# DIMENSION OF COHOMOLOGY SPACES OF INFINITESIMALLY DEFORMED KLEINIAN GROUPS 

Masami Nakada

(Received May 15, 1978, revised September 2, 1978)

1. Introduction. Let $G$ be the group of all Möbius transformations of $\hat{\boldsymbol{C}}=\boldsymbol{C} \cup\{\infty\}$ of the form $t \mapsto(\alpha t+\beta) /(\gamma t+\delta)$, where $\alpha, \beta, \gamma, \delta \in \boldsymbol{C}$ and $\alpha \delta-\beta \gamma=1$. Here $\boldsymbol{C}$ is the complex plane. An element $g: t \mapsto(\alpha t+\beta) /$ $(\gamma t+\delta)$, not being the identity, of $G$ is called parabolic if $\operatorname{tr}^{2} g=$ $(\alpha+\delta)^{2}=4$.

Let $\Gamma$ be a subgroup of $G$ and let $E$ be a finite dimensional complex vector space. Let $\chi$ be an anti-homomorphism of $\Gamma$ into $G L(E)$, the group of all non-singular linear mappings of $E$ onto itself. A mapping $z: \Gamma \rightarrow E$ is called a cocycle if

$$
z\left(g_{1} \circ g_{2}\right)=\chi\left(g_{2}\right)\left(z\left(g_{1}\right)\right)+z\left(g_{2}\right)
$$

for all $g_{1}$ and $g_{2}$ in $\Gamma$. A cocycle $z$ is a coboundary if

$$
z(g)=\chi(g)(X)-X
$$

for some $X \in E$. We denote by $Z_{\chi}^{1}(\Gamma, E)$ the space of all cocycles and by $B_{x}^{1}(\Gamma, E)$ the space of all coboundaries. A cocycle $z$ is called a parabolic cocycle if, for any parabolic cyclic subgroup $\Gamma_{0}$ of $\Gamma,\left.z\right|_{\Gamma_{0}}$ is an element of $B_{x}^{1}\left(\Gamma_{0}, E\right)$. We denote by $P Z_{x}^{1}(\Gamma, E)$ the space of all parabolic cocycles.

The group $G$ is a complex 3-dimensional Lie group isomorphic to $S L(2, C)$ modulo its center. The Lie algebra $\mathfrak{g}$ of $G$ is therefore the algebra of $2 \times 2$ complex matrices of trace zero. We identify $g$ with the tangent space of $G$ at the identity element $e$ of $G$.

The adjoint representation $\operatorname{Ad}$ of $G$ in $g$ is defined by $\operatorname{Ad}(g)(X)=$ $\left(d A_{g}\right)_{e}(X)$, where $X \in g$ and $\left(d A_{g}\right)_{e}$ is the differential at $e$ of the mapping $A_{g}: G \ni h \mapsto g^{-1} \circ h \circ g \in G$. The adjoint representation is an anti-homomorphism of $G$ into $G L(g)$. Hence, for a subgroup $\Gamma$ of $G$, we can construct the space of parabolic cocycles $P Z_{\Delta \mathrm{d}}^{1}(\Gamma, \mathfrak{g})$.

Let $\Gamma$ be a subgroup of $G$ and let $\theta: \Gamma \mapsto G$ be a homomorphism of $\Gamma$ into $G$. We say that $\theta$ is a parabolic homomorphism if $\operatorname{tr}^{2} \theta(g)=4$ for any parabolic element $g$ in $\Gamma$.

In this paper we prove the following:

Theorem. Let $\Gamma$ be a finitely generated subgroup of $G$ and let $\theta: \Gamma \rightarrow G$ be a parabolic homomorphism which is sufficiently close to the identity homomorphism. Then

$$
\operatorname{dim} P Z_{\mathrm{Ad}}^{1}(\Gamma, \mathfrak{g}) \geqq \operatorname{dim} P Z_{\mathrm{Ad}}^{1}\left(\Gamma^{\theta}, \mathfrak{g}\right),
$$

where $\Gamma^{\theta}=\theta(\Gamma)$.
In Section 4 we give an application of this theorem concerning the quasi-conformal deformation of a certain class of finitely generated Kleinian groups.

I would like to express my gratitude to the referee for his informative advice.
2. Linear maps $T^{(\sigma, \omega)}$ and $S^{(\sigma, \omega)}$. Let $\Gamma$ be a finitely generated subgroup of $G$ with a system of generators $\sigma=\left\{\sigma_{1}, \cdots, \sigma_{N}\right\}$. Let $\Lambda$ be the free group with free generators $\left\{\lambda_{1}, \cdots, \lambda_{N}\right\}$ and let $\pi: \Lambda \rightarrow \Gamma$ be the homomorphism defined by $\pi\left(\lambda_{k}\right)=\sigma_{k}$. Denote by $\omega=\omega\left(\lambda_{1}, \cdots, \lambda_{N}\right)$ an element of $\Lambda$, i.e., a word in $N$ letters $\lambda_{1}, \cdots, \lambda_{N}$. The kernel of $\pi$ will be denoted by ker $\pi$.

