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1. Introduction. This paper is motivated by the data of numerical
computing experiments by Professor Y. Ueda and his colleagues. In the
study of phase locked loops which are widely used in communication systems
also, in order to utilize the frequency range effectively, it has become
necessary to consider phase locked loops acting in the high frequency range.
In this case, it is necessary to analyze the acting principles of the sys-
tem with time delays, since we cannot ignore influences to the system
of time delays which arise in the parts of the system. In their studies
for this purpose, the following difference-differential equation arises:

(1.1) θ(τ) = δ - sin (β(τ - L)) , τ ^ 0, δ ^ 0, L > 0 .

Roughly speaking, the variables in (1.1) are related with the model in
the following way: τ is the time, θ(r) denotes the phase difference at
time τ, δ is the difference between signal frequency and free-running
frequency of the voltage-controlled oscillator, and L is the sum of the
time delays which arise in the parts of the system. In the case where
0 ^ δ rg 1, (1.1) has trivial periodic solutions, namely, the constant func-
tions θ{τ) = a, τ ^ 0, where a is a number such that sin a = δ. In their
experiments, they observed the existence of a nontrivial periodic solu-
tion for δ = 0.3 and L = 2, a periodic solution of the second kind for
δ = 0.8 and L = 2, and solutions which approach asymptotically to a con-
stant solution. Thus there arise the following problems. Find the rela-
tion between δ and L so that (1.1) has periodic solutions, or a constant
solution is uniformly asymptotically stable. We shall give sufficient con-
ditions for these problems in Sections 4, 7, and 9.

There are various methods and many results for the existence of
periodic solutions of functional differential equations [cf. 1, 2, 3, 4, 5].
We shall show the existence of periodic solutions of a more general
system than (1.1) by using a fixed point theorem for the truncated cones
of KrasnoseΓskii in [2] (see Section 3). Particularly, for the existence of
a periodic solution of the second kind of (1.1), we consider also the case
where δ > 1 (see Section 8). On the other hand, there are many results
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on the stability of solutions of functional differential equations [cf. 6, 7].
Using these results, in Section 6, we shall discuss the uniform asymptotic
stability of a constant solution, the nonexistence of periodic solutions,
and the nonexistence of periodic solutions of the second kind. Moreover,
we shall show another example in Section 5.

2. Notations and assumptions. For a given h > 0, C denotes the
space of continuous functions mapping the interval [—h, 0] into R, and
for φeC, \φ\ = sup_Λ<^0 \φ(θ)\. For any continuous function x(u) defined
on —h <, u < A, A > 0, and any fixed t, 0 < t < A, the symbol xt will
denote the restriction of x(u) to the interval [t — h, t\, i.e., xt is an ele-
ment of C defined by xt{θ) = x{t + θ), — h ^ θ <: 0.

Consider a nonlinear one-dimensional differential-delay equation

(2.1) x(t) - f ( x ( t - h ) ) , t ^ 0 ,

where f(x) is assumed to satisfy the following conditions.
(HI) For X, > Λ > 0, X2> A2> 0, £ t > 0, and B2 > 0, f(x) is de-

fined and continuous for — X, <̂  x <, X2, xf(x) < 0 for x Φ 0, /( —AJ = 5X,
/(Λ) - ~B% and - 5 2 ^ /(a) S Bx for -X, ^ α ,

(H2) ~{BJA2)xSf(x)^v{x) for - Λ ^ x ^ 0, and p(x) £ f(x) £
— (BJA2)x for 0 ^ x <Ξ A2, where p(a ) is a nonincreasing continuous func-
tion defined for —Aι^x^A2 and satisfies pi — A,) — Bx and p( — A2) — — JS2.

(H3) /(α;) = — Lx + Λf(a;) for L > 0, where Λf(a;) is the higher order
part and satisfies \M{x) — Λf(#)| ^ M0")!35 ~ 2/1 f ° r —Xri^x, V ^ X2?
I a; I, I # I ̂  σ and ju(σ) is continuous and nondecreasing with μ(0) = 0.

3. Existence of nontrivial periodic solutions. In this section we
shall discuss the existence of nontrivial periodic solutions of (2.1) for
— Xt < x < X2. For any kx such that max (A^X,, AJX2) < k, < 1, we
define the set K by

(3.1) K = {φ 6 C: Φ(-h) = 0, (̂/9) is nondecreasing on [ —Λ, 0], ̂ 6(0) ̂  A

LEMMA 3.1. ( i ) Let h ^ AJB2 be fixed. For the positive number
v = mmA2SxSklXl \f{x)\, let m be the smallest integer such that m ^
(Xz — A2)/vh. If φeK\{0}, then x(t) = x(t, φ) has its first zero point t0

such that 0 < t0 S {m + S)h, and it is simple.

(ii) If AJB% ^h^(A2 + kίX1)/Bt + (1/BJ) f'p(«)ώ αwd P e K\{0}, then
Jo

x(ί) /tαs a minimal value at the time t0 + h and x(tQ + h) ^ —k^.
(iii) Lei & satisfy the condition in (ii), αwd /or the positive number

w = min_kίX^x^_Al\f(x)\, let n be the smallest integer such that n^
(k^ — AJ/wh. If φe K\{0], then %{t) has its second zero till the time
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tQ + (n

PROOF. ( i ) First, we consider the case A2 < φ(Q) <; &1X2. In this
case, x(t) is nonincreasing for t ^ 0 and x(t) <> —v for £ ̂  h as long as
x(ί) > A>. Hence if #(&) > A2, we have

α(ί) ^ a (fc) - (ί - h)v , έ ^ ft, .

Now assume that #(£) does not reach ^42 till the time (m + 1)&. Then
we obtain

x((m + l)h) ^ x(Λ) — m^/t ^ x(fe) — X2 + A2 ^ A2 .

This contradiction shows that x(t) reaches A2 till the time (m + l)h. Let
ίi be the first time such that x(tj) = A2. Then α (ί) is nonincreasing on
[tlf tx + h]. It remains only to show that x(t) has a zero point till the
time tt + 2h. If we assume that x(t) has no zero point in [tlf tx + h],
then we have 0 < x(tx + h) ^ α (ί) for ίL g t ^ ίx + fe. Thus we obtain

x(t, + 2ft) = x(t, + ft) + \H+ihf(x(s - h))ds

S %(ti + ft) + \ \ ——X(S — ft)

and hence »(i) has a zero point till the time (m + 3)/L In the second
case 0 < 0(0) ^ ^2>

 w e can apply the same argument for tx = 0. It is
clear that the zero is simple.

(i i) It is clear that x{t) attains a minimal value at the time t0 + h.
Let χ G C be a function such that

-Btθ, ~ 4 - 2 < ^ ^ 0 ,

B%

Since p(#) is nonincreasing on [0, A2] and p(A2) — — B2, we have

f(x(t0 + β)) ^ p(x(t0 + ί)) ^ p(χ(^)) for all θ e [-hf 0] ,

and hence the minimal value is estimated as follows.

