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RESOLUTIONS OF GENERALIZED POLYHEDRAL MANIFOLDS
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Introduction. This paper is concerned with the existence and classi-
fication of resolutions of polyhedra, satisfying a certain link condition, to
PL-manifolds. The starting points of this theory are the existence theory
of Cohen [9], Martin [18] and others for homology manifolds and the
subsequent classification theorem of Edmonds and Stern [10]. The purpose
of this paper is to generalize these results to other classes of manifolds
(e.g. rational homology, Euler).

An obstruction theory for blowing up singularities of geometric
cycles has been described by Sullivan [27] and our obstruction theory is
modeled on this. Resolutions are classified via a space constructed by
the theory of Brownian functors.

Generalized polyhedral manifolds are defined as follows. Let &~ be
a collection of compact polyhedra containing S° and closed under link
and join. Elements of ά^ of dimension n are called ά^ ^-spheres;
polyhedra of the form Σn — St(x, Σ)y Σ e ^ 7 are called &" w-pseudodiscs.
The elementary theory of .^manifolds parallels the theory of PL-
manifolds, using .^spheres and pseudodiscs instead of PL-spheres and
discs. Standard topics, such as regular neighborhoods, handle decomposi-
tions and orientability, are developed in §1.

An ^resolution is defined to be a simplicial map whose dual cells
are ^^pseudodiscs. These are discussed at length in §2. In §§3 and
4, we develop the obstruction theory for finding an .^resolution of an
^manifold from a PL-manifold.

In §§5 and 6, we construct a space which classifies concordance classes
of ^resolutions of PL-manifolds (with certain conditions on &~). This
is done using the product structure theorem of [10] and Adams' repre-
sentability theorem [1].

1. Generalized manifolds. Let ^ = U S U ^ > where each ^ is
a set of PL-isomorphism classes of ^-dimensional compact polyhedra
satisfying
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( i )
(ii) if Σ e ^ and xeΣ, then LJfcfo Σ)

and (iii) if Σ1 e J ^ and J 2 e j ^ l , then
We interpret "Ke^~" to mean that if is a polyhedron whose PL-

isomorphism class is in J^. The set &~ is called a manifold class.
The elements of . ^ are called the &* n-spheres. The cone cΣ of an

,^(w — l)-sphere is called an ^ n-disc, and a polyhedron Δ of the form
J7 — St(x, Σ), Σe J^, xeΣ, is called an ^ n-pseudodisc; dΔ = Lk(x, Σ),
Int(zf) — Δ — dΔ. Note that an &* w-disc cΣ is an &~ w-pseudodisc, since
cΣ = S°*Σ - St(l, S°*Σ).

A polyhedron M is said to be a PL ^ ^ n-manifold if Λf has a sub-
division M' so that each Lk(x, M') is either an J ^ (n — l)-sphere or
(n — l)-pseudodisc, and dM = {x e MΊ Lk(x, M') ί J^-i), the boundary of
M, is a PL ^ * ( n — l)-manifold without boundary.

We list some important examples of manifold classes:
(1) ^V: Define ^Vn = {SΛ}; clearly ^ / c ^ for any manifold class

and a PL ^V ^-manifold is simply a PL ^-manifold. (The symbol ^
is usually omitted when JF~ — 3?/.)

(2) ,%V. Let if be a set of primes and A = Z[l/p: p 6 K] c Q.
Define ( j ^ ) n inductively by {^fκ\ = {S0}, (£έfκ)n = {Σ: Lk(x, Σ) e (£grK)*-19

H*(Σ; Λ)^H*(Sn; A)}. A PL i^-manifold is usually called a Λ-homology
manifold.

( 3) *κ: As in (2), let {*κ\ - {Sn} n - 0, 1, 2, ( ^ ) n = {Σ e (^g^)Λ:
Lfc(a?, 20 e (^)n_i, TΓ^I1) = 0}, n ^ 3. A PL ^-manifold is called a A-
homotopy manifold.

(4 ) g7: Define ĝ 0 = {S0}, ^ w - {Σ: Lk(x, Σ) e &u_u X(Σ) = 1 + (-l) }.
A PL ^-manifold is called an Euler manifold. (See [11], [26], [28].)

(5) ίf(2): Define gΌ(2) = {(S°Y : ί = 1, 2, •}, g^2) = {I7: Lfc(a?, 20 e
g '̂Λ, Z(Λf) Ξ 0mod(2)}. A PL g7^-manifold is called a mod(2) #wίer
manifold. By [26], any real algebraic variety is a PL g*(2)-manifold.