We define an anti-homomorphism $\rho: \Lambda \rightarrow G L(\mathrm{~g})$ by $\rho=\mathrm{Ad} \circ \pi$. Then we can construct, as in the case of $Z_{A d}^{1}(\Gamma, \mathfrak{g})$, the space of cocycles $Z_{\rho}^{1}(\Lambda, \mathfrak{g})$, that is, $\widetilde{z} \in Z_{\rho}^{1}(\Lambda, \mathfrak{g})$ if and only if $\widetilde{z}\left(\lambda \circ \lambda^{\prime}\right)=\rho\left(\lambda^{\prime}\right)(\widetilde{z}(\lambda))+\widetilde{z}\left(\lambda^{\prime}\right)$ for all $\lambda$ and $\lambda^{\prime}$ in $\Lambda$.

Let $V_{\rho}$ be the subspace of $Z_{\rho}^{1}(\Lambda, \mathfrak{g})$ defined by $V_{\rho}=\left\{\tilde{z} \in Z_{\rho}^{1}(\Lambda, \mathfrak{g})\right.$ : $\widetilde{z}(\omega)=0$ for all $\omega \in \operatorname{ker} \pi\}$. By a result in [6], $Z_{A d}^{1}(\Gamma, \mathfrak{g})$ is isomorphic to $V_{\rho}$ by the map $Z_{\Delta \mathrm{d}}^{1}(\Gamma, \mathfrak{g}) \ni z \mapsto z \circ \pi \in V_{\rho}$. Moreover, $P Z_{\Delta \mathrm{d}}^{1}(\Gamma, \mathrm{~g})$ is isomorphic to the subspace $P V_{\rho}$ of $V_{\rho}$ defined by $P V_{\rho}=\left\{\tilde{z} \in V_{\rho}\right.$ : for any $\omega$ with $\pi(\omega)$ parabolic, there exists an $X \in \mathfrak{g}$ with $\widetilde{z}(\omega)=\rho(\omega)(X)-X\}$.

Let $\widetilde{z} \in Z_{\rho}^{1}(\Lambda, g)$ and let $\widetilde{z}\left(\lambda_{k}\right)=X_{k}$. For a word $\omega=\eta_{1} \circ \cdots \circ \eta_{n(\omega)}$ in $\Lambda$ with $\eta_{s}=\lambda_{k(s)}$ or $\eta_{s}=\lambda_{k(s)}^{-1}$ for some $k(s), 1 \leqq k(s) \leqq N$, we have

$$
\begin{aligned}
\widetilde{z}(\omega) & =\widetilde{z}\left(\eta_{1} \circ \cdots \circ \eta_{n(\omega)}\right) \\
& =\sum_{s=1}^{n(\omega)-1} \rho\left(\eta_{n(\omega)}\right) \circ \cdots \circ \rho\left(\eta_{s+1}\right)\left(\widetilde{z}\left(\eta_{s}\right)\right)+\widetilde{z}\left(\eta_{n(\omega)}\right) \\
& =\sum_{s=1}^{n(\omega)-1} \operatorname{Ad}\left(\nu_{n(\omega)}\right) \circ \cdots \circ \operatorname{Ad}\left(\nu_{s+1}\right)\left(\widetilde{z}\left(\eta_{s}\right)\right)+\widetilde{z}\left(\eta_{n(\omega)}\right)
\end{aligned}
$$

for $\nu_{s}=\pi\left(\eta_{s}\right)$. Since $\widetilde{z}\left(\eta_{s}\right)=-\rho\left(\eta_{s}\right)\left(\widetilde{z}\left(\eta_{s}^{-1}\right)\right)=-\operatorname{Ad}\left(\nu_{s}\right)\left(\widetilde{z}\left(\eta_{s}^{-1}\right)\right)$, we have

$$
\widetilde{z}(\omega)=\sum_{s=1}^{n(\omega)} Y_{s}^{(\sigma, \omega)}
$$

where

$$
Y_{s}^{(\sigma, \omega)}=\left\{\begin{array}{lll}
\operatorname{Ad}\left(\nu_{n(\omega)}\right) \circ \cdots \circ \operatorname{Ad}\left(\nu_{s+1}\right)\left(X_{k(s)}\right) & \text { if } & \nu_{s}=\sigma_{k(s)} \\
-\operatorname{Ad}\left(\nu_{n(\omega)}\right) \circ \cdots \circ \operatorname{Ad}\left(\nu_{s}\right)\left(X_{k(s)}\right) & \text { if } & \nu_{s}=\sigma_{k(s)}^{-1}
\end{array}\right.
$$

for $s$ with $1 \leqq s \leqq n(\omega)-1$ and

$$
Y_{n(\omega)}^{(\sigma(\omega)}=\left\{\begin{array}{l}
X_{k(n(\omega))} \text { if } \nu_{n(\omega)}=\sigma_{k(n(\omega))} \\
-\operatorname{Ad}\left(\nu_{n(\omega)}\right)\left(X_{k(n n(\omega))}\right) \text { if } \quad \nu_{n(\omega)}=\sigma_{k(n(\omega))}^{-1}
\end{array}\right.
$$

Hence $\widetilde{z} \in V_{\rho}$ if and only if $\sum_{s=1}^{n(\omega)} Y_{s}^{(o, \omega)}=0$ for all $\omega \in \operatorname{ker} \pi$ (see also [6]). Moreover, $\widetilde{z} \in V_{\rho}$ is an element of $P V_{\rho}$ if and only if, for any $\omega$ with $\pi(\omega)$ parabolic, there exists an $X \in \mathfrak{g}$ such that $\sum_{s=1}^{n(\omega)} Y_{s}^{(\sigma)}=$ $\operatorname{Ad}(\pi(\omega))(X)-X$.

