Tôhoku Math. Journ. 31 (1979), 187-194.

DIMENSION OF COHOMOLOGY SPACES OF INFINITESIMALLY DEFORMED KLEINIAN GROUPS

Masami Nakada

(Received May 15, 1978, revised September 2, 1978)

1. Introduction. Let G be the group of all Möbius transformations of $\hat{C} = C \cup \{\infty\}$ of the form $t \mapsto (\alpha t + \beta)/(\gamma t + \delta)$, where $\alpha, \beta, \gamma, \delta \in C$ and $\alpha \delta - \beta \gamma = 1$. Here C is the complex plane. An element $g: t \mapsto (\alpha t + \beta)/(\gamma t + \delta)$, not being the identity, of G is called parabolic if $tr^2g = (\alpha + \delta)^2 = 4$.

Let Γ be a subgroup of G and let E be a finite dimensional complex vector space. Let χ be an anti-homomorphism of Γ into GL(E), the group of all non-singular linear mappings of E onto itself. A mapping $z: \Gamma \to E$ is called a cocycle if

$$z(g_1 \circ g_2) = \chi(g_2)(z(g_1)) + z(g_2)$$

for all g_1 and g_2 in Γ . A cocycle z is a coboundary if

$$z(g) = \chi(g)(X) - X$$

for some $X \in E$. We denote by $Z_{\chi}^{1}(\Gamma, E)$ the space of all cocycles and by $B_{\chi}^{1}(\Gamma, E)$ the space of all coboundaries. A cocycle z is called a parabolic cocycle if, for any parabolic cyclic subgroup Γ_{0} of $\Gamma, z|_{\Gamma_{0}}$ is an element of $B_{\chi}^{1}(\Gamma_{0}, E)$. We denote by $PZ_{\chi}^{1}(\Gamma, E)$ the space of all parabolic cocycles.

The group G is a complex 3-dimensional Lie group isomorphic to SL(2, C) modulo its center. The Lie algebra g of G is therefore the algebra of 2×2 complex matrices of trace zero. We identify g with the tangent space of G at the identity element e of G.

The adjoint representation Ad of G in g is defined by $\operatorname{Ad}(g)(X) = (dA_g)_e(X)$, where $X \in \mathfrak{g}$ and $(dA_g)_e$ is the differential at e of the mapping $A_g: G \ni h \mapsto g^{-1} \circ h \circ g \in G$. The adjoint representation is an anti-homomorphism of G into $GL(\mathfrak{g})$. Hence, for a subgroup Γ of G, we can construct the space of parabolic cocycles $PZ_{\operatorname{Ad}}^1(\Gamma,\mathfrak{g})$.

Let Γ be a subgroup of G and let $\theta: \Gamma \mapsto G$ be a homomorphism of Γ into G. We say that θ is a parabolic homomorphism if $\operatorname{tr}^2 \theta(g) = 4$ for any parabolic element g in Γ .

In this paper we prove the following:

THEOREM. Let Γ be a finitely generated subgroup of G and let $\theta: \Gamma \to G$ be a parabolic homomorphism which is sufficiently close to the identity homomorphism. Then

dim
$$PZ_{\mathrm{Ad}}^{1}(\Gamma, \mathfrak{g}) \geq \dim PZ_{\mathrm{Ad}}^{1}(\Gamma^{\theta}, \mathfrak{g})$$
,

where $\Gamma^{\theta} = \theta(\Gamma)$.

In Section 4 we give an application of this theorem concerning the quasi-conformal deformation of a certain class of finitely generated Kleinian groups.

I would like to express my gratitude to the referee for his informative advice.

2. Linear maps $T^{(\sigma,\omega)}$ and $S^{(\sigma,\omega)}$. Let Γ be a finitely generated subgroup of G with a system of generators $\sigma = \{\sigma_1, \dots, \sigma_N\}$. Let Λ be the free group with free generators $\{\lambda_1, \dots, \lambda_N\}$ and let $\pi: \Lambda \to \Gamma$ be the homomorphism defined by $\pi(\lambda_k) = \sigma_k$. Denote by $\omega = \omega(\lambda_1, \dots, \lambda_N)$ an element of Λ , i.e., a word in N letters $\lambda_1, \dots, \lambda_N$. The kernel of π will be denoted by ker π .

