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1. Introduction. If Z is a positive uniformly integrable martingale
such that Zo = 1, then we can define a change of the underlying probability
measure dP by the formula dP = Z^dP. Our interest in this paper lies
in investigating the transformation of BMO-martingales by this change
of law. Let us denote by B(P) (resp. B{P)) the space of BMO-martingales
with respect to dP (resp. dP). In the next section we shall deal only
with discrete time martingales, and prove that B(P) is isomorphic to
B(P) under a certain assumption. This equivalence corresponding to the
continuous time case will be established in Section 4. Furthermore, in
Section 3, we shall give a characterization of BMO-martingales.

2. The equivalence of B(P) and B(P); the discrete time case. Let
(Ω, F, P) be a probability space, given a non-decreasing sequence (Fn) of
sub (j-fields of F such that V?=i F% = F We shall assume that Fo

contains all null sets. If X = (Xn, Fn) is a martingale with difference
sequence x — (xn)n^19 then the square function of X is S(X) = (Σϊ=i χD1/2

Let Sn(X) = (ΣUxl)1/2> S0(X) = Xo = 0 and if X converge a.s., let X»
denote its limit. The reader is assumed to be familiar with the martingale
theory as is given in [2] and [3]. Throughout the paper, let us denote
by C a positive constant and by Cp a positive constant depending only
on the indexed parameter p, both letters are not necessarily the same
in each occurrence. X is a BMO-martingale if

o

The class of BMO-martingales depends on the underlying probability meas-
ure and so we shall denote it by B{P). It is a real Banach space with
norm || ||B(p). The next lemma is fundamental in our investigation.

LEMMA 1. The inequality

(1) E[exv{S(XY - £U(X) 2}|FJ <£ (1 - HXH!^)-1

is valid for every martingale X such that \\X\\mP) < 1.
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PROOF. This inequality is proved in [3], but for the reader's con-
venience we shall recall briefly the proof.

Let us set A, = Sj+^X)2 - S^X)2, which is i^.rmeasurable and
Λ = 0 ^ Λ ^ A t ^ . Then the left hand side of (1) is jE[exp (A J | Fn]
and without loss of generality we may assume that it is finite. By an
elementary calculation we have

(2 ) E[exV (A J I F J ^ 1 + Σ ElUA. - A^) \ Fn]
3=1

where 6X = exp (Ax) and bj — exp (As) — exp (A/_x), j ^ 2. But the right
hand side of (2) is smaller than 1 + | \X\\2

mP)E[exι> (AJjFJ, because
— A,--!Iίτ

J +.-1] ^ ||-X]|i(p,. Thus the lemma is proved.

i = χά —

Let now Z be a positive uniformly integrable martingale with Zo = 1
and Z^ > 0 a.s. Throughout, we shall denote by cίP the weighted
probability measure ZjiP and by E[ ] the expectation over Ω with

respect to dP. It is clear that P(Λ) = \ ZndP for every A e Fn, from

which we have

(3) E[U\Fn] = E[ZcoU\Fn]/Zn a.s., under dP and <ZP

for every P-integrable random variable U. We shall often use this for-
mula. Let X be a martingale such that every xn is P-integrable, and
let us consider the process X defined by Xo — 0, Xn = Σ*=i ^i where

ά\Fj^ j ^ 1. It is easy to see that I is a P-martingale.
II lls() denotes the BMO norm associated with dP. Let W be the process
defined by Wn = Zn1. W is a P-uniformly integrable martingale and
W^dP = dP.

DEFINITION. Let 1 < p < <*>. We say that Z satisfies (Ap) if the
inequality

(4) ZnE[Z^p-ι)\Fnγ-'^Cp

is valid for every n ^ 1.

For simplicity, let us say that (AJ holds if Z satisfies (Ap) for some
2> > 1. We shall denote by (A,) the (Ap) condition associated with dP.
(Aoo) is the (Ac) condition with respect to dP.

THEOREM 1. Let 1 < p < », // Z satisfies (Ap), then the inequality

(5) HXIU^C.IlllU^
is vαϊicί/or evβr̂ / P-martingale Xsuch that xn e L^dP), n^l. Similarly,
if W satisfies (Ap), then we have ||X||B(^) ^ CP||JSΓ||JB(P).
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PROOF. We show only (5): the proof of the latter half is similar, and
is omitted.

