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Introduction. This paper is concerned with the existence and classi-
fication of resolutions of polyhedra, satisfying a certain link condition, to
PL-manifolds. The starting points of this theory are the existence theory
of Cohen [9], Martin [18] and others for homology manifolds and the
subsequent classification theorem of Edmonds and Stern [10]. The purpose
of this paper is to generalize these results to other classes of manifolds
(e.g. rational homology, Euler).

An obstruction theory for blowing up singularities of geometric
cycles has been deseribed by Sullivan [27] and our obstruction theory is
modeled on this. Resolutions are classified via a space constructed by
the theory of Brownian functors.

Generalized polyhedral manifolds are defined as follows. Let & be
a collection of compact polyhedra containing S° and closed under link
and join. Elements of &# of dimension n are called & n-spheres;
polyhedra of the form 3" — St(z, 3), 3 €.7, are called .% n-pseudodises.
The elementary theory of .“#-manifolds parallels the theory of PL-
manifolds, using .#-spheres and pseudodises instead of PL-spheres and
dises. Standard topics, such as regular neighborhoods, handle decomposi-
tions and orientability, are developed in §1.

An Z-resolution is defined to be a simplicial map whose dual cells
are .7-pseudodiscs. These are discussed at length in §2. In §§3 and
4, we develop the obstruction theory for finding an .#-resolution of an
“-manifold from a PL-manifold.

In §§5 and 6, we construct a space which classifies concordance classes
of “-resolutions of PL-manifolds (with certain conditions on .%#). This
is done using the product structure theorem of [10] and Adams’ repre-
sentability theorem [1].

1. Generalized manifolds. Let & = U;-,.%#,, where each &, is
a set of PL-isomorphism classes of n-dimensional compact polyhedra
satisfying
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(i) S'e.z

(ii) if Ye.#, and xe 2%, then Lk(x, 3)e . #,_,
and (iii) if 3, e .+, and Y,e &, then X x3,€ F i i1

We interpret “Ke.# ” to mean that K is a polyhedron whose PL-
isomorphism class is in .#. The set # is called a manifold class.

The elements of &, are called the # n-spheres. The cone cX of an
& (n — 1)-sphere is called an % mn-disc, and a polyhedron 4 of the form
Y — Stx, 3), e 7, x€2, is called an & n-pseudodisc; o4 = Lk(x, 3),
Int(4) = 4 — 34. Note that an F# n-disc ¢ is an & n-pseudodise, since
e = 8% — St(1, S°«3).

A polyhedron M is said to be a PL & n-manifold if M has a sub-
division M' so that each Lk(x, M') is either an .# (n — 1)-sphere or
(m — 1)-pseudodise, and oM = {x € M'": Lk(x, M') ¢ #,_,}, the boundary of
M, is a PL & (n — 1)-manifold without boundary.

We list some important examples of manifold classes:

(1) 7. Define F7, = {S*}; clearly &#C.# for any manifold class
and a PL %% n-manifold is simply a PL n-manifold. (The symbol &
is usually omitted when &# = &%)

(2) 5#: Let K be a set of primes and 4= Z[1/p:pec K]CQ.
Define (5#%), inductively by (5£%), = {S°}, (k). = {2 Lk(x, %) € (5Z%)n-1»
H,(3; )= H,(S*; 4)}. A PL S5#-manifold is usually called a A-homology
manifold.

(8) #4g: As in (2), let (4x). ={S" 7 =0, 1, 2, (4x), = {T € (Fx)a:
Lk(x, 3) € (£g)n_y, 7(2) =0}, n =8. A PL 4£,-manifold is called a 4-
homotopy mamnifold.

(4) &: Define &, =1{S%, &,=1{2: Lk(z, 2)e &,_, X(2)=1+(—1)"}.
A PL Z-manifold is called an Fuler manifold. (See [11], [26], [28].)

(5) &®: Define &® ={(S):t=1,2,---}, &P ={¥:Lk(x,2)e

2, X(M) = 0mod(2)}. A PL #“®-manifold is called a mod(2) FEuler
manifold. By [26], any real algebraic variety is a PL & “®-manifold.

Clearly, if . # .’ are manifold classes, then a PL .#-manifold is
a PL % '-manifold. Also, if 4=23— Si(x, ) is an % n-pseudodisc, then
4 is a PL & n-manifold.

LemMmA 1.1. If M and N are PL Z-manifolds with collared bounda-
ries, then M X N is a PL FZ-manifold with boundary M X 0N U oM X N.

Proor. Let (x,y)eM X N. Then
Lk((x, ), M X N) = Lk(x, M)xLk(y, N)
and is in & if x¢dM, y¢ 0N by condition (iii) above. If xcdM, then
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Lk(x, M) = cLk(x, 0M) since oM is collared in M. Therefore, if y ¢ 0N,
Lk(x, M)*Lk(y, N) = ¢(Lk(x, M)«Lk(y, N)) is an .Z-dise, and if y €oN,
Lk(x, M)«Lk(y, N) = cLk(x, 0M)+cLk(y, oN) is easily seen to be PL-
homeomorphic to the star of a vertex of S*' in S'«Lk(x, 0M)xLk(y, oN),
and so is also an .Z-disc.

By a similar proof, we have:

LEMMA 1.2. If M and N are PL F-manifolds with oM = 0N collared
in M and N, then MU N is a PL F-manifold.

We will need this result for manifolds without collared boundaries, and
to get this we must restrict our manifold classes.

A manifold class & 1is said to be connected if for each pair 4, 4,
of F n-pseudodiscs with 04, = o4y, 4, U 4, #,. It follows that if &
is connected, and M, N are PL .Z-manifolds with dM = 0N, then M U N
is a PL .%-manifold. Notice that all the manifold classes listed above
are connected.

Let M be a PL .%#-manifold and K a compact subpolyhedron of the
interior of M. Define a regular mneighborhood of K in M to be the
simplicial neighborhood of K in some derived subdivision of M.

ProrosiTION 1.3. A regular neighborhood of K im M™ is a compact

PL & wn-manifold with boundary, unique up to ambient PL-isotopy
rel K.

PrROOF. Assume M has been subdivided, and let N be the simplicial
neighborhood of K in M. Define Int(N) to be the union of the interiors of
the simplexes in M that meet K and 0N to be the union of the simplexes
in N that do not meet K.

For x € Int(N), choose a simplex a so that x eInt(a) and a N K+ O&.
Let v be a vertex common to @ and K. Then St(v, N) = St(v, M), x¢€
Int(St(v, N)), and therefore Lk(x, N)e.#,_,. By [8], Theorem 5.3, oN
is bicollared in M, and it follows that Lk(x, M) Zg (Lk(x, ON)) and
Lk(x, N) I’J:l‘c(Lk(x, oN)) for xe€oN. Therefore oN is a PL & (n — 1)-

manifold and Lk(z, N) is an .# n-disc. Thus N is a PL . n-manifold.
Uniqueness follows from [8].

A handle of index ¢ on a PL & n-manifold M is an .# n-disc 4 so
that 4 N M c oM, together with a PL-homeomorphism f :4? X 4777 — 4,
where 4, = ¢3; is an F-dise, 1 = 1,2, so that f(Z, x 4) =4NM. We
define a handle decomposition of M in the usual way.
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LEMMA 1.4. Let M" be a compact PL & -manifold. Then Lk(a, M) e
F iy Jor each i-simplex a of M — oM.