S O C-A2/B2 fθ

f(x(t0 + s))ds ^ \ p(χ(β))dβ + \
(3.2)
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Thus (ii) is true.
(iii) We first show that x{t) reaches --Aι till the time t0 + (n + 2)h

even if — kxXx ^ x(tQ + h) < — A^ x(t) is increasing for t Ξ> t0 + h as
long as x(t — h) < 0. If we assume that x(t0 + 2h) < —Aίf then —kxXλ ^
x(t — Λ) < — Λ and *(ί) :> w for έ ^ £0 + 2h as long as x(t) < —Au and
hence we obtain

x{t) ^ α(t0 + 2/0 + (ί - t0 - 2Λ)w ^ - M Γ t + (t - to -

as long as x(t) < — Alβ Therefore, if x(t0 + (n + 2)h) < —Au we have

This contradiction shows that x(t) reaches — Ax till the time t0 + {n + 2)h
even if -Aά-Xi ^ a;(to + /i) < - Λ . Let έ2 e [t0 + Λ, ί0 + («- + 2)Λ] be a
number such that — A1 ^ x(t2) < 0. If x(t) does not reach the έ-axis
before the time t2 + 2h, then ^(t) is increasing on [ί2ϊ t2 + h] and we have

S t2+h

f(x(β))ds

^ «(«, + h) + Γ t{-^a;(s)}d8 ^ x(t2 + A)fl - ^2fe) 5: 0 .
Jί2 I A 2 J V A2 /

Since this is a contradiction, a (t) reaches the έ-axis till the time tQ +
(n + 4)fe again.

LEMMA 3.2. Suppose that h satisfies condition in (ii) of Lemma 3.1,

and 0 < Zc0 < ^ < 1.

( i ) If A2/B2 < (A, + kQX2)IB, - 1/Bϊ Γ p(s)ds = hί9 h £ K and ψ e

iΓ\{0}, t/teτz t/̂ e maximal value of x(t) is not greater than kcXz.
(ii) Suppose that x(t0 + h) Ξ> —// > — At α?ιd A2/β2 < (μ + kQX2)/a~

S o
p(s)ds = h2 where a = max_^ x £ 0 /(a;). // A2/i?2 ^ h ^ h2, then the

_/(
maximal values of x(t) are not greater than hQXz.

(iii) Let x(t) attain its first maximal value at the time τ{φ) > 0.
Then we have 2h < τ{ψ) < (m + n + 8)Λ αwώ a;Γ(jί) e ίΓ.

PROOF. ( i ) Since h satisfies the condition in (ii) of Lemma 3.1, the
minimal value of x(t) is estimated by (3.1). Let t2 = inf {t: t > tOf x{t) = 0}.
As we have AJB2 ^ AJBt by assumption (H2), we consider the function
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Since p(x) is nonincreasing on [ — Al9 0] and p( — Aλ) = Bίf we have

/(»(*. + 0)) ^ PM*2 + 0)) ^ P(ΨΊ(0)) for all θ e [-Λ, 0] .

This yields the following estimate of the maximal value.

S O C-Aι/B1 CO

f(x(t2 + s))ds ^ \ p(Ψi(s))ds + \
< Kh A ± 1 (°

(3.3)

(ii) As we have A2/B2 ^ μ/a by assumption (H2), we consider the
function

' , - ϋ < ^ ^ 0 ,

Since ^(α) — min(3?(a;), α) is nonincreasing on [ — /ί, 0] and Pι( — ft) — a is
its maximum value, we obtain

f(x(U + θ)) £ pMU + 0)) ̂  pMΘ)) for all θ e [-Λ, 0] ,

which implies

α:(ί2 + λ) ^ Γ /(a?(i, + β))dβ ^ ( ^ f t W β P + Γ pMs))ds
J~h J-k J-μ/a

(3.4) . f 0
^ αfe — /̂  + — \ p(s)ds ^ Λ0X2 .

a J~v

(iii) From Lemma 3.1, we have 2h < r(^) < (m + n + 8)λ. More-
over, #r(ί» is clearly an element of K, and thus the other extremum
values are similarly estimated.

DEFINITION 3.1. Let E be a Banach space. A set Ka. E is a cone if
( i ) ίΓ is closed and convex,
(ii) if φ is in K, then XφeK, λ ^ 0,
(iii) for any φ Φ 0 in E, both φ and — ̂  cannot belong to K.

A truncated cone is the intersection of a cone with a convex neighbor-
hood of zero. The neighborhood does not need to be closed.

The set K in (3.1) cosidered above is a truncated cone. For ψ e
K\{0}, define the mapping A by

A φ = %T(Φ)(Φ)

Then, under the assumptions in Lemma 3.2, A is a positive mapping rela-
tive to K, that is, A(K) c K. Since we have 2n < r(^) < (m + n + 8)ft,
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define r(0) = l i m s u p ^ r ^ ) . Then τ:K-+[0, oo) takes closed bounded sets
into bounded sets. Furthermore, since x(t, ψ) is continuous in (t, φ), τ{ψ)
is continuous on K\{0}. On the other hand, A takes bounded sets into
bounded sets because \Aφ\ 5g k^X%. Moreover, the following lemmas hold.

LEMMA 3.3. // the conditions in Lemma 3.2 hold and if G is an
open bounded neighborhood of zero, then

inf \Aφ\ > 0 .
φ e dG Π K

PROOF. If inΐφedGf]K\Aφ\ = 0, then there is a sequence {φn} such that
ΦnedG Π K and | Aφn \ —+ 0 as n—>ooΛ Taking a subsequence if necessary,
we can assume that r(0j—*ro as n—+ oo and 2/&<Ξr0<oo. Since {x(t,φn)}
is uniformly bounded and equicontinuous on [0, τ0], we can choose a sub-
sequence of the {x(t, φn)} so that x(t, φn) —> y(t) uniformly for t e [0, r0] as
n—>c^. This y(ί) must correspond to a solution of (2.1) on [h, τ 0]. It
is clear from (2.1) that j/(ί) = 0, 0 ^ ί ^ τ 0. Consequently ^Λ(0) —> 0 as
n-^ co and the monotonicity of the ^w implies that ^w —> 0 as n —• oo.
But this is impossible since there is a 27 > 0 such that \φn\ ^27. This
contradiction proves the lemma.

LEMMA 3.4. If h > πj2L, there is a zero λ = p + iσ of

(3.5) Xehλ = -L

with p > 0, 0 < σh < π.

For the proof, refer to Lemma 29.4 in [8].

The linear part of (2.1) is

(3.6) x(t) = -Lx(t - h) , t ^ 0 ,

and (3.5) is the characteristic equation of (3.6). Let (λ0, λ0) be the char-
acteristic roots of (3.5) whose existence was guaranteed by Lemma 3.4.
We decompose C by (λ0, λ0) as C = U © S9 dim U = 2, and denote by 77^
the projection operator onto ί7.

LEMMA 3.5. If h < π/2L, then for any s, 0 < ε <Ξ Λi-XΓ

inf | 7 7 ^ | > 0 ,
φeδB{ε)[}K

where B(ε) = {̂  e C: |$*| < ε}.