If \\X\\B{P) = 0, then X = 0 so that xn = 0 for all n. This implies that
xn is .F^-measurable. Thus xn = 0 for all n. That is to say, ||X\\B{P) =
0. So, we may assume that 0 < | |X | | s ( £, < oo. As \xn\ <; ||-XΊ|Λ(^, and
xn — E[xn\Fn_i] = xn, we ge t \xn\ ^2\\X\\B{^). F u r t h e r m o r e , a simple

calculation shows that E[x)\Fn] ^ E[x)\Fn] for j ^ n + 1. Thus we get

( 6 ) E [ S ( X Y - Sn^Xy\ Fn] = x l + E [ ± x) \ Fn]
j+l

Now let us set a = {2p||X||5(^)}"1. The (A^) condition implies that
-γ)\Fn]^Cp and by Lemma 1 we obtain ^[exp{ap(S(X)2 -

1] <̂  2. Then, applying Holder's inequality with exponents p
and p/(p — 1), we can see that the second term on the right hand side
of (6) is dominated by

- Sn(XY)} \ Fn

This establishes our claim.

COROLLARY. // Z and W satisfy (A^) and (AJ) respectively , then
B{P) is isomorphic to B(P).

PROOF. Clearly, φ: X-> X is linear. It follows from Theorem 1 that
it is an injective continuous mapping of B(P) into B(P). To see that it
is surjective, let X' e B(P) and consider the process X given by Xo = 0,
Xn = Σ*=i®h n ^ 1 where x5 = x's - E[x's\Fs^ and Xj = X] - X .,. Ob-
viously, X is a P-martingale and, as E[x'ό \ Fj^] = 0, we get xs = x5 —
ElxjlF^] = x). Namely, X' = X, and by Theorem 1 we have XeB(P).
It is clear that the inverse mapping of φ is continuous.

From (3) it follows immediately that W satisfies (Άp) if and only if
E[(ZJZn)

9\F%] ^ C, where p~γ + q~ι = 1. Therefore, W satisfies (AJ if
and only if the "reverse Holder's inequality"

(7) E [ Z ^ δ \ F n ] ^ C δ Z i + δ

 f n ^ l

holds for some δ > 0. It is proved in [1] that the inequality (7) holds
in the special case where the underlying probability space is the d-
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dimensional unit cube Q and the family of sub <7-fields is the sequence
(Fn) of finite fields obtained by successive dyadic partitions of Q. Quite
recently, C. Watari has pointed out that the reverse Holder's inequality
holds in the more general case where (Fn) is regular; namely, each Fn

is atomic and there exists a constant c > 0 such that for any two atoms
A e Fn_19 BeEn with B c A we have P(A)/P(B) ^ c. Therefore, in the
regular case, from the (AJ condition it follows that B{P) and B(P) are
isomorphic with the mapping φ.

We end this section with a simple remark. Let us consider the
process M defined by Mn = Σ?=i m ; where m, = Zj/Zj^ — 1. By an
elementary calculation, E[\mά\ I ^ - J ^ 2, 2£[mJ |2'V1] = 0 and so M is a
martingale. By this definition we can easily verify that Z and M
satisfy the relation Zn = 1 + Σ ; = i ^ ; - A . If XeJS(P), then from (3) it
follows that E[XJ | i*VJ = E[m0x0 \ Fό_^\ for every j ^ 1 so that we have
JX» = Xn — Σi=i E[mjXj I Fi-J. In the next section we shall give a necessary
and sufficient condition for the martingale M to be an element of B(P).

