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1. Introduction. Favard [1] has shown that if a linear almost
periodic system

(1) x(t) = A(t)x + f(t)

has a bounded solution and if for every B(t) in the hull H(A), every
nontrivial solution x(t) of x(t) = B(t)x which is defined and bounded on
R (shortly, i?-bounded) satisfies the condition

(2) mt\\x(t)\\>0,
ten

then system (1) has an almost periodic solution.
Recently, Kato [7] has pointed out that for functional differential

equations the replacement of condition (2) in Favard's theorem by the
condition

(3) inf ( sup \\x(t + 0)||) > 0
teR 0 e [ — λ , 0 ]

is not obvious. However, Kato has shown that condition (2) can be re-
placed by condition (3) by considering a minimal solution with respect to
a new norm |[ || in C([ —Λ, 0], Rn) defined by

v l / 2

In this paper, more generally, we shall show that for functional
differential equations with infinite retardations, we can replace condition
(2) by the conditions

inf ( sup \\x(t + Θ)\\eϊθ) > 0 , 7 > 0 ,
ten 0e(-oo,o]

and

sup \\x(t + 0)||» + \ \\x(t + θψg(θ)dθ\ > 0

by introducing semi-norm
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\\Φ\

and

| l l ίK0) l ΐ 2

1/2

if r > 0 ,

for continuous and bounded functions φ mapping (-co, 0] into Rn, respec-

tively, where g{θ) is a nondecreasing positive function defined on (— ^ f 0]

such that Γ g(#)d# < co.
J — CO

2. Hale's space and some lemmas. First we shall give a class of
Banach spaces considered by Hale [2], Let x be any vector in Rn and
|]a?|| be the Euclidean norm of x. Let B = B((— °°, 0], iϋ1*) be a space of
functions mapping (-co ( 0] into R% with norm IHL For any ^ in S a n d
any σ in [0, co), let φ° be the restriction of φ to the interval (—°<>f — <?].
This is a function mapping (-co, — σ] into jβ*. We shall denote by Bσ

the space of such functions φσ. For any rj e Bσ, we define the semi-norm
\\η\\ΰo of η by

IMUσ = inf { |M| B :^ = V) .

If x is a function defined on (—<*>, α), a > 0, then for each £ in [0, α)
we define the function xt by the relation xt(s) = x(t + s), — co < s ^ 0.
For numbers α and τ, α > r, we denote by Aτ

a the class of function x
mapping (—c^, α) into Rn such that x is a continuous function on [r, α)
and xτeB. The space 5 is assumed to have the following properties:

( I ) B is a Banach space.

( I I ) If x is in AT

a, then #f is in B for all t in [r, α) and xt is a
continuous function of £, where α and r are constants such that
τ < a ^ co#

(III) All bounded continuous functions mapping ( — <*>,()] into Rn are
in β .

(IV) If a sequence {̂ fc}, φkzB, is uniformly bounded on (—°°,0]
with respect to the Euclidean norm || || and converges to φ uniformly
on any compact subset of (--°°,0], then φeB and \\φk — Φ\\B-^ 0 as
k —^ c o .

REMARK. Property (IV) is equivalent to the following property:
For any b > 0 and ε > 0, there exist an N > 0 and a 5 > 0 such that

{φ e B; \\φ\\B < ε} ZD {φ e B; s u p \\Φ(Θ)\\ < δ} f) {φe B; s u p \\Φ(Θ)\\ < 6} .
0e[-AΓ,o] ^e (-oo,0]
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(V) There are continuous, increasing and nonnegative functions b(r),
c(r) defined on [0, oo), 6(0) = c(0) - 0, such that

\\φ\\B £ b( s u p \\φ(θ)\\) + e(\\φσ\\Ba)

for any ψ in B and any σ ^ 0.
(VI) If a is a nonnegative number and φ is an element in B, then

Tσφ defined by Tσφ(s) = φ(s + σ), s e (— oo, — σ], is an element in Ba and
| |2»U —0 as σ—co.

In addition, we shall assume that the space B has the following
properties;

(VII) B is separable.
(VIII) \\φφ)\\ S MM\B for Λf, > 0.
In the following four lemmas, we assume that /(£, φ) is continuous

in (t, φ) e R x B and almost periodic in t uniformly for φe B.