PROOF. Let φ(θ) = e;°7(l + fcλ0), -Jt ^ & S 0, ψ(β ) = e '

Φ = ( ,̂ ^) , and ?F = ^ V The adjoint equation for (3.6) is

y(t) =



EXISTENCE OF PERIODIC SOLUTIONS 19

and the bilinear form is given by

(φ, ώ) - ψ(0)φ(0) -L\° ψ(s + h)φ(s)ds .
J h

\
J — h

We have (Ψ, Φ) = identity, and ΠΌ = Φ(Ψ, ζ) for any ξeC. If there is a
sequence {φn} in dB(ε) Π K such that Πυφn —> 0 as % —• oo? then necessarily
I (?P\ ί*») I —* 0 as w - ^ c o . This implies that (ψ,φn)-+0 as w—>oo. Since
0Λ(O) = ε, if we let Bn and J n be the real and imaginary parts of (^, ό j ,
respectively, then

Λw = ε - L \° φn{s)e~^{s'vh) cos σϋ(s + h)ds ,
J-Λ

S O Ch

φn(s)e~^{8+h} sinσo(s + h)ds = L\ φn(s — h)e~po* sin σQsds
- A JO

Since 0 < σQh < π and In —>0 as ^->co, it follows that ^ w ( ^ ) ^ O a s i t ^ ^
for —h^θ<0. Thus Rn—>ε as ^—> oo, This contradiction yields the
desired inequality.

We are now ready to show the existence of a nontrivial periodic
solution of (2,1) for — Xt < x < X2 by using the following theorem, which
is found in [8].

Suppose K is a cone (or a truncated cone) such that for any φeK,
there is a time τ{φ) > 0 such that xr[φ)(φ)eK. If we let Aφ = xτ{φ)(ό),
φeK, then A: K~+K is a positive operator.

THEOREM 3.1. Suppose A is the same as defined above, A is con-
tinuous, τ(φ) ̂  h, φe K, τ and A take closed bounded sets into bounded
sets and the following conditions are satisfied:

( I ) For any open bounded set GczC, 0 6 G,

inf I Aφ I > 0 .
φ3GfK

( I I ) If F is the set of positive eigenvectors of A, there is an M>0
such that φeF, \φ\ = M, Aφ = μφ imply μ < 1.

(III) For any e > 0,

inf I Tljjφ I > 0 .
φedB(ε)Γ\K

Under these conditions, there exists a nontrivial periodic solution of
(2.1) with period greater than h. In (II), φ Φ 0 is called a positive
eigenvector if Aφ = μφ for a positive operator A.

Among the assumptions of Theorem 3.1, the continuity of A is given
by the continuity of solutions for the initial conditions. Also we have
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shown that τ and A take closed bounded sets into bounded sets. Fur-
thermore, under the conditions of Lemma 3.2, (I) holds by Lemma 3.3,
(II) holds for M > kQX2 by Lemma 3.2, and (III) also holds by Lemma
3.5. Hence we have the following theorem.

THEOREM 3.2. Under the conditions of Lemma 3.2, there exists a
nontrivial periodic solution of (2.1) for — X1<x<X2f and its period
is greater than 2h and less than (m + n + 8)h.

4. The equation ύ(t) = δ — sin (u(t — h)). Consider the difference-
differential equation

(4.1) ύ(t) = δ - sin (u(t - h)) , ί ^ 0 , 0 ^ δ < 1 .

Let α — sin 1 δ. Then (4.1) has a constant solution u(t) = a. Substituting
x{t) = u(t) — a, t > —h into (4.1), we have an equivalent equation

(4.2) x(t) - δ - sin (x(t - h) + a) , 0 < 1 ,

which has the zero solution a (t) = 0. (4.2) is a special case of (2.1) where
f(x) = δ — sin (a; + a) and /(a?) satisfies (HI) for Xλ = π + 2a, X2 = π —
2αf Λ = τr/2 + α, A* = π/2 ~ a, Bx - 1 + 5, B2 = 1 - <?. Let

-x + δ - — α — 1 <: x < — a ,

1 - δ
δ-1,

Then f{x) satisfies (H2) for this p(x). Also fix) satisfies (H3) for L =
VI — δ2. For kιt 1/2 < kt <1, we define the following truncated cone

K = {φ e C: φi—h) = 0, φiθ) is nondecreasing on [—ft, 0],

LEMMA 4.1. Let

<: (π —

F{a) =

- 2a)
8α

19(7Γ - 2a)
16α

- Uaf + 16(3π - 10«)sinα
128α2
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where α — sinα + cos (7α/4 + π/8), and let G(α) = min(3(π—2α)/8(l —sinα) +
1/(2 cos a), F(a)) and ίί(α:) = max((7Γ-2α)/(l + sinα) + (7r + 2α-~2cosα)/2(l +
sinα)2, G(a)). If (π~2α)/2(l — δ)<Ξ*h<H(a), then there exist k0, &x such that
1/2 < &0 < Z?! < 1, om<2 /or αii φ e l£\{0}, £fte minimal values of x(t) are
greater than — (π + 2^:)^, αwd ίfee maximal values of x(t) are less than
(π — 2a)k0. Furthermore, we have 2h < τ{φ) < (m + n + 8)fc ίmd # r W e if.

PROOF. First of all, we prove the following inequality

(4.3)

where the equality holds only if a = 0. Put fc(α) = (π — 2α) cos α/(l — sin α),
0 ^ α < 7r/2. Then we have k\a) = (π - 2α - 2 cos α)/(l - sin α)2 > 0,
A (O) = π, lim^^^/^o k(a) = 4, and consequently (4.3).

Next, we prove (π-2a)/2(l-δ)<H(a). Let £Kα)^3(π~2αO/8(l-sinα) +
1/(2 cos a) and h(a) = (π - 2α)/(l + sin α) + (π + 2α - 2 cos α)/2(l + sin α)2,
0 ^ α < 7Γ/2. Since g(a) is increasing and h(a) is decreasing and since
g(π/8) < h{πβ), we have G(a) ^ sr(α) < fe(α) ^ JEΓ(α) for 0 ^ a ^ τr/8. On
the other hand, we obtain (π - 2α)/2(l — δ ) < Jϊ(α) f or 0 ^ α ^ π/8 since
we have g(α) > (π — 2α)/2(l — δ) by (4.3). It remains only to show the
following two inequalities

(4 4) 1
2 ( 1 -

8α +

-δ)

19 sin a <

— h

19,

iάf +
128αs

16(3π - 10a) sin a „
\π - 2a)

^ 11 π < c
8

3π <

14 =

^ 14 '

-<f
Let g(α) == sin a + cos ((7α/4) + (π/8)) = α and r(α) = (sin a)/(π — 2α),

0<α<(ττ/2). Since q'(πfS)<Q and 9 f /(α)= -sinα-(49/16)cos((7α/4) + (π/8))<0
for (π/8) < α < (37Γ/14), g(α) is decreasing for (π/8) < a < (37Γ/14). Thus
we have a ^ g(π/6) ^ 0.758 for (π/8) < α ^ (π/6), and consequently 128α2 ^
73.544. Moreover, we obtain the following inequality.

