-
tion F. Since TpB271-1 = (DP + R ξP) n TPB

2n~' - (Z>P n TPB
2n~ι) + R*ξP

is an orthogonal decomposition with respect to gP where TpB271'1 is the
tangent space at the point P of B2n~ι and since φ(ξ) = ^(|) = 0, we find
from (20) that φ is a mapping from the tangent space TPB

2n~ι to itself.
Hence we find that (φ, ξ, f), g) define a contact metric structure on B2n~\
Generally let (M2n+1, φ, ξ, η, g) be a contact metric manifold and M2n~ι be
a submanifold in M2n+1. If it is satisfied that φiTj.M2^1)^ TPM

2n~ι for
any point P on M2n~\ the submanifold M2n~ι is called an invariant sub-
manifold. In |this case a contact metric structure on M2n~λ is induced
from (M2n+ί, φ, ξ, η, g) by the equations similar to (19). M. Okumura
proved that if (M2n+1, φ, ξ, η, g) is a Sasakian manifold, then the induced
contact metric structure on M2n^ is also a Sasakian structure [2], Since
B2n"λ is an invariant submanifold of (S2n+\ φ, f, rj, g)f we have

THEOREM B. Every Brieskorn manifold admits many Sasakian
structures.
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