We define an anti-homomorphism $\rho: \Lambda \to GL(\mathfrak{g})$ by $\rho = \operatorname{Ad} \circ \pi$. Then we can construct, as in the case of $Z^1_{\operatorname{Ad}}(\Gamma, \mathfrak{g})$, the space of cocycles $Z^1_{\rho}(\Lambda, \mathfrak{g})$, that is, $\widetilde{z} \in Z^1_{\rho}(\Lambda, \mathfrak{g})$ if and only if $\widetilde{z}(\lambda \circ \lambda') = \rho(\lambda')(\widetilde{z}(\lambda)) + \widetilde{z}(\lambda')$ for all λ and λ' in Λ .

Let V_{ρ} be the subspace of $Z_{\rho}^{1}(\Lambda, \mathfrak{g})$ defined by $V_{\rho} = \{\widetilde{z} \in Z_{\rho}^{1}(\Lambda, \mathfrak{g}): \widetilde{z}(\omega) = 0 \text{ for all } \omega \in \ker \pi\}$. By a result in [6], $Z_{\mathrm{Ad}}^{1}(\Gamma, \mathfrak{g})$ is isomorphic to V_{ρ} by the map $Z_{\mathrm{Ad}}^{1}(\Gamma, \mathfrak{g}) \ni z \mapsto z \circ \pi \in V_{\rho}$. Moreover, $PZ_{\mathrm{Ad}}^{1}(\Gamma, \mathfrak{g})$ is isomorphic to the subspace PV_{ρ} of V_{ρ} defined by $PV_{\rho} = \{\widetilde{z} \in V_{\rho}: \text{ for any } \omega \text{ with } \pi(\omega) \text{ parabolic, there exists an } X \in \mathfrak{g} \text{ with } \widetilde{z}(\omega) = \rho(\omega)(X) - X\}.$

Let $\tilde{z} \in Z_{\rho}^{1}(\Lambda, \mathfrak{g})$ and let $\tilde{z}(\lambda_{k}) = X_{k}$. For a word $\omega = \eta_{1} \circ \cdots \circ \eta_{n(\omega)}$ in Λ with $\eta_{s} = \lambda_{k(s)}$ or $\eta_{s} = \lambda_{k(s)}^{-1}$ for some $k(s), 1 \leq k(s) \leq N$, we have

$$\begin{split} \widetilde{z}(\boldsymbol{\omega}) &= \widetilde{z}(\eta_1 \circ \cdots \circ \eta_{n(\boldsymbol{\omega})}) \\ &= \sum_{s=1}^{n(\boldsymbol{\omega})-1} \rho(\eta_{n(\boldsymbol{\omega})}) \circ \cdots \circ \rho(\eta_{s+1})(\widetilde{z}(\eta_s)) + \widetilde{z}(\eta_{n(\boldsymbol{\omega})}) \\ &= \sum_{s=1}^{n(\boldsymbol{\omega})-1} \operatorname{Ad}(\boldsymbol{\nu}_{n(\boldsymbol{\omega})}) \circ \cdots \circ \operatorname{Ad}(\boldsymbol{\nu}_{s+1})(\widetilde{z}(\eta_s)) + \widetilde{z}(\eta_{n(\boldsymbol{\omega})}) \end{split}$$

for $\nu_s = \pi(\eta_s)$. Since $\tilde{z}(\eta_s) = -\rho(\eta_s)(\tilde{z}(\eta_s^{-1})) = -\operatorname{Ad}(\nu_s)(\tilde{z}(\eta_s^{-1}))$, we have

$$\widetilde{z}(\omega) = \sum_{s=1}^{n(\omega)} Y_s^{(\sigma,\omega)}$$
 ,

where

188

$$Y_s^{\scriptscriptstyle(\sigma,\omega)} = egin{cases} \operatorname{Ad}(oldsymbol{
u}_{n(\omega)}) \circ \cdots \circ \operatorname{Ad}(oldsymbol{
u}_{s+1})(X_{k(s)}) & ext{if} \quad oldsymbol{
u}_s = \sigma_{k(s)} \ -\operatorname{Ad}(oldsymbol{
u}_{n(\omega)}) \circ \cdots \circ \operatorname{Ad}(oldsymbol{
u}_s)(X_{k(s)}) & ext{if} \quad oldsymbol{
u}_s = \sigma_{k(s)}^{-1} \end{cases}$$

for s with $1 \leq s \leq n(\omega) - 1$ and

$$Y_{n(\omega)}^{(\sigma \ \omega)} = egin{cases} X_{k(n(\omega))} & ext{if} \quad oldsymbol{
u}_{n(\omega)} = \sigma_{k(n(\omega))} \ - ext{Ad}(oldsymbol{
u}_{n(\omega)})(X_{k(n(\omega))}) & ext{if} \quad oldsymbol{
u}_{n(\omega)} = \sigma_{k(n(\omega))}^{-1} \ .$$