(3ττ - Uaf ^ ^ π __ 1 4 ί r j / 7 _ — 4 π — \ < ^25^ < 6 5 4 5 f o r _π < a ^ jr ^
π — 2a \ π — 2al \2 8 6

In addition, we have the estimate

2π \ <
1 6 5

π ~-2a " V π -2a
since r\a) = {fjc — 2a) cos α + 2 sin α)/(τr — 2α)2 > 0. By these estimates,
the second term in the left-hand side of (4.4) is less than 0.411. From
this and 1/2(1 — δ) <; 1, we can conclude that the left-hand side of (4.4)
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is less than 1.411. For the right-hand side of (4.4), we obtain (ll/8α) >
1.608 since a < p(π/8) < 0.855. Thus (4.4) holds for (π/8) < a ^ (π/6).
Similarly we can prove (4.4) for the cases (π/G) < a <; (π/5) and (π/5) <
a £ (3τr/14).

Now we prove (4.5). Let s(a) = 27 sin α + 8cos((7α/4) + (τr/8)) and
S(a) = s((τr/2) - α), 0 < α < (JΓ/2). It is sufficient to show

(4.6) S(a) < 19 , 0 < a ^ ψ .

Since we have S(0) = 19, it is sufficient to prove S'(a) < 0 for 0 < a <;
(2π/7). S'(0) = 0, S"(0) < 0, and S'"(a) < 0 for 0 < a ^ (2ττ/7) imply
S"(α) < 0 and S'(a) < 0 for 0 < a ^ (2τr/7). From this, we obtain (4.6)
and consequently (4.5).

Now, let (π - 2α)/2(l - δ) ^ fc < (π 4- 2α)/(l - δ). Then, by (3.2), we
have

(4.7) x(tQ + h)>(δ- 1)Λ + * ~ g , 2 > -7Γ - 2a .
l 1 — d

This yields that if we choose klr (1/2) <kι<±, sufficiently near 1, then
minimal values of a (ί) are greater than — (π + 20)^ uniformly for φe
K\{0}. For the estimate of maximal values, by (3.3),

(4.8) x(t2 + h) -<ί (1 + δ)h - 7 Γ +

/ ^ " 2 c o s α .
2(1 + sin a)

Thus for (π- 2α)/2(l-δ)Sh <(π-2α)/(l + sinα) + (π + 2a-2cosα)/2(l + sinα)2,
(1 + δ)h — (TΓ + 2a — 2 cos α)/2(l + sin α) is less than π — 2α, and hence
if we choose kOf (1/2) < k0 < 1, sufficiently near 1, then maximal values
are less than (TΓ — 2a)kQ uniformly for φeK\{0} by (4.8). Clearly, since
the above argument has no meaning for large α, we need an estimate
for arbitrary a. For (π - 2α)/2(l - δ) ̂  h < 3(τr - 2α)/8(l - δ) + 1/(2 cos a),
minimal values of x(t) are greater than — (3(ττ — 2α)/8) by (4.7). If we
choose μ = Z(π — 2α)/8 in Lemma 3.2, then we have max.^^o /(a;) ™
δ — sin ( — μ + α) = α. We can easily prove 3(π — 2a)βa <(π — 2a)f2(1 — δ)
by the similar method to the one for (4.6). From this and (3.4), if
0 <Ξ a < (3ττ/14), then μ > a and maximal values are estimated by

(4.9) x(t2 + h)^ah- Z(π ~
8

Thus for

π-2a < h < ΐί(π - 2a) _ (37Γ - 14α)2 + 16(3TT - lOap sin a
2(1 - δ) = 8a 128α2
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the right-hand side of (4.9) is less than π — 2a, and therefore, if we
choose kQt (1/2) < k0 < 1, sufficiently near 1, maximal values are less
than (π — 2a)k0 uniformly for φ e K\{0}. Similarly, maximal values for
(3π/14) ^ a < (π/2) are estimated by

(4.10) x(tz + h) ^ ah - μ + Γ p(as)ds ^ ah - 3 ( 7 Γ " 2ά) .
i-f'/a 16

Hence for (π - 2α)/2(l - δ) ^ /ι < (19(7Γ - 2α)/16α), if we choose kQ, (1/2) <
&0 < 1, sufficiently near 1, maximal values are less than (π — 2a)kQ uni-
formly for φ e K\{ϋ). Since we can change kx into a greater one if
necessary, we can assume k0 < kx < 1. Also xr[ψ) eK and we have 2h <
τ(φ) < (m + n + 8)h by Lemma 3.2.

REMARK. Since f(x) satisfies (H2) by setting p(x) = /(a;), we can
change F(ά) in (4.3) into a greater one, namely,

( )3 ( π " 2a) sin α + 8 cos a — 8 cos
8

We have the following theorem by Theorem 3.1 and Lemma 4.1.

THEOREM 4.1. Let (π - 2α)/2(l - δ) ^ h < H(a) be fixed, where (ττ/2) <

h < H(0) for a = 0. Γfeβ^ (4.1) has a nontrivial periodic solution for
— π < u < π. Its period is greater than 2h and less than (m + n

REMARK, ( i ) In particular, for δ = 0.3 and & = 2, Ueda and his
colleagues have observed the existence of a nontrivial periodic solution.
We can conclude from Theorem 4.1 that there exists a nontrivial periodic
solution for δ = 0.3, 1.81 ^ h ^ 2.45, and h - 2, \δ\ ^ 0.445.

(ii) It is easy to see that (4.1) has a nontrivial periodic solution for
— π < u < π if τr/(2cosα) < & < Hx(a), where fl^α) corresponds to Fλ{a)
in (4.4).

5. Another application. Consider the difference-differential equation

(5.1) ύ(t) = δ - ff(w(i - Λ)) , έ ^ 0 , 0 ^ δ < l ,

where ff(a;) = (l/2)(|x + 1| - \x - 1|). Since jr(δ) = δ for 0 ^ δ < 1, (5.1)
has a constant solution w(t) = δ. Substituting a (t) = u(ί) — δ, t^ ~h
into (5.1), we have an equivalent equation

(5.2) x(t) = δ - ff(a;(ί - fe) + δ) , t ^ 0 , 0 ^ δ < l ,

which has the zero solution a (t) = 0. For a fixed fe > (π/2), let X t =
X2 < (2h - 1)(1 + δ)/2, Λ - B t = 1 - δ. Then f(x) = δ - g(x + δ) satisfies
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(HI) and (H2) by setting p(x) = f(x). As the linear part of f(x) is — x,
f(x) satisfies (H3) also for L = 1. We consider the truncated cone such
that

K = {φ e C: Φ(-h) = 0, φ(θ) is nondecreasing on [ —fe, 0], $J(0) S Xι) -

We have the following theorem from Theorem 3.1.

THEOREM 5.1. Ifh> (π/2), then (5.1) feαs α nontrivial periodic
solution.