LEMMA 1 (cf. Lemma 3 in [5]). Suppose that /(£, φ) satisfies the
condition

( 4) sup {||/(ί, 0)||; t 6 Λ, | W|B ^ α} £ F(α) < oo

/o? every a > 0.
7/ ίfee system

( 5 ) 4(t) - /(t, α;t)

Λαs α solution x(t) which is bounded on [0, oo), ίfee^ for any g(t, φ) in
H(f) the system

(6) . x(t) = g(t, xt)

has an R-bounded solution. More exactly, if {x(t + tk), f(t + tkf φ)} con-
verges to (y(t), g(t, φ))y then y(t) is a bounded solution of (6) on

The following lemma can be proved by slightly modifying the proof
of Lemma 1 in [6],

LEMMA 2. If f(t, φ) is linear in φ, then it satisfies condition (4)
with F{ά) = La for a constant L > 0.

For continuous and bounded function φ mapping (—°°,0] into Rn,
let I l̂ ll* be a semi-norm which has the following properties:

(a) For any d > 0, there exists an M(d) > 0 such that if \\φ(t)\\ <Ξ d
for all t e ( - c o , 0], then \\φ\\* ^ M(d).

(b) If a sequence {φk} is continuous and uniformly bounded on
(— co ( 0] with respect to the Euclidean norm 11 11 and converges to φ uni-
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formly on any compact subset of (—^, 0], then \\φk — φ\\* —>0 as fc—* oo.
( c ) There exists a β{a) such that if x(t) is an ^-bounded solution

of (5) and satisfies \\xt\\* ^ a, a > 0, where f(t, φ) satisfies condition (4)
with F(a) = o(α3) as α-+ oo, then ||a<t)|| ^ β(a).

Existence of such a semi-norm H H* will be discussed in Sections 3
and 4.

For an ^-bounded and continuous function x(t), put

λ(α ) = sup{||ί»ιlU; teR} .

LEMMA 3. Suppose thatf(tf φ) satisfies condition (4) and that system
(5) has an R-bounded solution. Let A(f) be defined by

Λ(f) = inf {X(x); x(t) is an R-bounded solution of (5)} .

Then for every g(t, φ) eH(f), we have A(g) = A(f).

PROOF. First of all, we note that X(x) < oo if χ(t) is ^-bounded by
property (a). For every e > 0, there exists an iϋ-bounded solution of
(5) such that X(x) ^ A(f) + e. Since x(t) is an Abounded solution of (5),
for every g(t, φ)eH(f), system (6) has a solution y(t) to which {x(t + tk)}
converges uniformly on any compact interval in R for some sequence
{tk} by Lemma 1. Then

by property (b). This implies

Λ(g) ^ X(y) ^ X(x) ̂  Λ(f) + ε ,

and hence Λ(g) ^ Λ(f). On the other hand, g(t, Φ) e H(f) is almost periodic
uniformly for φ e B and f(t, Φ) e H(g), and hence A(f) ^ A(g). Thus we
have Λ(g) = A(f) for every g(t, φ)eH(f).

LEMMA 4. Suppose thatf(tt φ) satisfies condition (4) with F(a) = o(az)
as a—+co and that system (5) has an R-bounded solution. Then there
exists an R-bounded solution x(t) of (5) with the property X(x) = A(f).

PROOF. By the definition of A(f)f there exists a sequence {#*(£)} of
^-bounded solution of (5) such that X(xh) ^ A(f) + 1/fc ^ A(f) + 1. Since
||x?||* £ A{f) + 1, there exists a β > 0 such that \\xk(t)\\ < β for all k and
all teR by property (c). Let K be such that

0 on 0e (-<*,, 0],

where 6( ) is the one given in property (V) of the space B. Clearly, K
is a compact subset of B. Since \\x\t)\\ ̂  F{b(β)) for all k and all
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t, xk

t e K for all k and all t e R. Thus {xk(t)} has a subsequence {xkj(t)}
which converges to an jR-bounded solution x(t) of (5). On the other hand,
by using the same arguments as in the proof of Lemma 3, we have
λ(a) £ A(f). That is, \{x) - Λ(f).

3. The space W with norm s\xpθe(-«>,Q}\\Φ(θ)\\e7θ. The following
class of Banach spaces has been discussed by Hino in [4] as one of Hale's
spaces.