Hence $\tilde{z} \in V_{\rho}$ if and only if $\sum_{s=1}^{n(\omega)} Y_s^{(\sigma,\omega)} = 0$ for all $\omega \in \ker \pi$ (see also [6]). Moreover, $\tilde{z} \in V_{\rho}$ is an element of PV_{ρ} if and only if, for any ω with $\pi(\omega)$ parabolic, there exists an $X \in \mathfrak{g}$ such that $\sum_{s=1}^{n(\omega)} Y_s^{(\sigma,\omega)} = \operatorname{Ad}(\pi(\omega))(X) - X$.

Let L_g , $g \in G$, be the left translation of G and let f be the holomorphic function on G defined by $f(g) = \operatorname{tr}^2 g - 4$. Then we have the following.

LEMMA 1 (Gardiner and Kra [4]). Let $\omega \in \Lambda$ with $\pi(\omega)$ parabolic and let Y be an element of g. Then $Y = \operatorname{Ad}(\pi(\omega))(X) - X$ for some $X \in \mathfrak{g}$ if and only if $d(f \circ L_{\pi(\omega)})_{e}(Y) = 0$ for the tangent linear mapping $d(f \circ L_{\pi(\omega)})_{e}$ at $e \in G$.

By this lemma we have immediately the following.

LEMMA 2. Let $\tilde{z} \in Z^1_{\rho}(\Lambda, \mathfrak{g})$ and let $\tilde{z}(\lambda_k) = X_k$. Then \tilde{z} is an element of PV_{ρ} if and only if $\sum_{s=1}^{n(\omega)} Y^{(\sigma,\omega)}_s = 0$ for all $\omega \in \ker \pi$ and $d(f \circ L_{\pi(\omega)})_s(\sum_{s=1}^{n(\omega)} Y^{(\sigma,\omega)}_s) = 0$ for all ω with $\pi(\omega)$ parabolic.

Let $T_s^{(\sigma,\omega)}$, $1 \leq s \leq n(\omega) \ \omega \in \Lambda$, be the linear mapping of g onto itself defined by

$$T_s^{(\sigma,\omega)} = egin{cases} \operatorname{Ad}(oldsymbol{
u}_{n(\omega)}) \circ \cdots \circ \operatorname{Ad}(oldsymbol{
u}_{s+1}) & ext{if} \quad oldsymbol{
u}_s = \sigma_{k(s)} \ -\operatorname{Ad}(oldsymbol{
u}_{n(\omega)}) \circ \cdots \circ \operatorname{Ad}(oldsymbol{
u}_s) & ext{if} \quad oldsymbol{
u}_s = \sigma_{k(s)}^{-1} \end{cases}$$

for s with $1 \leq s \leq n(\omega) - 1$ and

$$T_{n(\omega)}^{(\sigma,\omega)} = egin{cases} \mathrm{id} & \mathrm{if} \quad oldsymbol{
u}_{n(\omega)} = \sigma_{k(n(\omega))} \ -\mathrm{Ad}(oldsymbol{
u}_{n(\omega)}) & \mathrm{if} \quad oldsymbol{
u}_{n(\omega)} = \sigma_{k(n(\omega))}^{-1} \ ,$$

where id is the identity mapping. We set $T^{(\sigma,\omega)}(k) = \sum_{s,k(s)=k} T^{(\sigma,\omega)}_{s}$. Here $T^{(\sigma,\omega)}(k_0) = 0$ if $k(s) \neq k_0$ for all s. Let $T^{(\sigma,\omega)}$ be the linear mapping of g^N into g defined by $T^{(\sigma,\omega)} = (T^{(\sigma,\omega)}(1), \cdots, T^{(\sigma,\omega)}(N))$. For $\omega \in \Lambda$ we denote by $S^{(\sigma,\omega)}$ the linear mapping $d(f \circ L_{\pi(\omega)})_{\epsilon}$ of g into C.