It is not difficult to prove this theorem. Since h > (ττ/2) > (AJB2),
we can easily prove by the similar method to the one for Lemma 3.1
that xτ{φ){φ)eK for a τ(φ) > 0, where (r($*)} is uniformly bounded for
Φ 6 K\{0}. Also, the maximal value x(τ(φ)) is estimated by

/((I + δ)s)ds ^ (2fe - 1)(1 + g) < χ

2

Moreover, since /t > (π/2L) = (τr/2), Lemmas 3.3, 3.4, and 3.5 hold. Thus
all assumptions of Theorem 3.1 are satisfied, and hence we have Theo-
rem 5.1.

6. Stability of a constant solution. In this section, using a theorem
of Yorke [6], we consider the nonexistence of nontrivial periodic solu-
tions of (2.1) for — X1 < x < X2 and the uniform asymptotic stability of
the zero solution of (2.1) when h is smaller than that in Theorem 3.2.
Furthermore, we consider the nonexistence of periodic solutions of the
second kind when f(x) can be extended as a continuous periodic function
with period Xt + X2t where x(t) is called a periodic solution of the second
kind if there exist X Φ 0 and T > 0 such that x(t + T) = xit) +'X for
ί ^ 0.

Consider a nonlinear one-dimensional differential-delay equation

(6.1) x(t) = Fit, x t ) , t ^ 0 .

Let Cβ = {φeC:\φ\ < β} and let F: [0, oo) x Cβ -+R be continuous.

DEFINITION 6.1. We say 0 is uniformly stable for (6.1) if for any
η > 0 there exists a p = p(η) in (0, η] such that for any t0 ^ 0 and φeCβ

and any solution x(t) = x(t, t0, φ) we have for all t > ί0 in the domain of
x(t)

\Φ\ < p implies |x(t, tQ, φ)\ < η .

DEFINITION 6.2. Let 7 > 0. We say 0 is uniformly asymptotically
stable with attraction radius 7 for (6.1) if
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( i ) 0 is uniformly stable,
(ii) for each tQ ^ 0, each solution x(t, tOf φ) with \φ\ S Ύ exists for

all t ^ t0,
(iii) there exists T = T(%) for each % e (0, 7) such that for each

ί0 ^ 0 and each solution x{t) of (6.1) with \φ\ <; 7 l f \x(tQ + β)| ^ (yJ2) for
all β ^ Γ(7j.

For 0eC ί f define M(Φ) = max{0, s u p ^ ^ o 0(0)}. The following theo-
rem can be found in [6].

THEOREM 6.1 (Yorke). Let β > 0 and h>0. Let F: [0, oo) x Cβ-+R
be continuous. Assume for some e Ξ> 0

(6.2) -cM(φ) S F(t, φ) ̂  cM(~φ) for all φeCβ .

(i) Assume ch ^ (3/2). Then x(t) = 0 is a solution and is uni-
formly stable.

(ii) Assume 0 < ch < (3/2) α^ώ

{for all sequences tn~+ <*=> and φn e Ĉ  converges to a constant nonzero
(6.3) \

[function in Cβ, F(tn, φn) does not converge to 0.
Then 0 is uniformly asymptotically stable, and if t0 2: 0 and \Φ\ί* (2/9/5),
then x(t) —• 0 a s ί —•+ oo.

REMARK, (i) and (ii) can be made more specific as follows [6],

[If ί f l ^0 and \Φ\ < (2/3/5), then the solution x(t) is defined and

(satisfies \x(t)\ £ (5/2)\φ\ for all t ^ ί0.

F(ί) = sup \x(s)\ is a monotonic nonincreasing function for
(6.5) < t + h

[[t ^ t0, and if 0 < ch < (3/2), then V(t) ~* 0.

Let h < (AJB2), ί0 - min(-Xif X2), ί, = max(--Σί, j°_^(-5ae)de), and

let ξt - min (x2, (A2BJB2) - At + (1/BJ J° ^ p(s)ds). Let cu c2

satisfy

(6.6) β ^ - ^ - ^ for all x ^ 0 in [ft, &]

and

(6.7) £&- ^ ~c2 for all a; Φ 0 in [-f0, f0] .

x

Then we have the following1 results as a corollary of Theorem 6.1.

COROLLARY 6.1. ( i ) If h < 3/(2^), then (2.1) has no nontrivial
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periodic solution for — X1<x<X2.
(ii) If h < (3/2c2), then for any 7, 0 < 7 < (2£0/5), 0 is uniformly

asymptotically stable with attraction radius 7 for (2.1).
(iii) Suppose that f(x) can be extended as a continuous periodic

function with period X1 + X2. If h< min (3/(2c2), 4^/(5^), 4ζo/(5B2)), then
(2.1) /KZS no periodic solution of the second kind.

PROOF. ( i ) Let h < (3/2^). Let q(t) be a nontrivial periodic solu-
tion of (2.1) for — Xι<x<X2, and let ζlf ζ2 be numbers such that & < d,
C2 < ί2f Ct ̂  ϊ(t) ^ Cs for ί i> 0. If we take a positive number 37, 0 <
37 < min (d — flf f2 — ζ8), then from (6.6), we have (f(x)ίx) ^ —cί for all
a; Φ 0 in [ζt — 97, ζ2 + 57]. If we define

'/(Ci - 7) , « < Ci - 7 ,

then clearly a /iία;) < 0 for x Φ 0, /ΐ(0) = 0, and hence fix) satisfies (6.3)
for β = (5/2) max (57 — ζlf ζ2 + 7̂), and for c — c1? we have

(6.8) £ M ^ - c , x Φ 0 .

Moreover, </(t) is a solution of the equation

(6.9) x(t) = /x(a;(t - λ)) , t ^ 0 .

Since we have /x(^) = flφ{ — h))9 it is clear that (6.2) and (6.8) are equiva-
lent. From this and Theorem 6.1, 0 is uniformly asymptotically stable
for (6.9). On the other hand, since |<?0| < (2/3/5), we have q(t)~+Q as
ί—> 00, and this is a contradiction. Therefore, if Λ, < (3/2cJ, then (2.1)
has no periodic solution for —Xγ<x< X2.

(ii) For 0 < 7 < (2fo/5), let

K-l)
f,(χ) =

•<-?•

•>?•
and let β = (57/2). Then, using Theorem 6.1, in a similar way to the
above, we can show that if h < 3/(2c2), then 0 is uniformly asymptotically
stable with attraction radius 7 for (6.9). On the other hand, since
\x(t, φ)\ ̂  (57/2) <ζQ for all ί ^ 0 if \ψ\ ̂  7, the solution x(t, φ) of (6.9)
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for \φ\ ^ 7 is also a solution of (2.1), and thus we obtain the same
stability for (2.1).