Clearly, if ^ c ^ ' are manifold classes, then a PL _^manifold is
a PL .^'-manifold. Also, if Δ = Σ — St(x, Σ) is an J^ w-pseudodisc, then
Δ is a PL .J^w-manifold.

LEMMA 1.1. // Λf α^d N are PL J^-manifolds with collared bounda-
ries, then M x N is a PL ̂ manifold with boundary M x 3JV U 3M x N.

PROOF. Let (x, y)eM x JV. Then

IrΛ((aj, 2/), Mx N) = Lk{x, M)*Lk(y, N)

and is in &~ if a? ί 3ikί, ygdN by condition (iii) above. If x e dM, then
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Lk(x, M) = cLk(x, dM) since dM is collared in M. Therefore, if y £ dN,
Lk(x, M)*Lk(y, N) = c(Lk(x, M)*Lk(y, N)) is an J^disc, and if yedN,
Lk(x, M)*Lk(y, N) = cLk(x, dM)*cLk(y, dN) is easily seen to be PL-
homeomorphic to the star of a vertex of S1 in S^Lkζx, dM)*Lk(y, dN),
and so is also an

By a similar proof, we have:

LEMMA 1.2. If M and N are PL ^manifolds with dM = dN collared
in M and N, then ikfU N is a PL J^manifold.

We will need this result for manifolds without collared boundaries, and
to get this we must restrict our manifold classes.

A manifold class ^ is said to be connected if for each pair Δu Δ2

of ^n-pseudodiscs with dΔ1 = dΔ2, 4 U 4 6 ^ It follows that if ^
is connected, and M, N are PL ^^manifolds with dM = dN, then M U N
is a PL .J^manifold. Notice that all the manifold classes listed above
are connected.

Let M be a PL ^^manifold and K a compact subpolyhedron of the
i n t e r i o r o f M . D e f i n e a r e g u l a r n e i g h b o r h o o d o f K i n M t o b e t h e
simplicial neighborhood of K in some derived subdivision of M.

PROPOSITION 1.3. A regular neighborhood of K in Mn is a compact
PL J^~ n-manifold with boundary, unique up to ambient PL-isotopy
rel K.

PROOF. Assume M has been subdivided, and let N be the simplicial
neighborhood of K in M. Define Int(JV) to be the union of the interiors of
the simplexes in M that meet K and dN to be the union of the simplexes
in N that do not meet K.

For xeΙτιt(N), choose a simplex a so that xelnt(a) and a Π Kφ 0 .
Let v be a vertex common to a and K. Then St(v, N) = St(v, M), x e
Int(St(v, N)), and therefore Lk(x,N)e^l^. By [8], Theorem 5.3, dN

PL

is bicollared in M, and it follows that Lk(x, M) = S(Lk(x, dN)) and
PL

Lk(x, N) = c(Lk(x, dN)) for xedN. Therefore dN is a PL J^(n - 1)-
manifold and Lk(x, N) is an ^'^-disc. Thus N is a PL
Uniqueness follows from [8].

A handle of index q on a PL J^n-ms,mto\d M is an Jβ^n-disc Δ so
that Δ Γ) Ma dM, together with a PL-homeomorphism / : Δ\ x Δl~q -* Λ,
where 4 = cΣt is an ^ d i s c , i = 1, 2, so that f(Σx x Λ) = zf Π M. We
define a handle decomposition of M in the usual way.
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LEMMA 1.4. Let Mn be a compact PL J^-manifold. Then Lk{a, M) e
JK-i-i for each i-simplex a of Λf — dΛf.

PROOF. This follows easily by induction, since Lk(a\ Λf) e J^-x by
definition, and if a1 = v*al~\ then Lk(a\ Λf) = Lk(v, Lk(al-\ M)).

PROPOSITION 1.5. Let Mn be a compact PL ^-manifold. Then M
has a handle decomposition.

PROOF. Assume dM Φ 0 by replacing Λf by M — Δn for some n-
simplex Δn in Λf if dM = 0 . Let alf a2, , ak be the simplexes of
M — dM, arranged in order of non-decreasing dimension.