3. A characterization of BMO-martingales. Until now, in order to
explain the basic structure of the transformation of martingales by a
change of law, we dealt with the discrete time martingales. Now we
are going to deal with the continuous time case. Let (Ft) be a non-
decreasing right continuous family of sub σ-fields of F such that
yt>0Ft = F, and Λfloc be the class of all locally square integrable
martingales X such that Xo = 0. As is well-known, for every XeMl0C

there is a unique predictable increasing process {X} such that X2 — (X)
is a local martingale. If X, YeMιoc, then (X, Y) is the process defined
by <X, Y)t = « X + Y)t - (X)t - <y>t)/2. On the other hand, any local
martingale L can be split into the continuous part L% and the purely
discontinuous part Ld, orthogonal to all continuous local martingales. Then
one can define the increasing process [L] for any local martingale L by
[L]t = (Lc)t + Σ.£t (ΛLS)

2 where ALS = L8 — L8_. For two local martingales
L and U we set [L, I/] = ([L + U] - [L] - [Z/])/2 as above. It is well-
known that, if X, YeMioc, then [X, Y] — <X, Y) is a local martingale.
Let us denote by ||X||5(P) the smallest positive constant c such that c2

dominates a.s., EftX]^ — [X]T_\FT] for every stopping time T. We say
that X is a BMO-martingale if ||X|U(P) < oo. B{P) denotes the class of
all BMO-martingales as in Section 2.

LEMMA 2. If \\X\\mP) < 1, then for every stopping time T we have

(8) tftexptfXL - [X]T-)\FT] £ (1 - H X H W 1 α.β.
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We omit its proof, because it is the continuous parameter analog of
Lemma 1 and is proved in [4],

Now let M be a fixed local martingale such that ikf0 — 0, and Z be the
local martingale defined by the formula Zt = exp (Mt — (Mc)t) Π.s* (1 +
JMβ)exp( — ΔMS). As is well-known nowadays, Z is a unique solution of

the stochastic integral equation Zt — 1 + I Zs-dMs. Particularly, if AMt >
JO

— 1 for every ί, then Z is a positive local martingale and so it is a super-
martingale. We always consider this case in the following. As is stated
in Section 2, we say that the process Z satisfies (Ap) if the inequality
ZτE[{llZJ)ιnv-ι)\Fτ~γ-1 ^ Cp holds for every stopping time T, with a
constant Cp.

In the next lemma we use a very simple inequality: (1 — x)'1 ^
exp (ex) for 0 ^ x ^ p, where p is the root of the equation 1 — x =
exp( — ex). It is easy to see that p < 1.

LEMMA 3. If MeB(P) and \AMt\ S V~ρ, then Z satisfies (AJ.

PROOF. Let T be any stopping time, and let us take p > 2 such that
e || M| I W OP - 2)< 1. Then E[exj> {e ([ML - [Λf]Γ_)/(p - 2)}\FT] ^ {1 -
β||Af|||(P,/(j) - 2)}"1 by Lemma 2. As (AM)2 ̂  p < 1, Z is a positive local
martingale and {1 — (JMί)2}"1 ^ exp (̂z/M*)2} for every t. Thus we have

^ / ^ = exp {-(MTO - ΛfΓ) + ( ( M ^ - <Mc>Γ)/2} Π (1 + JM^exp (AMt)

= exp {-(MM - Mr) - «AΓ >. - <M°)τ)β) Π (1 - JM4) exp
τ<t

x exp ( ( J ί % - (M°)τ) Π (1 - (zίM,)2)-1

^ exp {-(Mm - Mτ) - « M % - <M°)T)/2} Π (1 - JM() exp

By using Holder's inequality with exponents p — 1 and (p — l)/(p — 2)
we get

(MOO - Mτ) -

x Uτ<t (1 - Λ̂f*) exp (AMt) \

By the supermartingale inequality the first term on the right hand side
is smaller than 1, and the second term is bounded by {1 — e\\M\\2

B{P)/(p —
2)}-<p-«/<*-i>. This completes the proof.

LEMMA 4. If — 1 < AMt ^ C for every t and Z satisfies (AJ, then
M is a BMO-mαrtingale.
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PROOF. Let Tn be stopping times, increasing to co a.s., such that
for each n the process Mτ* = (MtATJ is a uniformly integrable mar-
tingale, and let us assume that Z satisfies (Ap_x) for some p > 2. Then
for each n the process ZTn = (ZtATn) satisfies (Ap). To see this, let S be
any stopping time, and we now apply Holder's inequality with exponents
p - 1 and (p - l)/(j> - 2):

But, Z being a positive local martingale, the second term on the right
hand side is bounded by 1, and from the definition of the (Ap-X) condition
it follows that the first term is also dominated by some constant Cp.
This implies that ZTn satisfies (Ap).