(iii) Let ft < min (3/(2c2), 4fo/(5JB1), 4fo/(5B2)) be fixed. If we choose 7,
0 < 7 < (2fo/5), sufficiently near (2fo/5), then we have ft < min (27/^, 27/£2).
Now, let x(t, φ) be a positive solution of the second kind of (2.1) such
that x(t, φ)—> co as t —>oof and let n be the smallest integer for which
we have \ψ\g—Ύ + n(Xt + X2). If we let t0 = inf {t: x(t, Φ) = Ί + n(X, + X2)},
then \x(t) - n{X, + Z2)| ^ 27 for tQ - h £ t £ t0 because x(t) ^ B,. On
the other hand, since 7 is an attraction radius of 0 for (2.1) by (ii) and
since the extended f(x) is a periodic function with period X1 + X2, 7 is
also an attraction radius of n(Xί + X2) for (2.1), and hence we must
have x(t, φ) —> n(X1 + X2) as t —* oo, This contradicts the fact that
x(t, φ) —• oo a s t —•• c o .

In a similar way to the above, we have a contradiction also in the
case x(t9 φ)—> — co as έ—>co. Thus we can conclude that (2.1) for the
extended f(x) has no periodic solution of the second kind.

7. Applications of Corollary 6.1. 1. For equation (4.2), let f(x) =
δ — sin (a; + a). Let y = — c(a)x be tangential to the curve y = /(«) at
the point (—f(α), /( —f(α))) for — (π/2)-α < -f(α) < - α . Moreover, let
ζ1(α) = min(ί(α), (l-sinα)/(cosα)), ζ1(α) = min(ί(α), π-2a),H(x) = 3xf(2f(-x))
(x Φ 0), and let H(0) = 3/2. We obtain the following proposition by ap-
plying Corollary 6.1.

PROPOSITION 7.1. ( i ) If h < JSίC^α)), tfeβw (4.2) has no nontrivial
periodic solution for —π — 2a < x < π — 2a,

(ii) If h < H(ζ2(a))t then for any 7, 0 < 7 < (2(π - 2α)/5), 0 is u^ΐ-
formly asymptotically stable with attraction radius 7 for (4.2).

(iii) //A <min(H(ζ2(a)), (4(τr - 2α)/5(l + sinα))), then (4.2) Aαs ^α
periodic solution of the second kind.

PROOF. It is easy to see that H(ζx(a)) <; 3/(2 cos α). First, we prove
that any periodic solution of (4.2) in —π — 2a < x < π — 2a is greater
than (sin a — l)/cos a if ft < 3/(2 cos a). Now let q(t) be a nontrivial
periodic solution of (4.2) such that — TΓ — 2a < q(t) < π — 2a for t Ξ> 0,
and let gfo) be its minimum value. Clearly g(tx) < 0. By changing tx

into a larger one if necessary, we may assume that t0 = sup {£ < tx\
q(t) - 0} ^ 0. For φ = ^(ί) = (ί - l)θ, -h <, θ S 0, we have g(t0 + θ) ^
(̂(9) < (ττ/2) - α for all θe[-hf 0] since 3/(2 cos a) <(π- 2α)/2(l - δ) from

(4.3), and consequently g(ίj ^ α?(A, $5). It is sufficient to show x(h, Φ) >
(sin a — l)/cos a only for (1/cos α) ^ ft < 3/(2 cos a). In this case, we
have
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S -1/cos a ro «:« fy i

(δ - l)<te + I {-l/l - δ2(δ - l)s}ds ^ -^B^ L ,
-* J-l/cosα COS Ct

and thus tf(O > (sin a — l)/cos α. Let k0, 0 < k0 < 1, be a number such
that q(t) <(π — 2a)k0f and let

/ r( sin α — 1
V cos

f(x) ,

^) sinα —

cos a

cosα
- 2a)k0 ,

/((7Γ - 2a)k0) , x

Since a /^a;) < 0 for x Φ 0 and /x(0) = 0, /x(a?) satisfies (6.3) for β =
(5/2) max ((1 — sin α)/cos a, (π — 2a)kQ). Furthermore, q(t) also is a solu-
tion of x(t) = fMt - h)). Let e - (/(-CiWVdία)). Then clearly c > 0
and (A(x)/x) ̂  - c for x Φ 0. From this, /t(^) = Λ(Φ(~h)) satisfies (6.2)
for the same c. Therefore, if 0 < h < Hiζ^a)), then (4.2) has no non-
trivial periodic solution in — π — 2a < x < π — 2a by Corollary 6.1.(i).
Similarly, (ii) and (iii) hold by (ii) and (iίi) of Corollary 6.1, respectively.

REMARK 1. Since (1 - sinα;)/cos a ^ (π — 2a)/π <>π — 2a by (4.3), we
have ζ^α) g ζ2(α) ̂  5(«) and consequently mζ^a)) ^ H(ζ2(a)). On the
other hand, for any given h > 0, <x, 0 < α < (ττ/2), sufficiently near (π/2),
satisfies conditions in (i) and (ii), since limα^/2^0 H(ζ2(a)) == oo.

REMARK 2. In the above proof, since 0 < e ^ (sinα + l)/(α + 1), (6.2)
holds for c = (sin a + l)/(a + 1). Hence if 0 < h < 3(α + l)/(2(sin a + 1)),
then (i) and (ii) hold. Moreover, since ξ{a) Ξ> a and (1 — sin α)/cos α is
decreasing, if we let a0 cos a0 = 1 — sin αo> (π/6) < 0.555 < α0 < 0.556 <
(ττ/5), then ζ^α) = (1 — sinα)/cosα ^ α and consequently H{ζy{a)) Ξ> fΓ(α) =
3α/(2 sin a) for α0 ^ α < (ττ/2). Therefore, if 0 <h < 3α/(2 sin α), then
the condition in (i) holds for aQ ^ a < (π/2). Similarly, if 0 < /t <
3α/(2 sin α), then the condition in (ii) holds for a Ξ> (π/3).

REMARK 3. If 0 < h < 3/(2 cos α), then for sufficiently small 7 > 0,
0 is uniformly asymptotically stable with attraction radius 7 for (4.2).

2. For equation (5.2), if we let f(x) = δ - g(x + δ), then f(ψ) -
f(ψ(-h)) satisfies (6.2) and (6.3) for c = 1. Define G(x) by

and extend G(x) as a continuous periodic function with period 4. We
denote this extended function by G(x) again. For F(x) == δ — G(x + δ),
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consider

(7.1) x(t) = F(x(t - h)) , t ^ 0 .

For equations (5.2) and (7.1), we describe the following proposition with-
out proof.

PROPOSITION 7.2. ( i ) If h < (3/2), then 0 is globally uniformly
asymptotically stable for (5.2). Moreover, for any Ύ, 0 < Ύ < (2(1 — <5)/5),
0 is uniformly asymptotically stable with attraction radius 7 for (7.1).

(ii) If h < (3/2), έ&ew (5.2) /tαs ?ιo nontrivial periodic solution, and
(7.1) has no nontrivial periodic solution in — 1 — δ < x < 1 — <5.

(iii) 7/ & < min((3/2), (4(1 - δ)/(5(l + 5)))), ίfeen (7.1) /tαs wo periodic
solution of the second kind.

8. Existence of periodic solutions of the second kind. In this sec-
tion, we assume that f(x) of (2.1) is a continuous and periodic function
with period Xt + X2 Consider the equation

(8.1) x(t) = f(x(t -h)) + B, ί ^ 0 , B> B2.