Proor. This follows easily by induction, since Lk(a’, M)e.&,_, by
definition, and if a' = vxa*™, then Lk(a’, M) = Lk(v, Lk(a'™*, M)).

PROPOSITION 1.5. Let M"™ be a compact PL F-manifold. Then M
has a handle decomposition.

PROOF. Assume oM # @ by replacing M by M — 4* for some -
simplex 4* in M if oM = @». Let a, a, ---, a, be the simplexes of
M — oM, arranged in order of non-decreasing dimension.

Let N be a regular neighborhood of oM in the second derived M".
Let H, = St(b., M"); then M= NUH, U---UH, Let Wo=N, W, =
W...U H;. We have H, = St(b., a;)x0D(a;, M"), and therefore is PL-
homeomorphic to D«Lk(x, M'"), ¢ = dim(«,). Let X, = Lk(a, M) e
Fu_g1. 1t follows that there exists a PL-homeomorphism f: D? X ¢X, —
H, so that f(D* x ¥,) = H,N\ W,_,. Therefore, M has a handle decom-
position.

Let M™ be a compact .#-manifold. We recall the classical definition
of orientability of [17]. The pair (M, o0M) is called an n-circuit if
H,(M, oM; Z|2) = Z|2, generated by the sum of all n-simplexes of M; (M, o.M)
is a simple n-circuit if, in addition, every (n—1)-simplex of M—oM is the
face of exactly two m-simplexes. By [17], if (M, o0M) is a simple n-
circuit, then either H,(M,oM) =0 (in which case (M, oM) is called
non-orientable) or H,(M,oM)=Z (M, oM) is orientable) and each n-simplex
o may be oriented with sign (—1)° so that > (—1)’c generates H,(M, oM).

THEOREM 1.6. Suppose H,(Lk(ai, M))= H,(S* ") for each i-simplex
a of M — oM and H(Lk(c?, M)) = 0, Hy(Lk(c!, 0M)) = H(S*™"%) for each
i-stmplex o of oM. Then (M, o0M) is a simple n-circuit.

Proor. First assume oM = @ and proceed by induction on n. If
n =0,1 or 2, then M is a PL-manifold by the condition in the hypothesis.
Assume the result for n — 1. Then for each x € M, Lk(x, M) is a simple
(m — 1)-circuit, so that H, (Lk(x, M); Z/2) = Z/2. The result now follows
by the usual proof in the & = &% case (e.g., [19], Theorem 5.3.3).
Compare Kato [13], Lemma 3.1.

If oM = &, then let DM denote the double of M. Note that DM
need not be an .#-manifold, but the proof above shows that DM is a
simple n-circuit since for a simplex a of oM, Lk(a, DM) = DLk(c, M).
Again by the first case, 0M is a simple m-circuit and it follows easily
that (M, 0M) is a simple n-circuit.
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Let us generalize the condition of Theorem 1.6 and say that (M, oM)
is a PL & ®-manifold, k=0, 1, ---, n, if for each i-simplex a of M—oM,
H;(Lk(a, M)) = H,(S**) for j <k and for each i-simplex a of 5M,
H(Lk(ex, M)) = 0, H,(Lk(at, 6M)) = H;(S**"?) for j<k. Thus a PL & ©-
manifold is a relative simple n-circuit and a PL &% “gn-manifold is an
&7’-manifold. A PL & “-manifold M is orientable if M and oM are
orientable as simple circuits. (Compare [24] and [27].)

A PL & “-manifold M is said to be locally orientable if for each
x, Lk(x, M) is orientable. Note that Lk(x, M) is also a PL % ““-manifold,
and it follows easily that M is locally orientable if and only if each
Lk(a, M) is orientable.

Let M™ be a closed, locally orientable PL & “-manifold and =(M)
its fundamental groupoid. We can define a local coefficient system
I'y:n(M)— 5, by the usual correspondence x — H, ,(Lk(x, M)). Let
H{ (M) denote the homology of M with respect to this local system. We
have the following partial Poimcaré duality theorem (compare Kato [14]).

THEOREM 1.7. If M" is a closed, locally orientable PL &% “-manifold,
then H'(M) = H, (M) for i =zn — k.

PrOOF. Let M; be the union of the dual cells of M of dimension
<j, D(e*, M), 1 < j. Define C; = H{(M; M;_) and d,:C, — C,_, by the
composition H}(M;, M;_,) — H} ,(M;_,) — H} ,(M;_,, M;_,). By the proof of
Poincaré duality for 7 -manifolds, there is a chain isomorphism C*(M) —
C._.. Since M is .7 ®, it follows that H{(M; M; ) =0if I >j or I <
min{j, k}. By the proof of [19], Theorem 4.4.14, H,C,) = H!(M) for
j <k. Therefore, for i = n — k, H(M) = H,_,(C,) = H:_(M).

There are corresponding statements concerning Lefshetz duality and
duality with coefficients in a ring which we leave to the reader to state.
We close this section with a characterization of 3-manifolds.

PROPOSITION 1.8. Let M? be a closed, connected 7 "-manifold. Then
M is a PL 3-manifold if and only if X(M) = 0.

The proof follows from Wall [28]; see also Seifert and Threlfall [23],
§60.

2. .7-Resolutions. Let & be a manifold class and M", N PL -
manifolds. A proper PL-surjection f: N— M is said to be an . -resolution
if for every x € M, there exist subdivisions N’, M’ so that f: N — M’
is simplicial, x is a vertex of M’ and the regular neighborhood N(f~*(x), N')
of f7(x) in N’ is an #-pseudodisc. If 0M, 6N+ &, we assume f|ON:0N —
oM 1is also an .&-resolution.
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ExampLEs. (1) & = «4: f is an «-resolution if and only if each
f7Yx) is contractible, and is called a contractible resolution ([9]).

(2) & = 257 f is an JS7-resolution if and only if each
H,(f(x); 4) = 0, and is called a A-acyclic resolution ([16], [18], [27]).

(8) & =&: f is an &-resolution if and only if each X(f () = 1,
and is called an Euler resolution ([16]); the case &% = &® is similar.

We write N <M if there is an .%-resolution f: N— M and N /\ M

if there is a sequence N = N, N;, --+, N, = M so that for each 1, Nii
N, or Ni+1\Ni'

LeMMA 2.1. Let Ye.&,. Then E{,S‘”.

PrOOF. Choose x in the interior of an n-simplex ¢ of X, and let 4
be the complement of an open star neighborhood of . Then A is an
“-pseudodisc and f:3 — 3/A = S" is an F-resolution. (We may choose
f to be PL by assuming d¢ has a PL collar in X.)

F
LEMMmA 2.2. If 4* is an F-pseudodisc, then 4"\, D".

ProoF. Choose « in the interior of an (n — 1)-simplex of 64 and
define A as in Lemma 2.1. Then A = 4 and 4/A = D", 04/A N od = S*".