PROPOSITION. Let Γ be a finitely generated subgroup of G with a system of generators $\sigma = \{\sigma_1, \dots, \sigma_N\}$ and let Λ be the free group with free generators $\{\lambda_1, \dots, \lambda_N\}$ with the homomorphism $\pi: \Lambda \to \Gamma$ defined by

 $\begin{aligned} \pi(\lambda_k) &= \sigma_k. \quad Then \quad PZ^1_{\mathrm{Ad}}(\Gamma, \mathfrak{g}) \quad is \quad isomorphic \quad to \quad the \quad subspace \quad W = \\ \{X \in \mathfrak{g}^N \colon T^{(\sigma, \omega)}(X) = 0 \quad for \quad all \quad \omega \in \ker \pi \quad and \quad S^{(\sigma, \omega)} \circ T^{(\sigma, \omega)}(X) = 0 \quad for \quad all \quad \omega \\ with \quad \pi(\omega) \quad parabolic\} \quad of \quad \mathfrak{g}^N. \end{aligned}$

PROOF. Set $\tilde{z}(\lambda_k) = X_k$ for $\tilde{z} \in Z_{\rho}^1(\Lambda, \mathfrak{g})$. Let X be a vector obtained by arranging X_1, \dots, X_N in a column. Then $Z_{\rho}^1(\Lambda, \mathfrak{g})$ is isomorphic to \mathfrak{g}^N by the mapping $Z_{\rho}^1(\Lambda, \mathfrak{g}) \in \tilde{z} \mapsto X \in \mathfrak{g}^N$. So we see by Lemma 2 that PV_{ρ} is isomorphic to W. Since $PZ_{Ad}^1(\Gamma, \mathfrak{g})$ is isomorphic to PV_{ρ} , we are done.

Next we represent linear maps $T^{(\sigma,\omega)}$ and $S^{(\sigma,\omega)}$, $\omega \in \Lambda$, by matrices with respect to the basis

$$(*) \qquad \qquad \left\{ \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{pmatrix} \right\}$$

for g. Let $\sigma_k(t) = (\alpha_k t + \beta_k)/(\gamma_k t + \delta_k)$. Then

$$\mathrm{Ad}(\sigma_k) = egin{pmatrix} lpha_k \delta_k + eta_k \gamma_k & \gamma_k \delta_k & -lpha_k eta_k \ 2eta_k \delta_k & \delta_k^2 & -eta_k^2 \ -2 lpha_k \gamma_k & -\gamma_k^2 & lpha_k^2 \end{pmatrix}$$

with respect to this basis. Hence, by the definition of $T^{(\sigma,\omega)}$, we see that $T^{(\sigma,\omega)}$ is a $3\times 3N$ complex matrix and that each entry of this matrix is a polynomial of $\alpha_k \delta_k + \beta_k \gamma_k$, $\gamma_k \delta_k$, $-\alpha_k \beta_k$, $2\beta_k \delta_k$, δ_k^2 , $-\beta_k^2$, $-2\alpha_k \gamma_k$, $-\gamma_k^2$, and α_k^2 with $k = 1, \dots, N$. On the other hand, for

$$Y = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in \mathfrak{g}$$

and $\omega \in \Lambda$ with $\pi(\omega)(t) = (\alpha t + \beta)/(\gamma t + \delta)$, we have

$$egin{aligned} d(f\circ L_{\pi(\omega)})_e(Y)&=(d/dx)f\circ L_{\pi(\omega)}(p(x))|_{x=0}\ &=(d/dx)[ext{tr}^2\{\pi(\omega)\circ p(x)\}-4]|_{x=0}\ &=(d/dx)[\{lphalpha(X)+eta\gamma(x)+\gammaeta(x)+\delta\delta(x)\}^2-4]|_{x=0}\ &=2(lpha+\delta)\{(lpha-\delta)a+\gamma b+eta c\}\;, \end{aligned}$$

where $p(x)(t) = (\alpha(x)t + \beta(x))/(\gamma(x)t + \delta(x))$ is a path in G satisfying p(0) = e and $(d/dx)p(x)|_{x=0} = Y$. Hence the matrix $S^{(\sigma,\omega)}$ is of the form

$$S^{\scriptscriptstyle(\sigma,\,\omega)} = (2(lpha^2 - \delta^2) \ 2(lpha + \delta)\gamma \ 2(lpha + \delta)eta) \ .$$