Employing the following theorem, which is found in [8], we show the
existence of periodic solutions of the second kind for (2.1) and (8.1).

THEOREM 8.1. Suppose K is a cone (or a truncated cone), A is
positive with respect to K, is completely continuous and F is the set
of positive eigenvectors of A. If

( i ) for any open set GaC, 0 e G,

inf \Aφ\ > 0 ,
φeόGf]K

(ii) there exists an M> 0 such that φeF, \φ\ = M, Aφ = μψ imply
μ<h

(iii) there exists an open neighborhood H of zero, HcB(M), such
that φ e dH Π F, Aφ = μφ imply μ>l,
then A has a fixed point in K Π (B(M)\H).

First, we consider equation (2.1). Let ξ0, ξlf —Xx < ξQ < ξx < 0, be
fixed, and let

Ko = {ψ e C: ψ(-h) = ξ0, ψ(θ) is nondecreasing on [ — h, 0], ψ(0) ̂  fj ,

and

K = {φ e C: φ = ψ - ζξ° for some ψeKQ},

where ζ^ό1) = v, —h<^θ<:0. Then ίΓ is a truncated cone. We assume
the following conditions.

( I ) Any solution x(t, ψ) of (2.1) reaches ξ0 + Xλ + Z2 in finite time
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uniformly for ψ e KQ.
( I I ) For ί0 - inf {ί: x(t, ψ) = ζϋ

for t0 — h ^ t <; ί0.
(III) For kQ, 0 < k0 < 1, sufficiently near 1, x(t0 + h, ψ) — #(£„, ̂ ) ^

(ίi — Qko uniformly for <*jreK0.
For φ G K and ψ* = ^ + ζf0, let τ(^) = tQ H- /&, and let 4̂.*. ζ5—>0 = #-(^0 ™

ζίo+^+xa^ Under assumptions (I), (II), and (III), A is a positive mapping
with respect to K, is continuous and takes closed bounded sets into
bounded sets, and we have the following lemma.

LEMMA 8.1. Under assumptions (I) and (II), there exists an ΎJ > 0
such that I Aφ | ^ ^ uniformly for φe K.

PROOF. Suppose not. Then there is a subsequence {Φv} in K such
that I Aφn I —> 0 as n-+°o. We can assume that τ(^J —> τ0 > 2h as w —• co,
Since {x(t, ψn)}, ψ1

 w — φn + ζ ίo, is uniformly bounded and equicontinuous
on [0, τ0], there exists a uniformly convergent subsequence. For the
simplicity, we assume x{t, ψ j —• y(t) uniformly for t e [ 0 , τ0] as w-^oo.
Then y(ί) is a solution of (2.1) on [h, τ0]. Since y(t) = 0 for r0 — h ^
t ^ τOf we have f(y(s)) = 0, namely, y(s) ^ X2, for r0 — 2Λ- ^ s <; r0 — Λ.
This contradicts the continuity of y{t) on [0, τ0], and hence the con-
clution holds.

Under assumptions (I), (II), and (III), condition (i) in Theorem 8.1 is
satisfied by Lemma 8.1. Condition (ii) is satisfied for M > (ξι — fo)&o>
and condition (iii) holds for H — B(ηJ2) by Lemma 8.1. Thus we have
the following theorem.

THEOREM 8.2. Under assumptions (I), (II), and (III), (2.1) has a
periodic solution of the second kind.

Next we consider equation (8.1). If we define

•Ki — ί^ e C\ ψ( — h) — A2, ψ(θ) is nondecreasing on [ — h, 0], φ(0)^X1 + X2 — A1},

and

K = {φ e C: φ — ψ* — ζA2 for some ψ1 e ίCJ ,

then Z" is a truncated cone.

LEMMA 8.2, Any solution x(t, ψ) of (8.1) for ψeKi is increasing,
and reaches Xι + Xz + A2 till the time (Xt + X2)/(B — ΰ 2 ) . Moreover, if

(8.2) (A -



EXISTENCE OF PERIODIC SOLUTIONS 31

* BTB;(' > JW I L
JW~ I

then for kQ, 0 < k0 < 1, sufficiently near 1, we have

(B - Bz)h S x(t0 + h,ψ)~ x(t0, ψ) ^ (X, + X% - Λ - A2)k0

uniformly for ψeKlf where x(tOf ψ) = Xx + X2 + A2.

PROOF. Since i(ί) ^ £ — B2 > 0, it is clear that x(t) = «(£, <f) reaches
-XΊ + X2 + A2 till the time (Xx + Jζ)/(B - £ 2 ). Let x(t0) - X, + X% + Λ
By (8.2), there exists an & which satisfies h — (A1 + A2)/B1 and (8.3), and
for such an &, we have

Bids + I p(B,s +

From this, for &0, 0 < k0 < 1, sufficiently near 1, we obtain x(t0 + h) —
#(ίo) ^ (-XΊ + -Xi — A — A ) ^ uniformly for ψeKx. We have the same
estimate for fc < (Aj + A2)/B19 Finally, it holds clearly that x(t0 + h) —
a (ίo) ^ (-B — ^ 2 ) ^ uniformly for ψ 6 i ζ .

For ^ e K and ^ = <f> + ζ^2, let r(^) = t0 + h, and let .A: ^ —> ψ —
xτ(ψ) — ζ̂ i+ 2̂+ 2̂̂  Under the conditions of Lemma 8.2, A is a positive
mapping with respect to K, is continuous and takes closed bounded sets
into bounded sets. Furthermore, condition (i) in Theorem 8.1 is satisfied
from \Aφ\^(B- B2)h > 0 uniformly for ψeK,. (ii) and (iii) hold for
M >{XX + X2 - A, - A2)kQ and H = B(η), 0 < η < (B - B2)h9 respectively.
Thus we obtain the following theorem.

THEOREM 8.3. Under the conditions of Lemma 8.2, (8.1) has a
periodic solution of the second kind.

9. Applications. First, consider equation (4.2) for 0 < δ <Ξ 1. Let
— (7r/2) — 2a < ξQ{a) < — (ττ/2) — α. For a fixed a, consider Ko and the
corresponding K in Section 8 for f0 = fo(α) and fx = — (π/2). The fol-
lowing lemma holds.