Let JV be a regular neighborhood of dM in the second derived Λf".
Let Ht = St(bβi, M")\ then M - NO H, U U Hk. Let Wo - N, W< =
W^ U H3. We have fl, = St(b«t, aϊ)*dD(ai9 M"), and therefore is PL-
homeomorphic to Dq*Lk(au M"), q = dim(αί). Let Σt = Lk(aif M") 6
^i_ f f_!. It follows that there exists a PL-homeomorphism f : Dq x cΣi—*
Hi so that /(D g x 2̂ ) = if, Π W*-!. Therefore, M has a handle decom-
position.

Let Mn be a compact ^manifold. We recall the classical definition
of orientability of [17]. The pair (Λf, 3Λf) is called an n-circuit if
H»(Λf, 3ikί; Z/2) = Z/2, generated by the sum of all w-simplexes of If; (Λf, 3Λf)
is a simple n-circuit if, in addition, every (w—l)-simplex of M— 3M is the
face of exactly two w-simplexes. By [17], if (M, dM) is a simple n-
circuit, then either Hn(M, dM) = 0 (in which case (M, dM) is called
non-orientable) or Hn(M, dM) — Z ((M, dM) is orientable) and each ^-simplex
σ may be oriented with sign ( —l)σ so that Σ (~ iYσ generates Hn(M, dM).

THEOREM 1.6. Suppose H0(Lk(a\ M)) = floCS*"*"1) /or eαc/i i-simplex
a of M- dM and HQ(Lk(a\ M)) = 0, HQ(Lk{a\ dM)) = HoiS^'2) for each
i-simplex a of dM. Then (Λf, 3Λf) is a simple n-circuit.

PROOF. First assume dM ~ 0 and proceed by induction on n. If
n = 0, 1 or 2, then Λf is a PL-manifold by the condition in the hypothesis.
Assume the result for n — 1. Then for each x e Λf, Lk(x, Λf) is a simple
(n - l)-circuit, so that ϋr

TO_1(Lfc(̂ , Λf); Z/2) = Z/2. The result now follows
by the usual proof in the ^ = £ί? case (e.g., [19], Theorem 5.3.3).
Compare Kato [13], Lemma 3.1.

If dMΦ 0 , then let DM denote the double of Λf. Note that Z>Λf
need not be an ^^manifold, but the proof above shows that DM is a
simple ^-circuit since for a simplex a of 3Λf, Lk(a, DM) = DLk(a, Λf).
Again by the first case, dΛf is a simple ^-circuit and it follows easily
that (Λf, dM) is a simple -^-circuit.
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Let us generalize the condition of Theorem 1.6 and say that (Λf, dM)
is a PL .^^-manifold, k = 0, 1, , n, if for each i-simplex a of M—dM,
Hά(Lk(a, M)) = H^S*-'-1) for j ^ k and for each i-simplex a of dM,

Hό{Lk{a, M)) = 0, Hά{Lk{a, dM)) = H^S*-*"2) for j ^ k. Thus a PL J ^ ( 0 ) -

manifold is a relative simple -^-circuit and a PL ^^w-manifold is an
^-manifold. A PL ^^-manifold M is orientahle if M and dM are
orientable as simple circuits. (Compare [24] and [27].)

A PL J^^-manifold M is said to be locally orientable if for each
x, Lk(x, M) is orientable. Note that Lk(x, M) is also a PL «^(0)-manifold,
and it follows easily that M is locally orientable if and only if each
Lk(a, M) is orientable.

Let Mn be a closed, locally orientable PL ^^(0)-manifold and π(M)
its fundamental groupoid. We can define a local coefficient system
ΓM:π(M)-*J&, by the usual correspondence x —> H^iLkix, M)). Let
Hl(M) denote the homology of M with respect to this local system. We
have the following partial Poincare duality theorem (compare Kato [14]).

THEOREM 1.7. // Mn is a closed, locally orientable PL ^φ)-manifold,
then H\M) = HLt(M) for i^n-k.

PROOF. Let Mό be the union of the dual cells of M of dimension
^j, D{σn~ι, M), I < i . Define Cs = H]{Mi9 Mβ_,) and dό: C3 -> C^ by the
composition H}(Mh Mά_,) --> H^M^) -> Hj-άM^, M, _2). By the proof of
Poincare duality for J^-manifolds, there is a chain isomorphism C*(M) —>
Cn_*. Since M is ^{k), it follows that J?/(Λfy, Mά^) = Oiί I > j or I <
min{i, fc}. By the proof of [19], Theorem 4.4Λ4, H^C*) = H](M) for
j ^ k. Therefore, for i ^ n - kf H\M) ~ H^C*) = Hi^{M).