We are now going to prove that the local martingale M belongs to
B(P). For that, let K = inf_1<x^ x~2 log 2"1{1 + e*/(l + x)}. Then 0 < K <
1/2 and exp (tcx2) <^ e*/(l + x) for — 1 < x ^ C, from which the inequality
exp {/c(ΛMt)

2} <; exp (AMt)/(l + JJIf,) follows at once. Thus we have

ZSATJZTn ^ exv{-(MTn - MSATJ + Λ:([M]Γ% - [Λf]^^)} .

Then, applying Jensen's inequality we get E[[M]T% — [M]SATn\FSATJ <: Cpf

n^l. The constant Cp does not depend on (ΓJ, so that, letting n—>oo,
we obtain ^[[M]^ - [M]S\FS] ^ Cp. Consequently, if — 1 < ΔMt ^ C, then
[̂[ikfj.0 - [M]S.\FS] ^ Cp. Thus the lemma is proved.

Now, let Z{a) denote the process given by the formula

Zla) = exp (aMt - a\Mc)J2) Π (1 + aΔM8) exp (-αJΛΓ.) , a > 0 .

Of course, it is also a local martingale. Lemmas 3 and 4 combined have
the following result.

THEOREM 2. ilί belongs to B(P) if and only if for some α>0 (i) —1<
aΔMt ^ Ca and (ii) Z{a) satisfies (AJ.

PROOF. If MeB(P), then | JΛfJ ^ ||Λf||Λ(P, for every t. Let us take
a > 0 such that — 1 < αJMf and a\ΔMt)

2 ^ /O, where p is the same constant
as in Lemma 3. Then Lemma 3 implies (ii). The converse follows at
once from Lemma 4.

It should be noted that, if M is continuous, then a may be taken to
be 1. This is proved in [4].

4. The equivalence of B{P) and B(P); the continuous time case. In
this section we assume that the process M is a locally square integrable
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martingale such that ΔMt > — 1 for every t. In addition, let us assume
that Z is a uniformly integrable martingale and Z^ > 0. dP denotes
always the weighted probability measure Z^dP. Recall that P{A) =
I ZtdP for every AeFt. Any local martingale with respect to dP is a

local martingale under dPΊ In general, the answer is negative. But,
in 1960, it was proved by I. V. Girsanov that under the absolutely con-
tinuous change in probability measure a Brownian motion is transformed
into the sum of a Brownian motion and a second process with sample
functions which are absolutely continuous with respect to the Lebesgue
measure. J. H. Van Schuppen and E. Wong [6] gave a natural generali-
zation of this result as is stated in Lemma 5.

A semi-martingale is a process Y of the form Yt = Yo + Lt + At where
L is a local martingale and the sample functions of A have bounded
variation on every finite interval. As the continuous part Lc of L is
independent of the decomposition, one can define another increasing process
[Y]t = (Lc)t + Σ«^ (ΛYs)2 for a semi-martingale Y.

LEMMA 5. For any IeJl ί l o c , X = X — (X, M) is a local martingale
with respect to dP. Particularly, if (X, M) is continuous, then we
have [X] — [X] under either probability measure.

PROOF. An application of the change of variables formula shows that
XZ is a local martingale. This means that I is a local martingale with
respect to dP. And, X being a semi-martingale under dP, from the def-
inition of [X] we have [X]t = <Xc)t + ̂ t (AX8-A(X, M)8)\ Furthermore,
if <X, M) is continuous, then the right hand side is (Xc)t + Σ s« (AX8f.
Thus [X] = [X], The same conclusion follows under dP. For details,
see [6].

As in the discrete time case, W is the process defined by Wt = Zr1

and (Ap) is the (Ap) condition associated with dP. The (AJ condition
means that (Ap) holds for some p > 1.

THEOREM 3. Assume that (Ft) has no times of discontinuity and
that W is a P-locally square integrable martingale. If Z and W satisfy
(AJ) and (A^) respectively, then B(P) is isomorphic to B(P).