DEFINITION 1. The space ^ consists of all continuous functions
mapping ( — °°,0] into Rn such that φ(Θ)erΘ —»0 as fl—>—co with norm

9, 7 > 0 .

It is easily seen that the space W has properties (I)~(VIII).
For bounded functions φ in <g*, if we define \\φ\\* by

then it has properties (a), (b), and (c). It is clear that it has properties
(a) and (b). We shall show that it has property (c). Assume that x(t)
is an ^-bounded solution of (5) and ||a?t|U ίί a> a > 0. Clearly, for any
T> 0

G O \l/2 /CO \l/2

Wvίt -L /9"\M2/7/9l <Γ I I Wvίf -L β\\\2£>2ΐΰrJβ \ <C HΎ I < /y
I I *v\v i U) \ \ t*Ί/ I ^ I I | X ^ u π ^ XJ) I I tί 1*1/ 1 ^ | |*ί/( | | ^ ^ IΛ, j

-T / \J-Γ /

and hence property (c) follows from Lemma 2 and the following lemma.
LEMMA 5 (cf. Lemma 4 in [7]). Suppose that f(t, φ) satisfies condition

(4) with F(a) = o(α3) as a —* oo. T%ê  /or om̂ / α > 0, there exists a
constant β > 0 swfr ί&αέ ΐ/ x(t) is an R-bounded solution of system (5)

G O \ l / 2

\\x(t + θ)\\*dθ) ^ α: for some T > 0, we
Here we should note that this H ]]* has the following property;
(d) If x\t) and x\t) are ^-bounded continuous functions, then

\ ? I I 2

1**11*

where y{t) - {^(ί) + x\t)}/2 and «(t) - {x^t) -

C ro ) i / p

4. The space ^ with norm |(sup,6r_ri0] IW0)||)* + J \\φ(θ)\\pg(θ)dθ^ .
We shall discuss a class of Banach spaces considered by Naito in [8]

as one of Hale's spaces.
DEFINITION 2. Let r ^ 0, p Ξ> 1, and let g(θ) be a nondecreasing
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S o
g{θ)dθ < co. The space

έ$ consists of all functions φ mapping (— oo, 0] into Rn, which are
Lebesgue measurable on (— °o, 0] and are continuous on [ — rt 0] with

i f 0 \ l/p

(sup,β[. r i0] \\φ(θ)\\y + J ^ \\Φ(ΘWg(θ)dθ^ . When r = 0, we
do not assume the continuity of φ at θ = 0.

It is easily shown that the space .^ also has properties (I)—(VIII).
For continuous and bounded function φ mapping (—°°, 0] into Rn,

we can consider

if r = 0,

\φ(β)\\2dθ + ̂  J\φ{θWg{θ)dθy if r > 0

which has properties (a), (b), (c), and (d). It is clear that it has proper-
ties (a), (b), and (d). Assume that x(t) is an ̂ -bounded solution of (5)
and HίCίll* <: a, a > 0. If r = 0, then it satisfies

Since

(^0 J \ x ( t + Θ W d θ J 2 ^ \ \ x t \ \ ^ a , i f r > 0 ,

property (c) follows from Lemma 5.

5. Existence theorem for almost periodic solutions of linear systems.

LEMMA 6. Let r > 0 and φ{θ) be defined on [ — rf 0]. // φ{θ) satisfies
a Lipschitz condition

ι) - Φ(θt)\\ £ L% - Θ2\ , θίf θ2 6 [-r, 0] ,

\J-r
^ {min(r/3, ( sup | | ^ ) | | ) / 3 L ) } 1 / 2 x ( sup \\φ(θ)\\) .

0e[—r,0] ^e[-r,o]

For the proof, see ([7], pp 87-88).

THEOREM. Suppose that A(t, φ) is continuous in (t, φ)eR x
(R x ^ ) , linear in φ and almost periodic in t uniformly for φ e

(*) /or every B(t, φ) e H(A), every nontrivial R-bounded solution of
the system
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( 7 ) x{t) = B(t, xt)

satisfies the condition

(8) inf \\xt\\r> 0 (inf \\xt\\φ > 0) .
teR teR

Then for any almost periodic function fit), the system

( 9 ) x(t) = A(t, xt) + f(t)

has an almost periodic solution, whenever it has a bounded solution on
[0, - ) .