Let $L_{g}, g \in G$, be the left translation of $G$ and let $f$ be the holomorphic function on $G$ defined by $f(g)=\operatorname{tr}^{2} g-4$. Then we have the following.

Lemma 1 (Gardiner and Kra [4]). Let $\omega \in \Lambda$ with $\pi(\omega)$ parabolic and let $Y$ be an element of g . Then $Y=\operatorname{Ad}(\pi(\omega))(X)-X$ for some $X \in \mathfrak{g}$ if and only if $d\left(f \circ L_{\pi(\omega)}\right)_{e}(Y)=0$ for the tangent linear mapping $d\left(f \circ L_{\pi(\omega)}\right)_{e}$ at $e \in G$.

By this lemma we have immediately the following.
Lemma 2. Let $\tilde{z} \in Z_{\rho}^{1}(\Lambda, \mathfrak{g})$ and let $\widetilde{z}\left(\lambda_{k}\right)=X_{k}$. Then $\widetilde{z}$ is an element of $P V_{\rho}$ if and only if $\sum_{s=1}^{n(\omega)} Y_{s}^{(\sigma, \omega)}=0$ for all $\omega \in \operatorname{ker} \pi$ and $d\left(f \circ L_{\pi(\omega)}\right)_{e}\left(\sum_{s=1}^{n(\omega)} Y_{s}^{(\sigma, \omega)}\right)=0$ for all $\omega$ with $\pi(\omega)$ parabolic.

Let $T_{s}^{(o, \omega)}, 1 \leqq s \leqq n(\omega) \omega \in \Lambda$, be the linear mapping of $\mathfrak{g}$ onto itself defined by

$$
T_{s}^{(\sigma, \omega)}=\left\{\begin{array}{lll}
\operatorname{Ad}\left(\nu_{n(\omega)}\right) \circ \cdots \circ \operatorname{Ad}\left(\nu_{s+1}\right) & \text { if } & \nu_{s}=\sigma_{k(s)} \\
-\operatorname{Ad}\left(\nu_{n(\omega)}\right) \circ \cdots \circ \operatorname{Ad}\left(\nu_{s}\right) & \text { if } & \nu_{s}=\sigma_{k(s)}^{-1}
\end{array}\right.
$$

for $s$ with $1 \leqq s \leqq n(\omega)-1$ and

$$
T_{n(\omega)}^{(o, \omega)}=\left\{\begin{array}{l}
\text { id } \quad \text { if } \quad \nu_{n(\omega)}=\sigma_{k(n(\omega))} \\
-\operatorname{Ad}\left(\nu_{n(\omega)}\right) \text { if } \quad \nu_{n(\omega)}=\sigma_{k(n(\omega))}^{-1},
\end{array}\right.
$$

where id is the identity mapping. We set $T^{(\sigma, \omega)}(k)=\sum_{s, k(s)=k} T_{s}^{(\sigma, \omega)}$. Here $T^{(\sigma, \omega)}\left(k_{0}\right)=0$ if $k(s) \neq k_{0}$ for all $s$. Let $T^{(\sigma, \omega)}$ be the linear mapping of $\mathfrak{g}^{N}$ into $\mathfrak{g}$ defined by $T^{(\sigma, \omega)}=\left(T^{(\sigma, \omega)}(1), \cdots, T^{(\sigma, \omega)}(N)\right)$. For $\omega \in \Lambda$ we denote by $S^{(\sigma, \omega)}$ the linear mapping $d\left(f \circ L_{\pi(\omega)}\right)_{e}$ of $\mathfrak{g}$ into $\boldsymbol{C}$.

Proposition. Let $\Gamma$ be a finitely generated subgroup of $G$ with a system of generators $\sigma=\left\{\sigma_{1}, \cdots, \sigma_{N}\right\}$ and let $\Lambda$ be the free group with free generators $\left\{\lambda_{1}, \cdots, \lambda_{N}\right\}$ with the homomorphism $\pi: \Lambda \rightarrow \Gamma$ defined by
$\pi\left(\lambda_{k}\right)=\sigma_{k}$. Then $P Z_{A d}^{1}(\Gamma, \mathfrak{g})$ is isomorphic to the subspace $W=$ $\left\{X \in \mathrm{~g}^{N}: T^{(o, \omega)}(X)=0\right.$ for all $\omega \in \operatorname{ker} \pi$ and $S^{(\sigma, \omega)} \circ T^{(\sigma, \omega)}(X)=0$ for all $\omega$ with $\pi(\omega)$ parabolic\} of $\mathrm{g}^{N}$.