Since α , β , γ , and δ are some polynomials of α_1 , β_1 , γ_1 , δ_1 , \cdots , α_N , β_N , γ_N , δ_N , we see that $S^{(\sigma,\omega)}$ is a 1×3 complex matrix and each entry is a polynomial of α_1 , β_1 , γ_1 , δ_1 , \cdots , α_N , β_N , γ_N , δ_N . Note that the matrices $T^{(\sigma,\omega)}$ and $S^{(\sigma,\omega)}$ are independent of the choice of the representative of σ_k . 3. Proof of main theorem. Let $\theta: \Gamma \to G$ be a parabolic homomorphism. We set $\theta(\Gamma) = \Gamma^{\theta}$ and $\theta(\sigma_k) = \sigma_k(\theta)$. The group Γ^{θ} is a subgroup of G with a system of generators $\sigma(\theta) = \{\sigma_1(\theta), \dots, \sigma_N(\theta)\}$. Let $\pi_{\theta}: \Lambda \to \Gamma^{\theta}$ be the homomorphism defined by $\pi_{\theta}(\lambda_k) = \sigma_k(\theta)$. We set $\sigma_k(\theta)(t) = (\alpha_k(\theta)t + \beta_k(\theta))/(\gamma_k(\theta)t + \delta_k(\theta))$.

By Proposition in Section 2, we see that $PZ_{\mathrm{Ad}}^{\scriptscriptstyle 1}(\Gamma^{\theta}, \mathfrak{g})$ is isomorphic to $W(\theta) = \{X \in \mathfrak{g}^{N}: T^{(\sigma(\theta), \omega)}(X) = 0 \text{ for all } \omega \in \ker \pi_{\theta} \text{ and } S^{(\sigma(\theta), \omega)} \circ T^{(\sigma(\theta), \omega)}(X) = 0 \text{ for all } \omega \text{ with } \pi_{\theta}(\omega) \text{ parabolic} \}.$

If θ is a parabolic homomorphism sufficiently close to the identity homomorphism and if $\pi(\omega)$ is parabolic, then $\theta(\pi(\omega)) \neq e$ and $\theta(\pi(\omega))$ is parabolic. Thus we have

(**)
$$\ker \pi \subset \ker \pi_{\theta} \quad \text{and}$$

$$(***) \qquad \{\omega \in \Lambda : \pi(\omega) \text{ parabolic}\} \subset \{\omega \in \Lambda : \pi_{\theta}(\omega) \text{ parabolic}\}.$$

Since g^N is a finite dimensional vector space, there exist finitely many words $\omega_1, \dots, \omega_K \in \ker \pi$ and $\omega'_1, \dots, \omega'_M \in \Lambda$ with $\pi(\omega'_j)$ parabolic such that W is the set of common zeros of those linear mappings $T^{(\sigma,\omega)}$ with ω running through ω_i 's and $S^{(\sigma,\omega')} \circ T^{(\sigma,\omega')}$ with ω' running through ω'_j 's. Also there exist finitely many words $\omega \in \ker \pi_\theta$ and ω' with $\pi_\theta(\omega')$ parabolic such that $W(\theta)$ is the set of common zeros of those finitely many linear mappings $T^{(\sigma(\theta),\omega)}$ and $S^{(\sigma(\theta),\omega')} \circ T^{(\sigma(\theta),\omega')}$. Since the inclusion relations (**) and (***) hold, we may assume, for θ sufficiently close to the identity, that $W(\theta)$ is the set of common zeros of $T^{(\sigma(\theta),\omega)}$ with ω running through $\omega_1, \dots, \omega_{K+K(\theta)} \in \ker \pi_\theta$ and $S^{(\sigma(\theta),\omega')} \circ T^{(\sigma(\theta),\omega')}$ with ω' running through $\omega'_1, \dots, \omega'_{M+M(\theta)}$ with $\pi_\theta(\omega'_j)$ parabolic for $1 \leq j \leq M + M(\theta)$.

Let T be the linear mapping of g^N into $g^K \times C^M$ with T obtained by arranging $T^{(\sigma,\omega_1)}, \dots, T^{(\sigma,\omega_K)}, S^{(\sigma,\omega_1')} \circ T^{(\sigma,\omega_1')}, \dots, S^{(\sigma,\omega_M')} \circ T^{(\sigma,\omega_M')}$ in a column. Also let $T(\theta)$ be the linear mapping of g^N into $g^{K+K(\theta)} \times C^{M+M(\theta)}$ with $T(\theta)$ obtained by arranging $T^{(\sigma(\theta),\omega_1)}, \dots, T^{(\sigma(\theta),\omega_K+K(\theta))}, S^{(\sigma(\theta),\omega_1')} \circ T^{(\sigma(\theta),\omega_1')}, \dots,$ $S^{(\sigma(\theta),\omega_M'+M(\theta))} \circ T^{(\sigma(\theta),\omega_M'+M(\theta))}$ in a column. Then we have

$$W = \{X \in \mathfrak{g}^{N} \colon T(X) = 0\}$$

and

$$W(\theta) = \{ X \in \mathfrak{g}^N \colon T(\theta)(X) = 0 \} .$$

LEMMA 3. Let $\theta: \Gamma \to G$ be a parabolic homomorphism which is sufficiently close to the identity homomorphism and let T and $T(\theta)$ be the linear mappings defined as above. Then

rank
$$T \leq \operatorname{rank} T(\theta)$$
.