PROOF. There exists an ίί-bounded solution x(t) of (9) with the
minimal semi-norm \(x) by Lemmas 2 and 4.

Now we shall show that for each Bit, φ) + git) e HiA + / ) , the system

(10) xit) - Bit, xt) + git)

has a unique i?-bounded solution with the minimal semi-norm.
Let x\t) and x\t) be Abounded solutions of (10) with the minimal

semi-norm. Clearly, z(t) = {x\t) — x\t)}/2 is a solution of the homogene-
ous system (7) and y{t) = {x\t) + x\t)}/2 is a solution of system (10). By
property (d), we have

which implies

(11) inf HzJL = 0 .
teR

Assume that sup t e Λ ||z(fc)ll = δ > 0. Clearly, δ < oo. Then there
exists an LL > 0 such that &wpteB\\Bit, zt)\\ ̂  LL by property (V) and
Lemma 2.

( i ) The case where the space is ^. The relation (11) implies that
for any e > 0, there exists a t0 e R such that

(12) IKIU - {S_JI*(*o + β ) | | V ^ / < ε .

There exists a Γ > 1 such that

(13) sup \\z{t, + 0)| |e" ^ 5e-^Γ < ε .

Since

||»(ί + θγ)e^ - β(ί + <?ay
ff*|| ^ L,|^ - ί,| for θl9 θ2 e [- Γ, 0] ,

where L2 = LL + 7δ, it follows from (12) and Lemma 6 that
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2dθ

^ min{T/3, ( sup \\z(tΰ + βy'lD/βL,} x ( sup \\z(t0 + θ)e^\\f .
tf 6[—Γ,0] θe[ — Γ,0]

Hence we have

(14) sup ||s(to + 0)β" || £ max ^ ^
0 [ ]

because Γ > 1. By (13) and (14), we have infίejB H^H, = 0, which con-
tradicts to condition (8). Thus z{t) = 0 on R.

(ii) The case where the space is &. Define H îU* by

G O \ l / p

\\z(t + θ)\\" g(θ)dθ) .
Then, we have

(15) H^IU ^ [|«*IU* .

I t follows from (11) t h a t for any ε > 0, there exists a toeR such
t h a t | |z i o |U < ε, t h a t is,

Wo)\\<e if r = 0,
(16) Ί /fθ \l/2

< ε if r > 0

and

(17)

(ii.l) The case where 1 ̂  p < 2, By Holder's inequality, we have

(18) (J ||s(i +

G O \lf2 / f θ \ ( 2 ~

Mt+Θ)\\*g(θ)dθ) X ( ff(ί)dff)
because 1 < 2/p. By Lemma 6, it holds that

GO \l/2

\\z(t + ^ ) | I 2 ^ ) ^ {min (r/3, ( sup \\z(t +
- r / ί?e[-r,0]

ί)/2 /TOx (i

>e[-r,0]

x ( sup \\z(t +
«e[-r,0]

if r > 0. By (16), (17), (18), and (19), we have
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I ε + I g{θ)dθ x ε if r = 0 ,
\J-0O /

I /CO \ ( 2 - p ) / p

max { V3ε/r , V3L^2 } + ( I g(θ)dθ\ x ε if r > 0 ,

which implies that inf ί e s ll^H** = 0. Therefore inftejB H^JU = 0 by (15),
which contradicts to condition (8). Thus z(t) = 0 on R.

(ii.2) The case which p Ξ> 2. It is easily seen that

(20)

because p ^ 2. By (16), (17), (19), and (20), we have

jε + δ(p-i)/p x εz/p if r = 0 ,
Z*° ^ (max { V3ε/r , i^3L^2 } + δ(ί>"2)/ί) x ε2/ί> if r > 0 ,

which implies that inffejB H^H** = 0. Therefore mΐteR\\zt\\^ = 0 by (15),
which contradicts to condition (8). Thus z(t) — 0 on R. Thus system
(10) has a unique i?-bounded solution with the minimal semi-norm.