Let M, N be PL .#-manifolds and KC M a subcomplex. A map
f:N— M is an .F-resolution rel(K) if f is an .F-resolution and
£l f“(K) : f(K)— K is a PL-homeomorphism. We define the symbols

N\, Mrel(K), N A\ Mrel(K) as before.

LEEMA 2.3. Let 4" be an F-pseudodisc. Then A”ic(ad) rel (04).
PrROOF. The proof is immediate by [20], Lemma 3.1.

LEMMA 2.4. Let M be a PL ~manifold. Then MU M x IN, M.
The proof is obvious.

We now consider two additional axioms for a manifold class: &
is said to be a homotopy class if every compact, contractible PL &=
manifold is an .%-pseudodise; & is connected if for every Y e . #, and
& n-pseudodisc 4 embedded as a full subcomplex of ¥, ¥ — Int(4) is an
F-pseudodisec. For example, 2., 5%, &, and & ® are connected homotopy
classes.

An #-resolution f: N — M" is said to be a strong F-resolution if
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either » = 0 or, as in the definition of .#-resolutions, each f|oN(f*(x), N'):
ON(f'(x), N') —» dN(x, M') is a strong .s-resolution. Any S#-resolution
is a strong S#%-resolution.

PRrOPOSITION 2.5. Let M*, N* be PL .F-manifolds and f: N—M a
proper, simplicial surjection, where F 18 a connected, coconmnected
homotopy class. Then f is a strong F-resolution if and only if the
simplicial mapping cylinder C; is a PL SF-manifold.

Proor. Let A,(f) denote the statement “f is a strong .5-resolution”
and B,(f) the statement “C; is a PL .%#-manifold”. We show that C, =
VF(A.(f) = B,(f)) is true by induction on =.

C,: This is obvious since for x e M, f~'(z) is its own regular neigh-
borhood and Lk(x, C;) = f'(x).

(C,_y, A(f) = B,(f): Assume f: N*"— M" is a strong .#-resolution.
To show that C, is a PL #-manifold we need only show that Lk(x, C;)
is an .“-pseudodisc for each vertex x of M.

We have N(f ' (z), N) = D(z, f) = NN Lk(z, C;) by [7], and Lk(x, C;) =
D(z, f) U Cy,, where f, = f|oD(x, f):0D(x, f) — 0D(x, M). Since f is a
strong .#-resolution, f, is also, so that C, is a PL % (n — 1)-manifold
by C,_,.

Since # is connected, C; U D(x, M) is a PL .%#-manifold, and in fact
an #-pseudodisc since it is contractible and .&# is a homotopy class. Again
by connectedness, Lk(x, C;) U D(x, M)e #,_,. Therefore Lk(x, C;) is an
“-pseudodise. (C,_;, B,(f)) = A.(f): Assume C; is a PL _“#-manifold,
so that for x e M, Lk(x, C;) is an #-pseudodisc. As before, Lk(x, C;) =
D(z, f)UCy,, and since D(x, f) is a PL .#-manifold, C,, is also. By
C._., f, is a strong .“-resolution.

Again, & is a homotopy class, so that C, U D(z, M) is an #-
pseudodise, and so D(x, f) is an .#-pseudodise, since & is coconnected
and Lk(x, C;) U D(x, M)e .#,_,. Therefore, f is an F#-resolution. Since
each f, above is a strong .#-resolution, so is f.

COROLLARY 2.6. If # 1is a connected, coconnected homotopy class,
then the composition of stromg .F-resolutions 1is a strong .F-resolu-
tion.

Let f: N— M be a strong .#-resolution. We say that f is a PL
F-resolution if N is a PL-manifold. Two PL .Z-resolutions f,: N,— M
1 =1, 2 are concordant if there exists a PL F-resolution F: W —>M x I
defining a cobordism between f; and f,. It is easily checked that con-
cordance is an equivalence relation.
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Let M be a PL .“#-manifold, and define <Z.(M) to be the set of
concordance classes of PL .#-resolutions f: N— M. Much of the remainder
of this paper is devoted to the following questions: Is Z.(M) =+ @?
(Existence of PL .#-resolutions.) If so, compute Z2.(M). (Classification
of PL .#-resolutions.)

3. Groups of PL .7-spheres. Let .# Dbe a manifold class. Define
a PL & n-sphere to be a closed, oriented PL manifold 3 that belongs
to #,. If ¥, %, are PL % n-spheres, we say that 3, 3, are PL &=
cobordant if there is a compact, oriented PL-manifold W with 6 W = ¥, U
(—2%,) so that ¢, UWUe¢cX,€ 7,4,

LEmMMA 3.1. If F s comnnected, then the relation of PL F-cobordism
18 an equivalence relation.

ProOF. Suppose W, and W, are PL .5 -cobordisms between Y, Y, and
2, .. Then ¢¥, UW, and W, U ¢, are .#-pseudodiscs, and so since &#
is connected, ¢3, U W, U W, U c¢Y, e +#,,,. Therefore W, U W, is a PL -
cobordism between 3, and J..

If & is connected, we let 4, denote the set of F#-cobordism classes
of connected PL .# n-spheres, n > 0. (See [38], [5] for the cases & =
/%9 41{’ g’ gﬂ)_)

ProposiTION 3.2. 6, ts an abelian group under the operation of
connected sum.

Proor. Let 3, 3, be PL & n-spheres, and o,C%, 0,C2%, top dimen-
sional simplexes. Then 3, — ¢, 3, — 6, are .“-pseudodisecs, and so
3 ¢3, = (%, — o)UQ, — 6,), identified along oo, = d0,, is a & n-sphere
since % is connected.

The PL .Z-cobordism class of 3, #23, depends in fact, only on the
PL .“-cobordism classes of ¥, ¥,. To see this, let W, W, be PL .#-
cobordisms from X, ¥, to X, 2;,. Choose simplicially embedded paths
a,, a, in W,, W, joining a vertex in ¥, ¥, to a vertex in |, ¥, so that
anN,a N, an, anl,aresingletons. Let R, R, be closed regular
neighborhoods of «, a, in W, W, and define V, =W, — (Int(R) U
Int(R,NoWwy)), V., =W, — (Int(R,) UInt(R, NoW,)). Then U =V, UV,
with the obvious identifications, is a PL cobordism between 3, %%, and
X £%,. Finally, ¢(Z,#3,)UUUc(X£2)) is PL-homeomorphic to (¢3,U W, U
cdi—t)U(eX,U W,UcX,—1,), where 7, =c(0(R,NZ))UR,Uc@R,NZI)), 7,=
c(0(R,N 2y) U R, Uc(0(R, N X)), and is therefore in .#,.,, since it is a
union of 2 .#-pseudodiscs along their common boundary.

Thus # defines an abelian semigroup operation on 6,7, and clearly S*



GENERALIZED POLYHEDRAL MANIFOLDS 503

represents an identity element. We show that ¥ #(—2) is PL .%-cobordant
to S*, which shows that 4, is a group. Choose x€ Y and y € ¥ — St(z, %)
so that Lk(y, X)c Y — St(x, Y). Then (subdividing if necessary) 3 X
I — (St(x, 3) x IU Lk((y, 1/2), 2 x I)) is the desired PL .7=cobordism.