Proof. Set $\tilde{z}\left(\lambda_{k}\right)=X_{k}$ for $\tilde{z} \in Z_{\rho}^{1}(\Lambda, \mathfrak{g})$. Let $X$ be a vector obtained by arranging $X_{1}, \cdots, X_{N}$ in a column. Then $Z_{\rho}^{1}(\Lambda, \mathfrak{g})$ is isomorphic to $\mathrm{g}^{N}$ by the mapping $Z_{\rho}^{1}(\Lambda, \mathfrak{g}) \in \widetilde{z} \mapsto X \in \mathfrak{g}^{N}$. So we see by Lemma 2 that $P V_{\rho}$ is isomorphic to $W$. Since $P Z_{A d}^{1}(\Gamma, \mathrm{~g})$ is isomorphic to $P V_{\rho}$, we are done.

Next we represent linear maps $T^{(\sigma, \omega)}$ and $S^{(\sigma, \omega)}, \omega \in \Lambda$, by matrices with respect to the basis

$$
\left\{\left(\begin{array}{rr}
1 & 0  \tag{*}\\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right\}
$$

for g. Let $\sigma_{k}(t)=\left(\alpha_{k} t+\beta_{k}\right) /\left(\gamma_{k} t+\delta_{k}\right)$. Then

$$
\operatorname{Ad}\left(\sigma_{k}\right)=\left(\begin{array}{ccc}
\alpha_{k} \delta_{k}+\beta_{k} \gamma_{k} & \gamma_{k} \delta_{k} & -\alpha_{k} \beta_{k} \\
2 \beta_{k} \delta_{k} & \delta_{k}^{2} & -\beta_{k}^{2} \\
-2 \alpha_{k} \gamma_{k} & -\gamma_{k}^{2} & \alpha_{k}^{2}
\end{array}\right)
$$

with respect to this basis. Hence, by the definition of $T^{(0, \omega)}$, we see that $T^{(\sigma, \omega)}$ is a $3 \times 3 N$ complex matrix and that each entry of this matrix is a polynomial of $\alpha_{k} \delta_{k}+\beta_{k} \gamma_{k}, \gamma_{k} \delta_{k},-\alpha_{k} \beta_{k}, 2 \beta_{k} \delta_{k}, \delta_{k}^{2},-\beta_{k}^{2},-2 \alpha_{k} \gamma_{k}$, $-\gamma_{k}^{2}$, and $\alpha_{k}^{2}$ with $k=1, \cdots, N$. On the other hand, for

$$
Y=\left(\begin{array}{rr}
a & b \\
c & -a
\end{array}\right) \in \mathfrak{g}
$$

and $\omega \in \Lambda$ with $\pi(\omega)(t)=(\alpha t+\beta) /(\gamma t+\delta)$, we have

$$
\begin{aligned}
d\left(f \circ L_{\pi(\omega)}\right)_{e}(Y) & =\left.(d / d x) f \circ L_{\pi(\omega)}(p(x))\right|_{x=0} \\
& =\left.(d / d x)\left[\operatorname{tr}^{2}\{\pi(\omega) \circ p(x)\}-4\right]\right|_{x=0} \\
& =\left.(d / d x)\left[\{\alpha \alpha(X)+\beta \gamma(x)+\gamma \beta(x)+\delta \delta(x)\}^{2}-4\right]\right|_{x=0} \\
& =2(\alpha+\delta)\{(\alpha-\delta) a+\gamma b+\beta c\}
\end{aligned}
$$

where $p(x)(t)=(\alpha(x) t+\beta(x)) /(\gamma(x) t+\delta(x))$ is a path in $G$ satisfying $p(0)=e$ and $\left.(d / d x) p(x)\right|_{x=0}=Y$. Hence the matrix $S^{(\sigma, \omega)}$ is of the form

$$
S^{(\sigma, \omega)}=\left(2\left(\alpha^{2}-\delta^{2}\right) \quad 2(\alpha+\delta) \gamma \quad 2(\alpha+\delta) \beta\right)
$$

Since $\alpha, \beta, \gamma$, and $\delta$ are some polynomials of $\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}, \cdots, \alpha_{N}, \beta_{N}, \gamma_{N}, \delta_{N}$, we see that $S^{(\sigma, \omega)}$ is a $1 \times 3$ complex matrix and each entry is a polynomial of $\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}, \cdots, \alpha_{N}, \beta_{N}, \gamma_{N}, \delta_{N}$. Note that the matrices $T^{(\sigma, \omega)}$ and $S^{(\sigma, \omega)}$ are independent of the choice of the representative of $\sigma_{k}$.
3. Proof of main theorem. Let $\theta: \Gamma \rightarrow G$ be a parabolic homomorphism. We set $\theta(\Gamma)=\Gamma^{\theta}$ and $\theta\left(\sigma_{k}\right)=\sigma_{k}(\theta)$. The group $\Gamma^{\theta}$ is a subgroup of $G$ with a system of generators $\sigma(\theta)=\left\{\sigma_{1}(\theta), \cdots, \sigma_{N}(\theta)\right\}$. Let $\pi_{\theta}: \Lambda \rightarrow \Gamma^{\theta}$ be the homomorphism defined by $\pi_{\theta}\left(\lambda_{k}\right)=\sigma_{k}(\theta)$. We set $\sigma_{k}(\theta)(t)=\left(\alpha_{k}(\theta) t+\beta_{k}(\theta)\right) /\left(\gamma_{k}(\theta) t+\delta_{k}(\theta)\right)$.