LEMMA 9.1. Tfterβ exΐsί ξ0 = fo(α) α^ώ δ0, 0 < <50 < 1, such that for
£ δ ^ 1,
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/g -j\ π m i n /g0 + 2π π + 2a — 2 cos a: π + 2ξ0 \
2(δ + vT^?) V 1 + δ 2(1 + δ)2 ' 2(sin(ί0 + α) - δ)/ '

(9.2) - I 6 f r - 2 α χ i - 3 ) ^ (» - 2α + g)g
35 + π - 3Vlf 2(δ + i/l - δ2)

Furthermore, if h satisfies

(9.3) fe<min^ + ? )
2(δ + i / l - δ2) " \ 1 + δ 2(1 + δ)2 ' 2(sin(f0 + α) - 5)/

solution x(t, ψ) of (4.2) reaches ξQ + 2π in finite time uniformly
for ψ e Ko. Moreover, π — 2a ^ x(tf ψ) ^ f0 + 2ττ /or ί0 — fe <; t ^ ί0,
where t0 = int {t: x(t, ψ) = fo + 2ττ}, αw-d consequently xtQ+h(θ) is nondecreas-
ing, and for some η = ^(δ, Λ) > 0 αwd A:o, 0 < ά0 < 1, sufficiently near 1,
we have η ^ x(t0 + h,ψ) ~ x(t0, ψ) ^ — ((π + 2ξo)ko/2) uniformly for ψ e ίΓ0.

PROOF. Since (9.1) and (9.2) hold for ζ0 = -(τr/2) - (7α/4) and S = 1,
for δ0, 0 < δ0 < 1, sufficiently near 1, they do for δQ ^ δ ^ 1 also. Any
solution x(t) = x(t, ψ), ψ e KOf reaches — (π/2) till the time 2a/(δ + l / l - δ2).
Since i(t) ^ δ + v T ^ T 2 for t ^ t ^ ^ + h, where ίt - inf {ί: x(t) = -(π/2} f

if /t satisfies (9.3), then we obtain x(t^ + Λ) ^ 0. In the case δ = 1, a (t)
is increasing and clearly reaches £0 + 27Γ in finite time uniformly for
ψ e Jf0. Next, let δ0 ^ δ < 1 and £2 = inf (ί: x(ί) = 0}. Then a fe + Λ) is
a maximal value, and it is estimated by (4.8) for h ^ (π + 2α)/2(l + δ).
For fe < (π + 2α)/2(l + δ), we have

Γ /((I + B)s)ds £
)

λ) ^ Γ /((I + B)s)ds £ ^
J_( j T + 2 ί r)/ 2 ( 1 +a) 2 ( 1 + 0)

^ -25. - 2α < f 0 + 2τr .

Thus it follows from (4.8) and (9.4) that x(t2 + h) < ξQ + 2π. On the

other hand, by (9.2), and (9.3) we have

ads + \ f(x(s + £2)¥s

- A J-ff/(2o)

(9.5) > αfe - — + \ δds + \ (-as - a + δ)ds
2 J-ϊr/(2α) J-α/o

^ (π - 2a + δ)δ ^ π _ 2 a ι

2a

where a = δ + y Ί - δ2. From (9.5), since f(x(t -h))>0 for t such that
δ — a <Ξ a;(t — fe) < 0, we have
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for t such that 0 ^ a (ί) ^ π - 2a. Thus if δ > (3α/ΊΓ - π)/3, then α(ί)
passes through the strip region 0 <; x 5Ξ jr — 2a during the time interval
of length (6(π - 2α)/(3δ + π - 3VΊΓ)). If we let έ3 = inf {t: x(t) =. π - 2α},
then α:(ί3 + /ι) is a maximal value. Since we have x(t) ^ δ — l f it follows
from (9.2) and (9.5) that

x(tz + h)^ x(t2 + h) + \t3+hχ(s)ds

- 2«)(1 - δ) >„_„„>
2(3

Thus there exists an ε > 0 uniformly for ψe KQ such that

(9.7) α(t3 + fc) ̂  π - 2a + ε .

Therefore x(t) reaches ξ0 + 2π in finite time uniformly for ψ e ίΓ0, and
xh+h(θ) is nondecreasing. Moreover, by (9.3) and (9.7),

x(t0 + h) - α:(έ0) ^ Γ /(a;(έ0 + β))dβ < /(fo)Λ ^ - ί-d_2 | i
J-fc 2

uniformly for ψ e Kor and consequently for Jc0, 0 < k0 < 1, sufficiently near
1, we obtain a;(ί0 + h) - a?(t0) ^ ((π + 2f0)Λ0/2) uniformly for ψ e ίΓ0. Final-
ly> by Lemma 8.1, there exists an η = η(δ, h) > 0 such that x(tQ + h) —

For φGK and ^ — p + Cf°? let τ(^) = t0 + hf and let 4̂.: φ~>φ —
ζfo+2jT. Then, under the assumptions of Lemma 9.1, A satisfies the as-
sumptions of Theorem 8.1. Thus we have the following proposition.

PROPOSITION 9.1. Under the assumptions of Lemma 9.1, (4.1) has a
periodic solution of the second kind.

Next, consider equation (4.1) for δ > 1. Let x(t) be a periodic solu-
tion of the second kind of (4.1), and let T > 0 be the smallest period.
Then it is easy to see that x(t + T) — x(t) = 2pπ for some integer p.
We consider the case p = 1. Then T must be less than 2π/(δ — 1) be-
cause δ > 1, and consequently it is sufficient to consider only h < 2π/(δ — 1).
Consider Kλ and the corresponding K for A% = (π/2) and X1 + X2 — A1 =
(3τr/2).

LEMMA 9.2. Let δ > 1 in (4.1). Then any solution x(t, ψ) of (4.1)
is increasing and reaches (5ττ/2) till the time 2π/(δ — 1). If h <
(ττ(2 + δ)/(l + δ)2), then for k0, 0 < k0 < 1, sufficiently near 1, (δ — l)fe ^
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x(t0 + ht ψ) — x(tQ, ψ) 5Ξ kQπ uniformly for ψ e Kl9 where x(tQ, ψ) = (Sπ/2).

PROOF. Since x(t) ^ δ — 1 > 0, it is clear that x(t) is increasing and
reaches (5ττ/2) till the time 2π/(δ - 1). Let a(i0) = (5π/2). If π/(l + δ) ^
A < (ττ(2 + 8)/(l + δ)2), then we have

(1 + δ)ds + \ \δ- sin ((1 + 8)s + ^-
-k J-*/!i+j) I \ 2

^ (1 + δ)Λ - - ^ < JΓ

l +
uniformly for ψ e Kx. Similarly, for h < π/(l + δ),

x(t0 + h) » jc(ίo) ^ Γ (δ - sin ((1 + δ)β + ΆIds ^ 7Γ -
(1 + δ)

Consequently, for fc0> 0 < fc0 < 1, sufficiently near 1, we have x(t0 + h) —
x(t0) <Ξ koπ uniformly for ψ e JKi It is clear that x(ί0 + fe) — aj(ί0) ^
(δ - ΐ)h holds.

If we define the mapping A similarly to the case δ <; 1, A satisfies
the assumptions of Theorem 8.1 by Lemma 9.2, and hence we have the
following proposition.

PROPOSITION 9.2. Under the assumptions of Lemma 9.2, (4.1) has a
periodic solution of the second kind.

REMARK. (i) (9.2) is true for δQ = sin (37Γ/7), where 0.974 < δ0 <
0.975. (9.1) holds for a wider region of δ than (9.2) for fo(α) = -(π/2) -
(7α/4).

(ii) For the case δ = 0.8 and h — 2, Ueda and his colleagues have
observed the existence of a periodic solution of the second kind.
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