COROLLARY 3.3. If 3 is a PL % n-sphere, n >0, and %, ---, %,
the conmected components of X, then 3 and 2, % ---£2, are PL _#-
cobordant.

Define a PL .#-pseudodisc to be a PL-manifold that is also an .-
pseudodisce. Clearly, if 3* is an orientable PL .%#-sphere, then [Y] = 0 in
0,7 if and only if ¥ bounds an orientable PL ~pseudodisc.

4. Existence theory for PL .Z-resolutions. Let . be a connected
coconnected homotopy class and M" a compact connected locally orientable
PL & ©®_-manifold. In this section, we develop an obstruction theory to
determine when .. (M) + . The methods are due to Sullivan [27] and
Cohen [9].

Define the singularity set of M by S(M) = {xe M :bLk(x, M) + O};
it is easily seen that S(M) is a subcomplex of M. We seek to built a
PL ““resolution of M by constructing a strong .7-resolution f: N —> M
with dim(S(N)) < dim(S(M)).

Assume oM = @ and dim(S(M)) = k. Choose a k-simplex o, and an
orientation of St(o,, M). Let T be a fixed maximal tree in M. For
every k-simplex o of M, the local coefficient system of §1, the ori-
entation of St(o,, M) and T determine an orientation of St(¢, M), and
so an orientation of Lk(s, M). Since S(M) is k-dimensional, Lk(c, M) is
a PL .# (n —k — 1)-sphere. Define a chain £, (M) € Ci(M; 07 ._.) by . (M) =
Y[ Lk(o, M)]Jo, taken over all k-simplexes o.

LEemmA 4.1, p, (M) is a cycle.

PROOF. Let 7 be a (kK — 1)-simplex of M. For each k-simplex o with
o0 > 1, let a, be the 1-simplex b,b. of M’. Then Lk(g, M)*b,, — b,, is a
PL-manifold with boundary Lk(o, M). Let R, denote the boundary of
a PL-collared neighborhood of Lk(g, M) in Lk(c, M)*b,, — ba,.

Define W, = Lk(t, M) — U,>. Int(R,+b,,). Then W is an oriented PL-
manifold with boundary equal to the disjoint union of the PL .S-spheres
Lk(o, M), 0 > 7. Let o, ---,0, be a list of the k-simplexes with 7 as a
face, and V, a regular neighborhood, in W, — 0W.U U;.;V;), of a PL-
embedded path from a (single) point in Lk(o,, M) to a (single) point in
Lk(o,,, M), v < r. (Here we need M to be a PL .# *-manifold, so that k <
n—2). Then W. — Uiz Int(V;) is a PL-manifold bounding %;_, Lk(c;, M).
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Since % is connected and coconnected, and W.e.&,_,, W. — Uizl Int(V,)
is an .“#-pseudodisc. This implies that the coefficient of = in o, (M) is 0.

Define (M) e Hi(M; 6, ,_,) to be the homology class of %, (M). Our
main result is:

THEOREM 4.2. Let # be a connected, coconnected homotopy class
and M* a closed, locally orientable PL & “-mamnifold with dim(S(M)) = k.
Then there exists a strong .F-resolution f: N — M, with dim(S(N)) < k,
provided p, (M) = 0.

Proor. First suppose [, (M) =0. Then for every k-simplex ¢ of
M, Lk(o, M) bounds an oriented PL .#-pseudodisc V,. Let D(o, M') denote
the dual cell of o; we have 0D(0, M') = Lk(o, M). Define N by replacing
each 6xD(g, M') in M’ with 6+ V,, with the obvious identifications. Clearly
dim(S(N)) < k, and we define f: N— M by collapsing the exterior of
an open PL collar of d(6+V,) in o*V, to b,.

First notice that f is bijective away from the barycenters b, and
f(b,) =6+V,. We have N(f'b,), N) = 6*V,, which is an .#-pseudodisc,
since it is equal to 6%(V,UcoV,)—Int(e(6x0V,)). Since f is a PL embedding
when restricted to oN(f7'(db,), N), f is a strong .“#-resolution.

Now assume k(M) = od, where d = 3[3.]Jc, taken over all (k + 1)-
simplexes 7 of M. Since dim(S(M)) =k, oD(zr, M) = S*** Let 4. =
Y. — &, where a is some (n — k — 1)-simplex of %, oriented so that o4.
is compatible with 0D(z, M). Replace, as above, each 7+«D(zr, M) with
7x4., to get a strong .“#-resolution f,: N,— M. By construction, (N, =
0, and so there is a strong .#-resolution f’: N— N, with dim(S(N)) < &.
By Corollary 2.6, f,of’: N— M is the desired strong .#-resolution.

We now turn to the relative version of Theorem 4.2. Again assume
that &% 1is a connected coconnected homotopy class, and let M" be a
compact, locally orientable PL & -manifold with dim(S(M)) = k. Assume
further that oM is collared in M (which we can always do by Lemma
2.4) and that Q"' is a PL-manifold embedded as a full subcomplex of
M with 0Q collared in 6M. Homology will have coefficients twisted by
the local system on M of §1.

Define £, (M) € Ci(M; 07 ,_,) by p,(M)=>|Lk(o, M)]o over all k-simplexes
o not contained in oM.

LemMMA 4.3. dim(S(OM)) <k — 1, op(M) = f,_,(6M), and g, ,(0M)
ltes tn Ciy(OM — Q; 07 4-).

ProOF. Let o be a k-simplex of oM. Then Lk(o, M) = ¢(Lk(a, oM))
(since oM is collared in M) is a PL-manifold and so Lk(g, oM) = S*~*2,
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Write DM as the union of two copies M, M, of M. It follows that
. (DM) = g, (M,) + ., (M,) since [Lk(o*, DM)] =0 for o*coM. But
t.(DM) is a cycle, and so ot (M, = —ott,(M,) lies in Ci_,(0M; 07 ;_,).

Let ¢ be a (k — 1)-simplex of oM, and o, - --, 0, the k-simplexes of
M — oM with 7 as a face. Construet W.— UJizi Int(V,) as in Lemma 4.1.
Then W, — U:ziInt(V;) is a PL F#-pseudodisc bounding Lk(z, oM) U
r_, Lk(o,, M), and so the coefficient of ¢ in off,(M) is [Lk(r, 0M)]. Finally,
for tcQ, Lk(r, dM) = S*** since @ is a PL-manifold with collared
boundary, so that the coefficient of = in f,_,(6M) is 0.

Thus Z,(M) defines a homology class (M, Q) € H{(M, oM — Q; 6;_x_,).

THEOREM 4.4. If p (M, Q)=0, then there exists a strong S -resolution
f: N— M, rel(@), so that dim(S(N)) < k.

Proor. Write DM=M, UM, M,=M,=M, M,N M,=oM. If p,(M, Q)=
0, then since Hi(M — Q, oM — Q) = H.(M, oM — @), there exist d;e
Ciii(M; — Q; 07 %), 1 = 1,2, ceCi(oM — Q; 6;_,_,) so that (M, = od, +
(=1)’c. Therefore, [Z,(DM) = o(d, + d,) and by Theorem 4.2, we may
construct a strong .#-resolution F: W— DM with dim(S(W)) < k. But
since d, — d, e Ci. (DM — Q; 6,7,_,), the preliminary modification of DM
does not touch Q, and so F'is a resolution rel(Q). The strong .#-resolution
f is now obtained by letting N = F~\(M,, D= F|N.