Let p(t) be the solution of (9) with the minimal semi-norm. It is
easy to see that if (y, C(t, φ) + h)e H(p, A + /) , y(t) is the solution of
the system

x(t) - C(t, xt) + h(t)

with the minimal semi-norm by Lemma 3. Let {τk} be a sequence such
that A{t + τk, ψ) + f(t + τk) —> B(tt ψ) + g{t) uniformly o n i ί x Sasfc->oo?

where S is any compact subset of ^ ( ^ ) . Suppose that p(t + τk) is not
uniformly convergent on R. Then, by the same idea as in the proof of
Theorem 5 in [5], we can find two solutions η(t) e H(p) and ζ(t) e H(p) of
some system in the hull H{A + /) which satisfies

l i f t - Coll* > e

for some ε > 0. Thus we can find two minimal solutions of some system
in the hull. This contradicts the uniqueness of the minimal solution.
Thus we see that p(t) is an almost periodic solution of (9). This completes
the proof.

REMARK. If we define a number β by

(21) β - inf {Reλ: Γ \eλθ\pg(θ)dθ <

where g(θ) is the one given in Definition 2, then β is clearly nonposi-
tive. If β Φ 0, we can regard our theorem with the space ^ as a
corollary of our theorem with the space ^ . Furthermore, we can
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replace the assumption (*) in our theorem with <5$ by the following
assumption:

(**) there exists a 7, β < - 7 < 0, such that for every B(t, ψ) e H(A),
every nontrivial ^-bounded solution of system (7) satisfies the condition

(22)
te R

w h e r e \\xt\\^ = s u p ^ e { _ T O ί 0 ] \\x(t + θ)\\erθ.
In fact, for the number 7 in (**), the space ^ is naturally and

continuously imbeded into £$, that is, there exists a constant d(Ύ) such
that

(23) II0IU ^ ^OOII^IU f ° r Φ^r^

(cf. Lemma 3.3 in [9]). Let A(t, φ) be a function defined on R x £%f
satisfying the assumptions in our theorem with έ%f. Conditions (22) and
(23) imply that the restriction Ά of A on R x ^ satisfies the assump-
tions in our theorem with ^ . Suppose that f(t) is an almost periodic
function for which system (9) has a bounded solution on [0, 00). By
Lemma 1, system (9) has an ίN-bounded solution, which is obviously an
^-bounded solution of the system

(24) x(t) = A(t, xt) + f[t)

Then, Theorem with W says that system (24) has an almost periodic
solution p(t). Since Ά(t9 pt) — A(t, pt) for t e R, p(t) is a solution of
system (9).

In the same ways as above, we can replace the condition (3) in [7]
by the condition (**), where β is assumed to be — <χ>.

6. Autonomous linear system. Consider an autonomous linear
system

(25) x(t) - A(xt) ,

where A(φ) is a bounded linear operator on έ%? into Rn. We assume that
the function g(θ) in Definition 2 satisfies the condition

(26) g(βx + θ2) S giθMO,) for θu θ2 e ( - 00 f 0] .

Then it has been proved by Naito (Theorem 4.4 in [8]) that there exist
two positively invariant spaces S and U such that

with the properties that
(i) every solution of (25) starting from S tends to zero as t
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(ii) dim U < oo f and the solutions of (25) starting from U are
governed by an autonomous linear system of ordinary differential equa-
tions all of whose eigenvalues have nonnegative real part.

Hence, by the same arguments as in ([7], p. 91), we can show that
if x(t) is a nontrivial ^-bounded solution of (25), then it satisfies condi-
tion (8).

REMARK. In order to show that the above decomposition of the
space J£$ according to Theorem 4.4 in [8], we must see that the condition

(27) β < 0

holds, where β is the one defined by (21). However, Professor Naito
informed me that condition (27) follows from condition (26). I represent
here a method due to Professor Naito. If condition (26) holds, then there
exists a number a such that

a - sup (log g(θ))/θ = lim (log g(θ))/θ ,

(cf. Theorem 7.6.1 in [3]). It is clear that g{θ) ̂  ea0 for 0e (-<*>, 0] and
that for any 7 < α, there exists a constant N(Ύ) such that g(β) ^ N(Ί)erθ

for 0e(—oo, 0]. Since g(θ) is nondecreasing and integral) le, it holds that
0 < a <; co. Hence we have the relation

β = -a/p

where p is the one given in Definition 2, which implies condition (27).

Finally the author thanks Professors T. Naito and T. Furumochi for
their invaluable conversations and comments.
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