By Proposition in Section 2, we see that $P Z_{\mathrm{Ad}}^{1}\left(\Gamma^{\theta}, \mathfrak{g}\right)$ is isomorphic to $W(\theta)=\left\{X \in \mathrm{~g}^{N}: T^{(\sigma(\theta), \omega)}(X)=0\right.$ for all $\omega \in \operatorname{ker} \pi_{\theta}$ and $S^{(\sigma(\theta), \omega)} \circ T^{(\sigma(\theta), \omega)}(X)=0$ for all $\omega$ with $\pi_{\theta}(\omega)$ parabolic $\}$.

If $\theta$ is a parabolic homomorphism sufficiently close to the identity homomorphism and if $\pi(\omega)$ is parabolic, then $\theta(\pi(\omega)) \neq e$ and $\theta(\pi(\omega))$ is parabolic. Thus we have
$\operatorname{ker} \pi \subset \operatorname{ker} \pi_{\theta} \quad$ and
$(* * *) \quad\{\omega \in \Lambda: \pi(\omega)$ parabolic $\} \subset\left\{\omega \in \Lambda: \pi_{\theta}(\omega)\right.$ parabolic $\}$.
Since $\mathfrak{g}^{N}$ is a finite dimensional vector space, there exist finitely many words $\omega_{1}, \cdots, \omega_{K} \in \operatorname{ker} \pi$ and $\omega_{1}^{\prime}, \cdots, \omega_{M}^{\prime} \in \Lambda$ with $\pi\left(\omega_{j}^{\prime}\right)$ parabolic such that $W$ is the set of common zeros of those linear mappings $T^{(o, \omega)}$ with $\omega$ running through $\omega_{i}$ 's and $S^{\left(\sigma, \omega^{\prime}\right)} T^{\left(\sigma, \omega^{\prime}\right)}$ with $\omega^{\prime}$ running through $\omega_{j}^{\prime}$ 's. Also there exist finitely many words $\omega \in \operatorname{ker} \pi_{\theta}$ and $\omega^{\prime}$ with $\pi_{\theta}\left(\omega^{\prime}\right)$ parabolic such that $W(\theta)$ is the set of common zeros of those finitely many linear mappings $T^{(\sigma(\theta), \omega)}$ and $S^{\left(\sigma(\theta), \omega^{\prime}\right)} \circ T^{\left(\sigma(\theta), \omega^{\prime}\right)}$. Since the inclusion relations (**) and ( $* * *$ ) hold, we may assume, for $\theta$ sufficiently close to the identity, that $W(\theta)$ is the set of common zeros of $T^{(\sigma(\theta), \omega)}$ with $\omega$ running through $\omega_{1}, \cdots, \omega_{K+K(\theta)} \in \operatorname{ker} \pi_{\theta}$ and $S^{\left(\sigma(\theta), \omega^{\prime}\right) \circ} T^{\left(\sigma(\theta), \omega^{\prime}\right)}$ with $\omega^{\prime}$ running through $\omega_{1}^{\prime}, \cdots, \omega_{M+M(\theta)}^{\prime}$ with $\pi_{\theta}\left(\omega_{j}^{\prime}\right)$ parabolic for $1 \leqq j \leqq M+M(\theta)$.

Let $T$ be the linear mapping of $\mathrm{g}^{N}$ into $\mathrm{g}^{K} \times \boldsymbol{C}^{M}$ with $T$ obtained by arranging $T^{\left(\sigma, \omega_{1}\right)}, \cdots, T^{\left(\sigma, \omega_{K}\right)}, S^{\left(\sigma, \omega_{1}^{\prime}\right)} \circ T^{\left(\sigma, \omega_{1}^{\prime}\right)}, \cdots, S^{\left(\sigma, \omega_{M}^{\prime}\right)} \circ T^{\left(\sigma, \omega_{M}^{\prime}\right)}$ in a column. Also let $T(\theta)$ be the linear mapping of $\mathfrak{g}^{N}$ into $\mathrm{g}^{K+K(\theta)} \times \boldsymbol{C}^{M+M(\theta)}$ with $T(\theta)$ obtained by arranging $T^{\left(\sigma(\theta), \omega_{1}\right)}, \cdots, T^{\left(\sigma(\theta), \omega_{K}+K(\theta)\right)}, S^{\left(\sigma(\theta), \omega_{1}^{\prime}\right) \circ} T^{\left(\sigma(\theta), \omega_{1}^{\prime}\right)}, \cdots$, $S^{\left(\sigma(\theta), \omega_{M+M(\theta)}^{\prime}\right)} \circ T^{\left(\sigma(\theta), \omega_{M+M(\theta)}^{\prime}\right)}$ in a column. Then we have