Let 0, : Hi(M, oM — Q; 6_,_,) — Hi_(0M — Q; 67_,_,) be the boundary
homomorphism, and j:oM — Q — oM the inclusion. By Lemma 4.3, we
have

PROPOSITION 4.5. j,0,m(M, Q) = pt,_,(0M).

We now show that the obstructions y, are natural. Let M" be closed
and suppose M, M? a PL .#-manifolds embedded as full subcomplexes
of M so that M = M,UM, and M, N M, = oM, = oM, is a PL-manifold.
Let j,: M, — M be the inclusions.

PROPOSITION 4.6. (t,(M) = (3.)«(t4(M,, 0M,)) + (J2)i(thu(My, OMy)).

The proof follows immediately from the fact that f, (M) = g (M,) +
2.(M,). There is a similar result if oM, oM, are not PL-manifolds.

Let f: N— M be a map between closed PL .# “-manifolds. We say
that f is orientation-preserving if f+xI'y = I'y. Such a map induces a
homomorphism on homology with twisted coefficients, f, : HL(N)— HL(M).

Let f: N— M be an orientation-preserving strong .#-resolution so
that f: N— M and f': N— M’ are simplicial and dim(S(C,)) = &k + 1.
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THEOREM 4.7. f, pt(N) = p,(M).

PrROOF. Let o, be a k-simplex of M and {0, ---, d,} the set of k-
simplexes of N so that f(g,) Cog,. Choose an orientation for St(s, M)
and give St(o,, N) the induced orientation.

Since f is a strong .#-resolution and dim(S(N)) <k, D(f, o, is an
Z-pseudodisc bounding a PL . (n — k — 1)-sphere 3. By the proof of
Lemma 4.1, D(f, 0,) may be modified to obtain a PL .#-cobordism W
between X and #%;_,0D(o,, N') = ¢._, Lk(o,, N.) Furthermore, since
dim(S(C,))=k+1, Lk(o,, C;)—Int(D(c,, f)) is a PL-manifold. By Proposition
2.5, C; is a PL .#“manifold and Lk(o, M) = 0D(o,, M’') and ¥ are PL .#-
cobordant.

Let o, ---, 0, be the k-simplexes of N so that f(o,) & 0, 0=s < 7.
If s> 0, then it follows that Lk(o, M) = S *': Suppose wv, v, are
vertexes of 0, so that v,¢ f(g,), v, € f(s). Then Lk(ow, C;) is a PL-
manifold containing wv,x0D(o,, M) so that oD(g,, M) is a PL (v — k — 1)-
sphere. This also shows that [Lk(s,, N)] =0 for 1 =1, -+, s.

It is easily checked that the orientations involved are correct, and
we have

.:%v Lk(o;,, N )]00

1=8-41

£ 1Lk, Nlo, ) = 3% [Lk(, NI(£0) = |
= 4 Lk, W) Jo, = 3]0, = [Lk(o,, M), .

Doing this for every k-simplex of M (retaining the orientations on
St(o,, M), St(o,, M)), we get that f,[(N) = f,(M).

There is a corresponding result for resolutions relative to a codimension
0 submanifold of oM. Theorem 4.7 implies the converse to Theorem 4.2:

COROLLARY 4.8. If Z.(M)+ @, then p (M) = 0.

5. A product structure theorem. Let M be a compact PL & -
manifold with oM a PL-manifold. We have the following generalization
of the product structure theorem of Edmonds and Stern [10]. Let J =
[—1,1].

THEOREM 5.1. Let f: N— M x J* be a PL .“~resolution rel(oM x J*).
Then there is a PL . F-resolution rel(oM) f,: N,— M, where N, is a PL
submanifold of N with trivial normal block bundle, and a proper PL
embedding h: M — M x J*, isotopic to the standard embedding M — M X
0 so that
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N-Lo M« g

],

No e M
commutes.

PrOOF. The proof is identical to the proof of Theorem 3.1 of [10]
(treating the case &% = 27°), which we give for completeness sake.

Assume f is simplicial and M x J** x 0 is a full subcomplex of
MxJ*. Let V=NMxJ*"'x0,(MxJ*)) and W= f"%(V). By [7], W is
a PL-manifold, and since f is a strong .F#-resolution, so is f|W:W—7V.
The boundary of V has two components; let M. be one of them, and
N, = fY(M,). Since N, is a boundary component of a codimension 0
submanifold of W, the normal bundle of N, is trivial.

By the theory of derived neighborhoods, there is a proper PL-
homeomorphism ¢ : (M x J**, M X J* ) — (M., M. N (0M x J*) so that
h, defined to be the composition M x J** 4, M,c M x J* is isotopic to
MxJP>MxJt x 0cM x J*. The result follows by letting f, =
¢ 'o(f|N,) and proceeding by induction.

We will need a variant of this result for our classification theorem.
Let M be a PL %-manifold and x,€ M. A based F-resolution is a PL
F-resolution f: N — M so that for some subdivision M’ of M, f: f*(St(x,,
M')) — St(w,, M') is a PL-homeomorphism. Two based .#-resolutions f,, f,
of M are (based) concordant if there exists a concordance F:W — M x
I between f, and f; so that for some subdivision (M x I)’, F': F~{(N(x, x I,
(M x I))— N(x, X I, (M x I)) is PL-homeomorphism. Let 2. (M, x,)
denote the set of concordance classes of based .Z-resolutions of M.

THEOREM 5.1 (based version). Let f: N—MxJ* be a PL “F-resolution
rel(0M x J*) based at (x,, 0). Then there is a PL F-resolution f,: N,—
M rel(oM), based at x,, satisfying the conclusion of Theorem 5.1.

The proof is the same, assuming M X J* is subdivided so that
F 1 (St((2,, 0), M x J*) is a PL-homeomorphism.

LEMMA 5.2. Suppose # 1is a connected, coconnected homotopy class
and there exists am m so that 67 =0, ¢+#n. Then for any PL -
manifold M and x,€ M — S(M), the natural map #B-(M, x,) > F+ (M)
18 bijective.

PrROOF. We show surjectivity; injectivity follows from the appropriate
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relative argument. Let f: N— M be a simplicial PL .F-resolution and
U = St(x,, M). Since U is a contractible PL-manifold, and 47 = 0 for
1 # n, any PL Z-resolution of U is concordant to 1,. (If f:V—U is a
PL #-resolution, the only obstruction to such a concordance lies in
H, . (UxIUC, oU X TUC,; 05) = H,_,(U X I,oU X I,6;)=0 by
Theorem 4.2, where m = dim(M).)

Let F:W—U X I be a concordance from f|f*(U) to 1,. Define
P =N x ITUW, identifying f(U) x 1 and FY(U x 0), and G: P— M X
IUUXIS MxI by G|NxI=fx1;,, G|W=F. Then G is a concordance
from f to the based .#-resolution G|G™(M x 1). By [15], the condition
of the lemma holds if % = £ or o7

Let M be a compact PL “-manifold so that oM is a PL-manifold.
We define 2. (M, oM) (F.(M, oM, x,), x,€ Int(M)) to be the set of con-
cordance classes of PL .#-resolutions (based at x,) of M rel(oM), with
concordances to be relative to oM x I.