PROOF. First we show that, if Z satisfies (Ap), then the inequality

(9) \\X\\mP)<ίCp\\X\\mh

is valid for all XeMi0C. \\X\\mP) = 0 implies 1 = 0 so that we may
assume 0 < \\X\\mP) < oo. Now let T be any stopping time, and let
a = {2p\\X\\l^)}-1. Then E[exp{ap^X^ - [X]T-)}\FT] ^ 2 by Lemma 2,
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and from (Ap) it follows that E\_{ZτlZJ^-γ)\Fτ\ ^ Cp. If (Ft) has no
times of discontinuity, then <X, M) is continuous for every XeMioc so
that by Lemma 5 we have [X] = [X] under dP and dP. As in the proof
of Theorem 1, an application of Holder's inequality shows that

Hence the right hand side is smaller than CP\\X\\2

B(P) and (9) is proved.
Similarly, we can see that, if W satisfies (Ap), then the inequality

(10) \\£\\Blp)£C,\\x\\B{P)

is valid for all XeMl0C. Therefore, ψ: X^X = X - (X, M) defines an

injective continuous linear mapping of B(P) into B(P). So, to prove the

theorem, it suffices to verify that φ is surjective. For that, consider the

process M' defined by M't = \ Z8_dW8, which is a locally square integrable
^ Jo ct

martingale under dP. Since W satisfies the equation ^ = 1 + 1 Ws_dM's, we
have Wt = exp (M't - (M'c)t/2) ΓL^ (1 + ΔM[) exp (-ΔM[). Furthermore,
(X', Mf) is also continuous for every P-locally square integrable martingale
X'9 because the family (Ft) has no times of discontinuity. Let now
X'eB(P). Then it follows from (9) that X = X' - <X', ΛΓ> belongs to
JB(P). By Lemma 5, X = X — (X, M) is a P-local martingale. Therefore,
X' — X = (X', M'} + (X, M) is a continuous P-local martingale with
finite variation on each finite interval. This implies that X1 = X. Thus
the theorem is established.

W is a P-locally square integrable martingale if and only if there
is a non-decreasing sequence (Tn) of stopping times with lim Tn = °o such
that Zτl is P-integrable for each n. When M is continuous, M is a
continuous local martingale under dP and so Wt = exp( —M, — (M)t/2).
They are clearly P-locally square integrable. Then, in the same way as
in the proof of Theorem 3, we can show the following.

COROLLARY. Assume that M is continuous. If Z and W satisfy
(A^) and (AJ) respectively, then B(P) is isomorphic to B(P).

5. Remarks on the (Ap) condition. In this section, assuming the
sample continuity of the local martingale ikf, we shall consider the problem:
when can one assert that W satisfies (A*,)? By Lemma 3 we know that,
if MeB(P), then W satisfies it.

THEOREM 4. If M is a continuous local martingale and the inequality

(11) #[exp {(e + 1/2XΛC - Mt)} \ Ft] ^ Cε , t ^ 0
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holds for some ε > 0, then the process W satisfies ( i M ).

PROOF. AS is remarked in Section 2, to prove the theorem, it suf-
fices to show that Z satisfies the reverse Holder's inequality E[Zl+'\Ft] ^
CtZi+a, (t ^ 0) where δ = 4ε2/(l + 4ε). Now let us set p = 1 + 4ε. Then
the exponent conjugate to p is q = 1 + l/4e. Applying Holder's inequality
we have

E[(ZJZtY
+δ\Ft] = E[exv{V(l + δ)/p(M^ - Mt)

- (M)t)/2

- <M>t)/2\Ftγ»

δ)/p)q(M00 - Mt)}\Ft]
1" .

By the supermartingale inequality the first term on the right hand side

is smaller than 1, and, as (1 + δ - V(l + δ)/p)q = ε + 1/2, from (11) it

follows that the second term is bounded. Thus the proof is complete.

For example, if ||ilf|Up> < VT, then W satisfies (AJ. To see this,
let ε, δ be two numbers such that 0 < ε < l/τ/2(2 - δ) - 1/2 and 0 < δ <
2 - | | M | | | ( P ) . Then by Lemma 2 we have JS[exp{2(e + l/2)I«Λί>β0 -
(M)t)}\Ft] S{1- | |M||i(P)(2 - δ)}~\ On the other hand, by the super-
martingale inequality

#[exp{2(ε + 1/2)(MTO - Mt) - 2(e + 1/2)*«M)» - <M)t)}\Ft] ^ 1 .

Thus we get (11) by using Schwarz's inequality.
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