$$
W=\left\{X \in \mathfrak{g}^{N}: T(X)=0\right\}
$$

and

$$
W(\theta)=\left\{X \in \mathfrak{g}^{N}: T(\theta)(X)=0\right\}
$$

Lemma 3. Let $\theta: \Gamma \rightarrow G$ be a parabolic homomorphism which is sufficiently close to the identity homomorphism and let $T$ and $T(\theta)$ be the linear mappings defined as above. Then

$$
\operatorname{rank} T \leqq \operatorname{rank} T(\theta)
$$

Proof. Let $T^{\left(\sigma, \omega_{\imath}\right)}=\left(t_{m n}^{i}\right)_{1 \leq m \leq 3,1 \leq n \leq 3 N}$ and let $T^{\left(\sigma(\theta), \omega_{\imath}\right)}=\left(t_{m n}^{i}(\theta)\right)_{1 \leq m \leq 3,1 \leq n \leq 3 N}$
for $i=1, \cdots, K$ with respect to the basis (*) for $g$. Then, by the construction of the matrices $T^{\left(\sigma, \omega_{2}\right)}$ and $T^{\left(\sigma(\theta), \omega_{2}\right)}$, we have

$$
t_{m n}^{i}=P_{m n}^{i}\left(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}, \cdots, \alpha_{N}, \beta_{N}, \gamma_{N}, \delta_{N}\right)
$$

and

$$
t_{m n}^{i}(\theta)=P_{m n}^{i}\left(\alpha_{1}(\theta), \beta_{1}(\theta), \gamma_{1}(\theta), \delta_{1}(\theta), \cdots, \alpha_{N}(\theta), \beta_{N}(\theta), \gamma_{N}(\theta), \delta_{N}(\theta)\right)
$$

for polynomials $P_{m n}^{i}$ in $4 N$ variables. Moreover, if

$$
S^{\left(\sigma, \omega_{j}^{\prime}\right) \circ} \circ T^{\left(\sigma, \omega_{j}^{\prime}\right)}=\left(r_{1 n}^{j}\right)_{1 \leq n \leq 3 N}
$$

and if

$$
S^{\left(o(\theta), \omega_{j}^{\prime}\right) \circ} T^{\left(\sigma(\theta), \omega_{j}^{\prime}\right)}=\left(r_{1 n}^{j}(\theta)\right)_{1 \leqq n \leqq 3 N} \quad \text { for } \quad j=1, \cdots, M
$$

with respect to the basis (*) for $g$, then

$$
r_{1 n}^{j}=\widetilde{P}_{1 n}^{j}\left(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}, \cdots, \alpha_{N}, \beta_{N}, \gamma_{N}, \delta_{N}\right)
$$

and

$$
r_{1 n}^{j}(\theta)=\widetilde{P}_{1 n}^{j}\left(\alpha_{1}(\theta), \beta_{1}(\theta), \gamma_{1}(\theta), \delta_{1}(\theta), \cdots, \alpha_{N}(\theta), \beta_{N}(\theta), \gamma_{N}(\theta), \delta_{N}(\theta)\right)
$$

for polynomials $\widetilde{P}_{1 n}^{j}$ in $4 N$ variables. If $\theta$ is sufficiently close to the identity homomorphism, then $\alpha_{k}(\theta), \beta_{k}(\theta), \gamma_{k}(\theta)$ and $\delta_{k}(\theta)$ are sufficiently close to $\alpha_{k}, \beta_{k}, \gamma_{k}$ and $\delta_{k}$, respectively, for $k=1, \cdots, N$. Hence the complex numbers $t_{m n}^{i}(\theta)$ and $r_{1 n}^{j}(\theta)$ are sufficiently close to $t_{m n}^{i}$ and $r_{1 n}^{j}$, respectively, and we have the required inequality.

By Proposition in Section 2 and Lemma 3 we see that

$$
\begin{aligned}
& \operatorname{dim} P Z_{\Delta \mathrm{d}}^{1}(\Gamma, \mathrm{~g})=\operatorname{dim} W=\operatorname{dim} \operatorname{ker} T \\
& \operatorname{dim} P Z_{\mathrm{Ad}}^{1}\left(\Gamma^{\theta}, \mathrm{g}\right)=\operatorname{dim} W(\theta)=\operatorname{dim} \operatorname{ker} T(\theta)
\end{aligned}
$$

and

$$
\operatorname{rank} T \leqq \operatorname{rank} T(\theta)
$$

for a parabolic homomorphism $\theta$ which is sufficiently close to the identity homomorphism.

Now we have the following main theorem announced in the introduction.