If f:N—M is a PL “Z-resolution rel(0M), then fx1,: NxJ—>MxJ
is a PL #-resolution rel(oM x J), based at (x, 0) if f is based at wx,.
It follows easily that this construction yields a well-defined map &* : 2 (M,
oM, xy) — B(M x J, oM x J, (x,, 0)).

PROPOSITION 5.3. If F# 1is a conmnected, coconnected homotopy class,
then e* : B-(M, oM, x)) > B (M x J, oM X J, (x,, 0)) is injective.

Proor. Let f,:N,—~ M, ¢=0,1, be based #-resolutions rel(oM)
and F:P—> M x J x I a based concordance between them. Assume
M x J x I is subdivided so that F' is simplicial and M x J x {0, 1}, M X
{(—1,1} x I, M x {—1, 1} x {0, 1} are full subcomplexes.

Let W= C;,UMX IUC,, with the obvious identifications. Since &~
is a connected, coconnected homotopy class and f;, f, are PL .&#-resolutions
rel(oM), W is a PL .-manifold with ¢ W a PL-manifold. We have P =
F MxXxJx0)XxIUPUF*MxJx1) xI and define F:P->W x J
by F|P=F and F|F(M x J x i) equal to the natural projection to
Cy,. Clearly, F is a based .“~resolution rel(@W x J), and by Theorem
5'1& there exists a based .Z-resolution F,:P,—Wrel@W). The map

POQWLM x I, where 7w is the natural projection, is then a based
concordance between f, and f, (rel(0M)).

We generalize the map ¢* as follows. Let & be a PL J*bundle
over M,Aand f: N— M a PL _#-resolution rel(dM) based at x,. Define
EX(f) = f: E(f*¢) — E(¢); clearly &*(f) is a PL .#-resolution, rel E(&|oM),
and is based at i(x,), where i: M — E(£) is the zero-section. It follows
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that there is a well-defined map &* : 2. (M, oM, x,) > 2. (E(&), EE|oM),
1(20))-

THEOREM 5.4. If F s a connected, coconnected homotopy class, then
&* 4s imjective.

ProOF. Suppose 7 is a PL J'-bundle over E(¢), and let 7-& denote the
composite bundle over M. Obviously, (9:&)*(f) = 9*<&*(f) : E(f*(n-8)) =
E(f*n) — E(n-¢) = E(x). Choose 7 so that 7@ p*¢ is trivial, where
p: E(&) —> M is the projection. Then p*(9-&) = p*(t*n P &) = P p*¢ is
trivial, and so 7o& = ¢*+'. By Proposition 5.4, (7:£)* = n*o£* is injective,
and so £* is injective.

In particular, if M is a closed PL manifold and v, is the normal
bundle of M in some Euclidean space, we have:

COROLLARY 5.6. vi: . Z.(M, x,) > FB(E(vy), %,) 18 injective.

The maps ¢* do not appear to be bijective in general, as they are
for & = 27, [10], but we do have the following important special case:

ProrosiTION 5.7. .72 (D", 0) contains only one element.

Proor. Let f: N— D" be a PL #-resolution and U a PL n-disc in
D" containing 0 so that f(U)—U is a PL-homeomorphism. Let D? =
{xeR":||z|| <2} and define F,, F,: D! x I - D x I by

(L + t)a, t) x| < 1/2
Fi(z, t) = {(1 — )z + ta/l[z]], t) 12 = ||z]|=1

(x, t) 1= =
Fys, t) = {((1 + t/2)x/||x ||, t) e[l =1+ t/2

(z, t) 2] =1+¢2.

Since F\(x, t) = Fy(x, t) = (x, t) for ||z|| = 2, F,oF, induces a map
F.(Dz/oD?) I— (DyloDy) x I.

Let N, = NUOAN x I and extend f in the natural way to an .#-
resolution fy: N, — Dy (fi(x, t) = (1 + t)f(x) for x€dN). Let ¢: D} — D7
be a PL-homeomorphism taking U to {x:||z|| < 1/2} that is the identity
on D — D*. Let G be the composition

(NJaN x 1) x* 1222, (prjapry x 122, (DejaDs) x 12 (D2jaDz) < I .

We may assume that G is simplicical on (N, — 0N x 1) X I and that D™ x I

is a full subcomplex of D? x I.
Let W =G (D" x I); by [T], G|W:W — D" x I is a PL #-resolution,
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and clearly G™(0 x I) > 0 x I, G7Y(D"* x 1) - D* X 1 are PL-homeo-
morphisms and G|G ™YD" x 0) = f. Therefore, f is based concordant to
a PL-homeomorphism ¢: G™%(D" x 1) — D" X 1. The proof is completed
by noticing that the mapping cylinder of g provides a based concordance
from g to 1.

Note that this proof also shows that é?f(Do”, 0) has cardinality 1.
The proof of Proposition 5.7 can be generalized to prove the following
relative result, which we leave to the reader.

PROPOSITION 5.8. Let f: M — J™* be a PL F-resolution based at 0,
and F:W — J™ a based concordance between f and itself. Then there
s a PL F-resolution G:V — J™* so that oV =WU M X {—1, 1}) x
JUMXJ and GIMXJ=fx1,GIW=F,G|Mx{xl}xJ=fx1,
and G]G0 X J?): GY0 x J*) — 0 X J* is a PL-homeomorphism.

6. The classification theorem. Throughout this section, assume that
& is a fixed connected, coconnected homotopy class. All spaces will be
assumed to be pointed (the basepoint of X will be denoted z,), maps
basepoint preserving and homotopies relative to the basepoint. Let .2,
denote the category of pointed sets.

Let _#, denote the category of compact, pointed PL n-manifolds and
codimension 0 embeddings. Define a contravariant functor Z*:_~, —
Fs, as follows: If (M, m,) € Ob(_+#,), let 22 (M, my) = F-(M, m,), with
basepoint 1, (usually denoted 1). If (1:N — M)e Mor(_ ), let
¥ BM(M, my) — B™(N,n,) be defined by *(f):i e f|f (1 (N)):
fYi(N))— N where M is subdivided so that f is simplicial and #(N)
is a full subcomplex. If F:W — M x I is a (simplicial) concordance be-
tween f, and fi, then (i X 1,)"F|F ™ (i(N) X I) is a concordance between
+*(f,) and 1*(f.), so that +* is well-defined.

To get our classification theorem, we must first stabilize 2. For
s=0, let F,(M, m,) = 22L& (M x J*°, (my, 0)). Define an equivalence
relation ~ on F(M, m,) = [l,e-, F,(M, m,) by a~ B, aeF,(M, m,), e
F,(M, m,), if there exists an » = max{s, t} so that (¢ ")*a = (¢*)*B.
(Here ¢&* denotes the appropriate trivial bundle. See §5.) Define
BO(M, my) = F(M, my)|~.

R LEMMA 6.1.A A morphism i:N—M of _#, induces a map 1*:
RBI(M, my) —> B(N, n,), depending only on the isotopy class of 1.