PROOF. Let $T^{(\sigma,\omega_1)} = (t^i_{mn})_{1 \le m \le 3, 1 \le n \le 3N}$ and let $T^{(\sigma(\theta),\omega_1)} = (t^i_{mn}(\theta))_{1 \le m \le 3, 1 \le n \le 3N}$

M. NAKADA

for $i = 1, \dots, K$ with respect to the basis (*) for g. Then, by the construction of the matrices $T^{(\sigma, \omega_i)}$ and $T^{(\sigma(\theta), \omega_i)}$, we have

$$t_{mn}^{i}=P_{mn}^{i}(lpha_{1},\,eta_{1},\,\gamma_{1},\,\delta_{1},\,\cdots,\,lpha_{N},\,eta_{N},\,\gamma_{N},\,\delta_{N})$$

and

$$t^i_{\mathtt{mn}}(heta) = P^i_{\mathtt{mn}}(lpha_{\scriptscriptstyle 1}(heta),\,eta_{\scriptscriptstyle 1}(heta),\,\gamma_{\scriptscriptstyle 1}(heta),\,\delta_{\scriptscriptstyle 1}(heta),\,\cdots,\,lpha_{\scriptscriptstyle N}(heta),\,eta_{\scriptscriptstyle N}(heta),\,\gamma_{\scriptscriptstyle N}(heta),\,\delta_{\scriptscriptstyle N}(heta))$$

for polynomials P_{mn}^{i} in 4N variables. Moreover, if

$$S^{\scriptscriptstyle(\sigma,\,\omega'j)}\circ T^{\scriptscriptstyle(\sigma,\,\omega'j)}=(r^j_{\scriptscriptstyle 1\,n})_{\scriptscriptstyle 1\leq\,n\leq\,3N}$$

and if

$$S^{\scriptscriptstyle(\sigma(heta),\,\omega'_j)}\circ T^{\scriptscriptstyle(\sigma(heta),\,\omega'_j)}=(r^j_{\scriptscriptstyle 1n}(heta))_{\scriptscriptstyle 1\leq n\leq 3N} \ \ {
m for} \ \ j=1,\,\cdots,\,M$$

with respect to the basis (*) for g, then

$$r_{1n}^{j} = \widetilde{P}_{1n}^{j}(lpha_{1}, eta_{1}, \gamma_{1}, \delta_{1}, \cdots, lpha_{N}, eta_{N}, \gamma_{N}, \delta_{N})$$

and

$$r_{1n}^{j}(heta)=\widetilde{P}_{1n}^{j}(lpha_{1}(heta),\,eta_{1}(heta),\,\gamma_{1}(heta),\,\delta_{1}(heta),\,\cdots,\,lpha_{N}(heta),\,eta_{N}(heta),\,\gamma_{N}(heta),\,\delta_{N}(heta))$$

for polynomials \tilde{P}_{1n}^{j} in 4N variables. If θ is sufficiently close to the identity homomorphism, then $\alpha_{k}(\theta)$, $\beta_{k}(\theta)$, $\gamma_{k}(\theta)$ and $\delta_{k}(\theta)$ are sufficiently close to α_{k} , β_{k} , γ_{k} and δ_{k} , respectively, for $k = 1, \dots, N$. Hence the complex numbers $t_{mn}^{i}(\theta)$ and $r_{1n}^{j}(\theta)$ are sufficiently close to t_{mn}^{i} and r_{1n}^{j} , respectively, and we have the required inequality.

By Proposition in Section 2 and Lemma 3 we see that

 $\dim PZ_{Ad}^{_1}(\Gamma, \mathfrak{g}) = \dim W = \dim \ker T$, $\dim PZ_{Ad}^{_1}(\Gamma^{\theta}, \mathfrak{g}) = \dim W(\theta) = \dim \ker T(\theta)$

and

rank $T \leq \operatorname{rank} T(\theta)$

for a parabolic homomorphism θ which is sufficiently close to the identity homomorphism.

Now we have the following main theorem announced in the introduction.