Theorem 1. Let $\Gamma$ be a finitely generated subgroup of $G$ and let $\theta: \Gamma \rightarrow G$ be a parabolic homomorphism. Assume that $\theta$ is sufficiently close to the identity homomorphism. Then
$\operatorname{dim} P Z_{\Delta \mathrm{d}}^{1}(\Gamma, \mathfrak{g}) \geqq \operatorname{dim} P Z_{A d}^{1}\left(\Gamma^{\theta}, \mathfrak{g}\right)$.
Proof. Since $\operatorname{dim} \operatorname{ker} T=3 N-\operatorname{rank} T$ and $\operatorname{dim} \operatorname{ker} T(\theta)=3 N-$ $\operatorname{rank} T(\theta)$, we have $\operatorname{dim} P Z_{A \mathrm{~A}}^{1}(\Gamma, \mathrm{~g})=\operatorname{dim} W=\operatorname{dim} \operatorname{ker} T=3 N-\operatorname{rank} T \geqq$ $3 N-\operatorname{rank} T(\theta)=\operatorname{dim} \operatorname{ker} T(\theta)=\operatorname{dim} W(\theta)=\operatorname{dim} P Z_{\mathrm{Ad}}^{1}\left(\Gamma^{\theta}, \mathrm{g}\right)$.
4. An application to Kleinian groups. In the following, we always assume that $\Gamma$ is a finitely generated Kleinian group with a system of generators $\sigma=\left\{\sigma_{1}, \cdots, \sigma_{N}\right\}$. We denote by $\Pi$ the vector space of complex polynomials of degree at most 2. Let $\chi: G \rightarrow G L(\Pi)$ be the anti-homomorphism defined by

$$
(\chi(g)(v))(t)=v(g(t))(\gamma t+\delta)^{2}
$$

for $v \in \Pi$ and $g \in G$ of the form $g: t \mapsto(\alpha t+\beta) /(\gamma t+\delta)$. Then the space $P Z_{\chi}^{1}(\Gamma, \Pi)$ is isomorphic to the space $P Z_{\Delta \mathrm{A}}^{1}(\Gamma, \mathrm{~g})$ (see [4]). Let $\Gamma$ be non-elementary and assume that $\Gamma^{\theta}$ is a non-elementary Kleinian group. Then $\operatorname{dim} B_{\chi}^{1}(\Gamma, \Pi)=\operatorname{dim} B_{\chi}^{1}\left(\Gamma^{\theta}, \Pi\right)=3$ (see [2]). So, if we consider the parabolic cohomology spaces $P H_{\chi}^{1}(\Gamma, \Pi)=P Z_{\chi}^{1}(\Gamma, \Pi) / B_{\chi}^{1}(\Gamma, \Pi)$ and $P H_{\chi}^{1}\left(\Gamma^{\theta}, \Pi\right)=P Z_{\chi}^{1}\left(\Gamma^{\theta}, \Pi\right) / B_{x}^{1}\left(\Gamma^{\theta}, \Pi\right)$, we obtain the following by Theorem 1.

Theorem 2. Let $\Gamma$ be a non-elementary finitely generated Kleinian group and let $\theta$ be a parabolic homomorphism which is sufficiently close to the identity homomorphism. Assume that $\Gamma^{\theta}$ is a non-elementary Kleinian group. Then

$$
\operatorname{dim} P H_{\chi}^{1}(\Gamma, \Pi) \geqq \operatorname{dim} P H_{\chi}^{1}\left(\Gamma^{\theta}, \Pi\right)
$$

Let $\left(L_{\infty}(\boldsymbol{C})\right)_{1}$ be the open unit ball in $L_{\infty}(\boldsymbol{C})$, the space of all measurable functions on $C$ such that the essential supremum, $\|\cdot\|_{\infty}$, is finite. For an element $\mu \in\left(L_{\infty}(C)\right)_{1}$, we denote by $w^{\mu}$ a unique quasi-conformal self-mapping of $\hat{\boldsymbol{C}}$ which fixes $0,1, \infty$ and satisfies the Beltrami equation

$$
\partial w^{\mu} / \partial \bar{z}=\mu\left(\partial w^{\mu}\right) / \partial z .
$$

Such a quasi-conformal mapping $w^{\mu}$ is said to be compatible with $\Gamma$ if $w^{\mu} \circ \Gamma \circ\left(w^{\mu}\right)^{-1} \subset G$. Let $B(\Gamma)$ be the space of all $\mu \in\left(L_{\infty}(\boldsymbol{C})\right)_{1}$ with $w^{\mu} \circ \Gamma \circ\left(w^{\mu}\right)^{-1} \subset G$. For $\mu \in B(\Gamma)$, we set $w^{\mu} \circ g \circ\left(w^{\mu}\right)^{-1}=g(\mu) \in G$ for $g \in \Gamma$. Then the mapping $\mu \mapsto g(\mu)$ is a continuous mapping of $B(\Gamma)$ into $G$ with $g(0)=g$. In fact, this mapping is holomorphic (see [1] and [3]). Hence the isomorphism $\theta(\mu): \Gamma \rightarrow G$ defined by $\theta(\mu)(g)=g(\mu)$ is close to the identity homomorphism if $\|\mu\|_{\infty}$ is close to zero. Moreover, $\theta(\mu)$ is a parabolic homomorphism. We denote the group $\theta(\mu)(\Gamma)$ by $\Gamma^{\mu}$. If $\Gamma$ is a non-elementary Kleinian group, then $\Gamma^{\mu}$ is also a non-elementary Kleinian group. So we have:

Corollary. Let $\Gamma$ be a non-elementary finitely generated Kleinian group and let $w^{\mu}$ be a quasi-conformal self-mapping of $\hat{\boldsymbol{C}}$ compatible with $\Gamma$, where $\|\mu\|_{\infty}$ is close to zero. Then

$$
\operatorname{dim} P H_{\chi}^{1}(\Gamma, \Pi) \geqq \operatorname{dim} P H_{\chi}^{1}\left(\Gamma^{\mu}, \Pi\right)
$$

Let $\Omega(\Gamma)$ be the region of discontinuity of a non-elementary finitely generated Kleinian group $\Gamma$ and let $A(\Omega(\Gamma), \Gamma)$ be the space of bounded holomorphic quadratic forms on $\Omega(\Gamma)$. Let $\beta^{*}: A(\Omega(\Gamma), \Gamma) \rightarrow P H_{\chi}^{1}(\Gamma, \Pi)$ be the so-called Bers map with respect to $\Gamma$. For a quasi-conformal mapping $w^{\mu}$ compatible with $\Gamma$, we have $\operatorname{dim} A(\Omega(\Gamma), \Gamma)=\operatorname{dim} A\left(\Omega\left(\Gamma^{\mu}\right)\right.$, $\Gamma^{\mu}$ ). So we can prove the following:

Theorem 3. Let $\Gamma$ be a non-elementary finitely generated Kleinian group with $P H_{x}^{1}(\Gamma, \Pi)=\beta^{*}(A(\Omega(\Gamma), \Gamma))$ and let $w^{\mu}$ be a quasi-conformal self-mapping of $\widehat{\boldsymbol{C}}$ compatible with $\Gamma$, where $\|\mu\|_{\infty}$ is sufficiently close to zero. Then

$$
P H_{\chi}^{1}\left(\Gamma^{\mu}, \Pi\right)=\beta(\mu)^{*}\left(A\left(\Omega\left(\Gamma^{\mu}\right), \Gamma^{\mu}\right)\right)
$$

for the Bers map $\beta(\mu)^{*}$ with respect to $\Gamma^{\mu}$.
Proof. By Corollary we see that $\operatorname{dim} P H_{\chi}^{1}(\Gamma, \Pi) \geqq \operatorname{dim} P H_{\chi}^{1}\left(\Gamma^{\mu}, \Pi\right)$. Since $\beta^{*}(A(\Omega(\Gamma), \Gamma))=P H_{x}^{1}(\Gamma, \Pi)$ and since $\beta^{*}$ is injective, we have $\operatorname{dim} A(\Omega(\Gamma), \Gamma)=\operatorname{dim} P H_{x}^{1}(\Gamma, \Pi) . \quad$ Moreover, $\quad \beta(\mu)^{*}: A\left(\Omega\left(\Gamma^{\mu}\right), \Gamma^{\mu}\right) \rightarrow$ $P H_{\chi}^{1}\left(\Gamma^{\mu}, \Pi\right)$ is also injective. Hence $\operatorname{dim} A(\Omega(\Gamma), \Gamma)=\operatorname{dim} P H_{\chi}^{1}(\Gamma, \Pi) \geqq$ $\operatorname{dim} P H_{\chi}^{1}\left(\Gamma^{\mu}, \Pi\right) \geqq \operatorname{dim} A\left(\Omega\left(\Gamma^{\mu}\right), \Gamma^{\mu}\right)$. Since $\operatorname{dim} A(\Omega(\Gamma), \Gamma)=\operatorname{dim} A\left(\Omega\left(\Gamma^{\mu}\right)\right.$, $\Gamma^{\mu}$, we have $\operatorname{dim} P H_{\chi}^{1}\left(\Gamma^{\mu}, \Pi\right)=\operatorname{dim} A\left(\Omega\left(\Gamma^{\mu}\right), \Gamma^{\mu}\right)$. By the injectivity of $\beta(\mu)^{*}$ we are done.

By Theorem 1 in [5], we have the following as an immediate consequence of Theorem 3.

Corollary. Under the same hypothesis as in Theorem 3, $\Gamma^{\mu}$ is quasi-conformally stable.

## References

[1] L. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics, Ann. of Math., 72 (1960), 385-404.
[2] L. Bers, Inequalities for finitely generated Kleinian groups, J. d'Analyse Math. 18 (1967), 23-41.
[3] L. Bers, On boundaries of Teichmüller spaces and on Kleinian groups I, Ann. of Math., 91 (1970), 575-600.
[4] F. Gardiner and I. Kra, Quasi-conformal stability of Kleinian groups, Indiana Univ. Math. J., 21 (1972), 1037-1059.
[5] M. Nakada, Quasi-conformal stability of finitely generated function groups, Tôhoku Math. J., 30 (1978), 45-58.
[6] A. Weil, Remarks on cohomology of groups, Ann. of Math., 80 (1964), 149-157.
Department of Mathematics
Faculty of General Education
Yamagata University
Yamagata, 990 Japan