PROOF. Let £ be a PL J*bundle over M, and 1 : E(§|N)— E(&). It
is easy to verify that i*o&* = (§|N)*oi* : B (M, m,) — B2 (E(1*¢), e,),
and it follows that <*: ‘%'?;”(M, me) — B (N, m,) is well-defined.
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Let F: N x I—- M x I be a simplicial isotopy between 4, and 7,. If
f:W— M is a simplicial based .F#-resolution, then clearly (f x 1;)|(f X
1)"(F(N x I)) is a concordance between i7(f) and }(f) and the result
follows.

Let _/7;? be the category with objects the same as _#,, but with
morphisms replaced by isotopy classes of embeddings. Define a covariant
functor T,: 22— #%, by T.M, m)) = (M X J, (m,, 0)), T.(%) =1 X 1,.
This defines a direct system of categories, and we let .2 = li_rg A

By Lemma 6.1, 2™ defines a contravariant functor _Z°— .%24,, and
clearly, Z*oT, = ™. Therefore, there is an induced functor
52’;— L A — Pk,

Let &, denote the category of finite pointed simplicial complexes
and simplicial maps. Let _# :%, — .# be the regular neighborhood
functor, as in [25], sending an object X to the regular neighborhood of
X under some embedding of X into the interior of some cube I”*, and a
simplicial map f:Y — X to a codimension 0 embedding defined as follows:
Let M; be the reduced mapping cylinder of f, identifying (y,, t) with ,.
Let M be a regular neighborhood of M, in I* and N a regular neigh-
borhood of ¥ in M. Then M\, M;\,X and so M represents .+ (X) by
[12]. We define N(f) to be the isotopy class of the inclusion Nc M.

Define a contravariant functor H:%, — $%4, by H = %,ﬂ/lﬂ’ We
first show that H satisfies the axioms of Brown [6].

PROPOSITION 6.2 (Homotopy axiom). Let f,9:Y — X be homotopic.
Then H(f) = H(g).

Proor. Let F:Y X I— X be a homotopy between f and g, and
define F:Y x I— X x I by F(y,t) = (F(y, t),t). Let M3 be M; with
(4o, t), 8) identified with (x,, t). Embed I, M, as subcomplexes of I™ x 0,
I™ X 1, and assume m is large enough so that these embeddings extend
to an embedding of /7 in I™'. Let W be a regular neighborhood of
M, in I+, and V a regular neighborhood of ¥ x I in W.

An element «a of H(X) is represented by a based .#-resolution ¢ : N —
W, since W represents . (X X I) = 4 (X), and ¢|¢ " (WNI" X 1)
represents H(f)a if ¢ = 0 and H(g)a if © = 1. The concordance ¢|¢ (V):
¢ (V) —V then shows that H(f)a = H(g)a, since V N (I™ X ) is a regular
neighborhood of ¥ and we may choose m large enough so that V =
(VNn{I™ x 1) X I

Combining this with Proposition 5.7, we have:
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COROLLARY 6.3. If X 1is contractible, then H(X) = {1}.

Let Z be a finite simplicial complex, which is the union of two
subcomplexes X, Y, with basepoint in the subcomplex A =XNY. Let
w1 A—>X, 12 A>Y, j:X—Z, k:Y— Z be the inclusions.

PROPOSITION 6.4 (Mayer-Vietoris axiom). Let a € H(X), B€ H(Y) and
suppose H(i)a = H(i,)8. Then there exists an element v € H(Z) with
H@)YY = a and Hk)y = 8.

PROOF. Let Z be embedded as a full subcomplex of the interior of
I™, and let M, N be the regular neighborhoods of X, Y as constructed
in Proposition 1.8. Then P=MNN, Q=MU N are regular neighborhoods
of A,Z. Let a, 8 be represented by simplicial based .&# -resolutions
f:U—->M, g:V— N. Since H(i,)a = H(i,)8, there is a concordance
F:W— P x I between f|fY(P) and g|¢g~(P) by Theorem 5.1.

Define T=U x IUW UV x I|[F Yz, X I), identifying f~%(P) X 1 with
F(Px0) and ¢g(P)x 0 with F"*(Px 1), and Q=M x IUP X IU
N X Iz, x I with similar identifications (regarding z, x ICc P x I). Tkie
functions f x 1, F and g x 1, then define a based .#-resolution G: T — Q.

Let h:Q—QxI be a basepoint-preserving PL-homeomorphism taking
MxIUPX][0, 1/2] onto M x I. Define vye H(Z) to be the equivalence
class of hoG.

We show that H(j)y = a. By construction, H(j)y is represented by
¢ =hoG|G (M x TUP x [0,1/2])) and it is easily checked that the com-
position U x I* U F(P x [0, 1/2]) X Iﬁ—l’ZUF—X—lﬁ MxI*UP:. |0,1/2] x
I kXL M x I is a concordance between f x 1, and ¢. Similarly,
Hk)yy = B.

This theorem and Corollary 6.8 imply the following result, which we
will need in order to show that H(X) has a natural abelian group
structure. For convenience, we let a|Y denote H(t)a if ©:Yc X and
a e H(X).

COROLLARY 6.5. Suppose Z =X UcA, XNcA=A, and aecHX).
Then there exists v e H(Z) with v|X = a if and only if a|A = 1.

Let X and Y be objects of &, and let : X—-X VY, 7:Y—-XVY
be the inclusions. Define H(s, j): HX VY)— H(X) x H(Y) by H@, j)a =
(@] X, a]Y).

PROPOSITION 6.6 (Wedge axiom). H(z, j): H(X VY)— H(X) x H(Y)
18 a bijection.
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ProOOF. We construct an inverse @: HX)x H(Y) > H(XVY) to
H(i, 5). Consider X X ¢, 2, X YT X VY. Since X X y,Na, X Y = (@, %),
HX xy,Nxz, xY) = {1} by Corollary 6.3. Let a e H(X), B€ H(Y). Then
by Proposition 6.4, there exists a ve H(X VY) with HG@)y = a, H(G)y =
B. Pick one of these to be @(a, 8). Clearly H(i, 7)o@ is the identity.

Suppose v€ H(X VY) is represented by G: 7T — @ with f=9 F=
f x 1, (using notation as in the proof of Proposition 6.4). Then
H(i, j)o@(7) is represented by G': 7" — @', where G' =G on G™(M x ITU
N x I) and is some concordance F' on W. Since P is a regular neighbor-
hood of a point, P=J™, and G and G’ are concordant by Proposition
5.8.

By Propositions 6.2, 6.4 and 6.6, we have:
THEOREM 6.7. H is a homotopy functor.

Since H is not defined for all simplicial complexes, we cannot apply
the results of [6]. Let . be the category of abelian groups. We show
that H is a functor from &, to .&Z, which implies H is representable
by [1].

To do this, we need still another condition on our class .. We say
that & is representable if # 1is a connected, coconnected homotopy
class satisfying the following product axiom: If 4,, 4, are F-pseudodiscs,
then 4, X 4, is an Z-pseudodisec.