THEOREM 1. Let Γ be a finitely generated subgroup of G and let $\theta: \Gamma \to G$ be a parabolic homomorphism. Assume that θ is sufficiently close to the identity homomorphism. Then

$$\dim PZ^{1}_{\mathrm{Ad}}(\Gamma, \mathfrak{g}) \geq \dim PZ^{1}_{\mathrm{Ad}}(\Gamma^{\theta}, \mathfrak{g}) .$$

PROOF. Since dim ker $T = 3N - \operatorname{rank} T$ and dim ker $T(\theta) = 3N - \operatorname{rank} T(\theta)$, we have dim $PZ_{Ad}^{1}(\Gamma, \mathfrak{g}) = \dim W = \dim \operatorname{ker} T = 3N - \operatorname{rank} T \ge 3N - \operatorname{rank} T(\theta) = \dim \operatorname{ker} T(\theta) = \dim W(\theta) = \dim PZ_{Ad}^{1}(\Gamma^{\theta}, \mathfrak{g}).$

192

4. An application to Kleinian groups. In the following, we always assume that Γ is a finitely generated Kleinian group with a system of generators $\sigma = \{\sigma_1, \dots, \sigma_N\}$. We denote by Π the vector space of complex polynomials of degree at most 2. Let $\chi: G \to GL(\Pi)$ be the anti-homomorphism defined by

$$(\chi(g)(v))(t) = v(g(t))(\gamma t + \delta)^2$$

for $v \in \Pi$ and $g \in G$ of the form $g: t \mapsto (\alpha t + \beta)/(\gamma t + \delta)$. Then the space $PZ_{\chi}^{1}(\Gamma, \Pi)$ is isomorphic to the space $PZ_{Ad}^{1}(\Gamma, g)$ (see [4]). Let Γ be non-elementary and assume that Γ^{θ} is a non-elementary Kleinian group. Then dim $B_{\chi}^{1}(\Gamma, \Pi) = \dim B_{\chi}^{1}(\Gamma^{\theta}, \Pi) = 3$ (see [2]). So, if we consider the parabolic cohomology spaces $PH_{\chi}^{1}(\Gamma, \Pi) = PZ_{\chi}^{1}(\Gamma, \Pi)/B_{\chi}^{1}(\Gamma, \Pi)$ and $PH_{\chi}^{1}(\Gamma^{\theta}, \Pi) = PZ_{\chi}^{1}(\Gamma^{\theta}, \Pi)/B_{\chi}^{1}(\Gamma^{\theta}, \Pi)$, we obtain the following by Theorem 1.

THEOREM 2. Let Γ be a non-elementary finitely generated Kleinian group and let θ be a parabolic homomorphism which is sufficiently close to the identity homomorphism. Assume that Γ^{θ} is a non-elementary Kleinian group. Then

$$\dim PH^{1}_{\mathfrak{X}}(\Gamma, \Pi) \geq \dim PH^{1}_{\mathfrak{X}}(\Gamma^{\theta}, \Pi) .$$

Let $(L_{\infty}(C))_1$ be the open unit ball in $L_{\infty}(C)$, the space of all measurable functions on C such that the essential supremum, $||\cdot||_{\infty}$, is finite. For an element $\mu \in (L_{\infty}(C))_1$, we denote by w^{μ} a unique quasi-conformal self-mapping of \hat{C} which fixes 0, 1, ∞ and satisfies the Beltrami equation

$$\partial w^{\mu}/\partial \overline{z} = \mu(\partial w^{\mu})/\partial z$$
.

Such a quasi-conformal mapping w^{μ} is said to be compatible with Γ if $w^{\mu} \circ \Gamma \circ (w^{\mu})^{-1} \subset G$. Let $B(\Gamma)$ be the space of all $\mu \in (L_{\infty}(C))_1$ with $w^{\mu} \circ \Gamma \circ (w^{\mu})^{-1} \subset G$. For $\mu \in B(\Gamma)$, we set $w^{\mu} \circ g \circ (w^{\mu})^{-1} = g(\mu) \in G$ for $g \in \Gamma$. Then the mapping $\mu \mapsto g(\mu)$ is a continuous mapping of $B(\Gamma)$ into G with g(0) = g. In fact, this mapping is holomorphic (see [1] and [3]). Hence the isomorphism $\theta(\mu): \Gamma \to G$ defined by $\theta(\mu)(g) = g(\mu)$ is close to the identity homomorphism if $||\mu||_{\infty}$ is close to zero. Moreover, $\theta(\mu)$ is a parabolic homomorphism. We denote the group $\theta(\mu)(\Gamma)$ by Γ^{μ} . If Γ is a non-elementary Kleinian group, then Γ^{μ} is also a non-elementary Kleinian group. So we have:

COROLLARY. Let Γ be a non-elementary finitely generated Kleinian group and let w^{μ} be a quasi-conformal self-mapping of \hat{C} compatible with Γ , where $||\mu||_{\infty}$ is close to zero. Then

$$\dim PH_{\chi}^{1}(\Gamma, \Pi) \geq \dim PH_{\chi}^{1}(\Gamma^{\mu}, \Pi) .$$

Let $\Omega(\Gamma)$ be the region of discontinuity of a non-elementary finitely generated Kleinian group Γ and let $A(\Omega(\Gamma), \Gamma)$ be the space of bounded holomorphic quadratic forms on $\Omega(\Gamma)$. Let $\beta^*: A(\Omega(\Gamma), \Gamma) \to PH_{\mathfrak{c}}^1(\Gamma, \Pi)$ be the so-called Bers map with respect to Γ . For a quasi-conformal mapping w^{μ} compatible with Γ , we have dim $A(\Omega(\Gamma), \Gamma) = \dim A(\Omega(\Gamma^{\mu}), \Gamma^{\mu})$. So we can prove the following:

THEOREM 3. Let Γ be a non-elementary finitely generated Kleinian group with $PH_{i}^{1}(\Gamma, \Pi) = \beta^{*}(A(\Omega(\Gamma), \Gamma))$ and let w^{μ} be a quasi-conformal self-mapping of \hat{C} compatible with Γ , where $||\mu||_{\infty}$ is sufficiently close to zero. Then

$$PH_{\gamma}^{1}(\Gamma^{\mu}, \Pi) = \beta(\mu)^{*}(A(\Omega(\Gamma^{\mu}), \Gamma^{\mu}))$$

for the Bers map $\beta(\mu)^*$ with respect to Γ^{μ} .

PROOF. By Corollary we see that dim $PH_{\chi}^{1}(\Gamma, \Pi) \geq \dim PH_{\chi}^{1}(\Gamma^{\mu}, \Pi)$. Since $\beta^{*}(A(\Omega(\Gamma), \Gamma)) = PH_{\chi}^{1}(\Gamma, \Pi)$ and since β^{*} is injective, we have dim $A(\Omega(\Gamma), \Gamma) = \dim PH_{\chi}^{1}(\Gamma, \Pi)$. Moreover, $\beta(\mu)^{*}: A(\Omega(\Gamma^{\mu}), \Gamma^{\mu}) \rightarrow PH_{\chi}^{1}(\Gamma^{\mu}, \Pi)$ is also injective. Hence dim $A(\Omega(\Gamma), \Gamma) = \dim PH_{\chi}^{1}(\Gamma, \Pi) \geq \dim A(\Omega(\Gamma^{\mu}), \Gamma^{\mu})$. Since dim $A(\Omega(\Gamma), \Gamma) = \dim A(\Omega(\Gamma^{\mu}), \Gamma^{\mu})$, we have dim $PH_{\chi}^{1}(\Gamma^{\mu}, \Pi) = \dim A(\Omega(\Gamma^{\mu}), \Gamma^{\mu})$. By the injectivity of $\beta(\mu)^{*}$ we are done.

By Theorem 1 in [5], we have the following as an immediate consequence of Theorem 3.

COROLLARY. Under the same hypothesis as in Theorem 3, Γ^{μ} is quasi-conformally stable.

REFERENCES

- L. AHLFORS AND L. BERS, Riemann's mapping theorem for variable metrics, Ann. of Math., 72 (1960), 385-404.
- [2] L. BERS, Inequalities for finitely generated Kleinian groups, J. d'Analyse Math. 18 (1967), 23-41.
- [3] L. BERS, On boundaries of Teichmüller spaces and on Kleinian groups I, Ann. of Math., 91 (1970), 575-600.
- [4] F. GARDINER AND I. KRA, Quasi-conformal stability of Kleinian groups, Indiana Univ. Math. J., 21 (1972), 1037-1059.
- [5] M. NAKADA, Quasi-conformal stability of finitely generated function groups, Tôhoku Math. J., 30 (1978), 45-58.
- [6] A. WEIL, Remarks on cohomology of groups, Ann. of Math., 80 (1964), 149-157.

DEPARTMENT OF MATHEMATICS FACULTY OF GENERAL EDUCATION YAMAGATA UNIVERSITY YAMAGATA, 990 JAPAN

194