If # is representable, then we may define a product H(X) x H(X)—
H(X) as follow: Let a, a,< H(X) be represented by based .F-resolutions
fi:N,—-M,i=1,2. It follows from the product axiom that f, X f;:
N, X N,—>M x M is a based .F-resolution. Since M is compact, M X
MNMx XN\ X x X, and so M x M represents a regular neighborhood
of X x X. Therefore f, X f, defines an element a, X a,e H(X x X),
which is easily seen to be well-defined. We now let a,-a,c H(X) be
A*(a, X ) where 4: X — X x X is the diagonal. This product is natural
and 1 acts as an identity.

THEOREM 6.8. H(X) has a natural abelian group structure.

Proor. We need only show that every element in H(X) has an
inverse. Suppose first that X is the reduced suspension of a complex
Y. Let v:X— XV X be the standard comultiplication and T: X —> X
the standard reflection. Define f: X V X — X to be 1; on the first copy
of X and T on the second, and let p;: XV X— X,7 =12, be the

composition X V XCc X x X 3 X. Fora, Be H(X),leta v ge HX V X)
be H(p,)(a)- H(p:)(B).
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First notice that o v H(T)a = H(f)a by Proposition 6.6 since

H(i, j)a vV H(T)a) = H(1, 3)(H(p)(@) - H(p:> T) ()
= H(i, j)o H(p,)(a) H(i, 7)o H(p,)o H(T)(a)
= H(p,oi)(@)- H(p,o5)o H(T) ()
= (a, 1)-(1, H(T)(a)) = (a, H(T)(0))
— H(, j)-H(f @) .
Since fov is null-homotopic, we have H(»)(a Vv H(T)a) = 1 by Propositions
5.7 and 6.2. Therefore
1 = Hy)e V H(T)a) = H(v)(H(p,)(a)- H(p,)> H(T)()) (as above)
= H(p,ov)(@)- H(p,ov)o H(T)(@) = a- H(T)ex ,
so that a™ = H(T)«.

Now assume that X is a finite simplicial complex of dimension =.
By the case above and Proposition 6.2, H(X) is a group if » =0 or 1.
Assume the result for complexes of dimension n — 1.

Let a e H(X) and 7: X" — X the inclusion of the (» — 1)-skeleton.
By the induction hypothesis, there is an element B,e H(X"") so that
H(@)a) -8, =1. Let o be an n-simplex. By Corollary 6.3, H(¢)(a)|d =1
and so B,/ = (H(#)a)-By)|6 = 1. Therefore, by Corollary 6.5, 8, may
be extended over ¢. Doing this for each nm-simplex, there exists a B8, €
H(X) so that H(i)(B) = B,.

Let Y =X Ue(X*?") and k: X —Y the inclusion. By Corollary 6.5,
and the suspension case, there exists an invertible ve€ H(Y) so that
H(k)r = a-B,, since H(t1)(a-B,) = 1. Define 8 = B,-H(k)(v™*). We have
a-B=a-B-(Hk)v)™* =1, and so H(X) is a group.

This method of constructing inverses is due to Milnor [22]. By
Theorems 6.7 and 6.8 and Adams [1], we have:

THEOREM 6.9. Let F be a representable class. Then there is a
wealk H-space R, and a natural equivalence H(X) = [X, 2 -].

Let M be a closed PL-manifold, x,€ M, and # a representable clasi.
Define a map @ : 2. (M, x,) —[M, R.-] by the composition .7 . (M, x,) 2>
RB(E(vy), €) — L%}.J’(E(”M), ) — H(M, x,) — [M, R/—]

CLASSIFICATION THEOREM. 9 :.%2.(M, x,) — [M, R.-] is injective.

Proor. By Corollary 5.6 and Theorem 6.9, @ is the composition of
injective maps.

Appendix. /-acyclic resolutions. A compact n-dimensional poly-
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hedron M is called a A-homology manifold if H,(Lk(x, M); A)=H (S"*; A)
or 0 for every x € M; oM = {x e M : H,(Lk(x, M); A) = 0} is an unbounded
A-homology manifold of dimension n — 1.

LEMMA 1. M is a PL Jzi-manifold if and only if M is a A-homology
manifold.

Proor. Clearly every .57 ;-manifold is a /4-homology manifold. For
the converse, assume oM = &, the bounded case being similar. We have
M is a PL .97%-manifold if and only if H,(Lk(a, M); A) = H,(S"*%; A)
for each i¢-simplex «a, if and only if H, (Lk(x, M); A) = H,(S**; A) for
each xe M, since S '«Lk(a’, M) = Lk(b,, M').

A proper PL-surjection f: N— M between A-homology n-manifolds
is called a A-acyclic resolution if H,(f*(x); 4) = 0 for each xe¢ M and
f|1ON: 0N — oM is also a A-acyclic resolution.

LEMMA 2. f s a strong 7 i-resolution if and only if f is a A-
acyclic resolution.

The proof is immediate from Proposition 5.4 of [7] since any A-
acyclic, PL .2/%-manifold is an .o/ -pseudodisec.

LEMMA 3. 7% is representable.
The proof is clear from Mayer-Vietoris and Poincaré duality.
Define &2, = #,, and Ry = R, and let BH(K) denote the clas-

sifying space for stable 4-homology cobordism bundles of [3], [4]. Let
f: N— M be a A-acyclic resolution between PL-manifolds.

LeMmMA 4. Ty and f*T, are stably isomorphic as A-homology
cobordism bundles.

ProOOF. Let p: N x I — C,; be the projection. By Lemmas 2 and 3,
and Proposition 2.5, C; is a 4-homology manifold, and p*T, ; defines the
desired isomorphism between Ty @ ¢' and f*T, P €.

Therefore f defines an element of [N, HK/PZ]. Define T(f) to #])og
the image of [f*T,] under the maps [N, HK/PAI:]H[NK, (HK/ﬁ/)K] =
[My, (He/PL)] = [M, (Hg/PL)]. It is easily checked that T induces a
natural transformation H — [, (Hy/PL);] (as functors to .°#). Therefore:

PROPOSITION 5. There is a map ¢: Ry — (Hy/PL)g of weak H-spaces.

PROPOSITION 6. 7,(Ry) contains a subgroup G isomorphic to 5 so
that 6,]G: G — m,(Hx/PL) ® 4 = 45 ® A is the localization map.



516 G. A. ANDERSON

ProOOF. Define f: X — 7, (Rg) by f[2] = @(g), where g: ¥ — S™ is the
map of Lemma 2.1; f is well-defined by an argument similar to the one
used in Proposition 2.4 of [21]. It is clear that f is a homomorphism
(using the usual homotopy group multiplication on 7,(Ry)), and f is
injective by the Classification theorem. The remainder of the proof
follows from the proof of Theorem 3.6 of [3].

COROLLARY 7. Ry ~ Hy/PL if and only if K= @.

Proor. If K = @, then it follows immediately from [10] that R ~

HK/PNf/. If K+ @, then %, and so 7,(Ry), contains a subgroup isomor-
phic to 4/Z @ A/Z by [3] and the proposition. But by Theorem 6.1 of
[4), 7 (Hg/PL) is isomorphic to 4/Z& A where A is a finite group, so

that m,(Ry) % 7u(Hy/PL).
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