There are corresponding statements concerning Lefshetz duality and
duality with coefficients in a ring which we leave to the reader to state.
We close this section with a characterization of 3-manifolds.

PROPOSITION 1.8. Let Mz be a closed, connected J^w-manifold. Then
M is a PL 3-manifold if and only if X(M) = 0.

The proof follows from Wall [28]; see also Seifert and Threlfall [23],
§60.

2. ^Resolutions. Let J^ be a manifold class and Mn, Nn PL J^
manifolds. A proper PL-surjection / : N-+M is said to be an ^-resolution
if for every xeM, there exist subdivisions N', M' so that / : N' —> Mr

is simplicial, x is a vertex of M' and the regular neighborhood N(f~\x), N')
of f~\x) in N' is an .^pseudodisc. If dMf dNφ 0 , we assume /1 dN: dN—>
dM is also an j^resolution.
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EXAMPLES. (1) J?~ — ά\ f is an /^-resolution if and only if each
f~\x) is contractible, and is called a contractible resolution ([9]).

(2) &~ = Sίfκ: f is an ^r^-resolution if and only if each
H*{f-\x)\ Λ) = 0, and is called a Λ-acyclic resolution ([16], [18], [27]).

( 3) &~ = gf: / is an gf-resolution if and only if each X(f~\x)) = 1,
and is called an Euler resolution ([16]); the case J^ = 2?(2) is similar.

We write N\M if there is an ^resolution f: N-+ M and N /\ M

if there is a sequence N = No, Nlf , Nk = M so that for each ΐ, Λ̂  \

ΛΓi+1 or Ni+1\N<.

LEMMA 2.1. Lβί i/e j^; . Then Σ\Sn.

PROOF. Choose x in the interior of an ^-simplex σ of Σ, and let A
be the complement of an open star neighborhood of x. Then A is an
^^pseudodisc and / : Σ —> 27A = S% is an .^resolution. (We may choose
/ to be PL by assuming dσ has a PL collar in Σ.)

LEMMA 2.2. If Δn is an J^pseudodisc, then Δn \ Dn.

PROOF. Choose x in the interior of an (n — l)-simplex of dΔ and
define A as in Lemma 2.1. Then A = Δ and Δ/A ~ Dn, dΔ/A n dΔ ~ Sn~\

Let M, N be PL .^manifolds and KdM a subcomplex. A map
f:N-+M is an ^resolution rel ( iθ if / is an .^resolution and
f\f-\K): f~\K)-+ K is a PL-homeomorphism. We define the symbols

N\Mre\(K), N/\Mτel(K) as before.

LEEMA 2.3. Let Δn be an ^-pseudodisc. Then Δn\c(dΔ)rel(dΔ).

PROOF. The proof is immediate by [20], Lemma 3.1.

LEMMA 2.4. Let M be a PL J^manifold. Then I U dM x I\M.

The proof is obvious.

We now consider two additional axioms for a manifold class:
is said to be a homotopy class if every compact, contractible PL
manifold is an ^^pseudodisc; JF~ is connected if for every ί e ^ and
^tt-pseudodisc Δ embedded as a full subcomplex of Σ, Σ — Int(J) is an
^pseudodisc. For example, άκ, ΣίfKy g

7, and g^(2) are connected homotopy
classes.

An .J^resolution / : Nn —> Mw is said to be a strong ^resolution if
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either n = 0 or, as in the definition of ^resolutions, each f\dN(f~ι(x), N'):
dN(f~\x), N') —> dN(x, M') is a strong ^resolution. Any J^-resolution
is a strong <5g^-resolution.

PROPOSITION 2.5. Let Mn, Nn be PL ^-manifolds and f:N-+M a
proper, sίmplicial surjection, where &~ is a connected, coconnected
homotopy class. Then f is a strong ^-resolution if and only if the
simplicial mapping cylinder Cf is a PL ^-manifold.

PROOF. Let An(f) denote the statement " / is a strong .^resolution"
and Bn(f) the statement "Cf is a PL ^manifold". We show that Cn =
Vf(An(f) <=> Bn(f)) is true by induction on n.

CQ: This is obvious since for x e M, f~ι(x) is its own regular neigh-
borhood and Lk(x, Cf) = f~\x).

(C»_lf A%(f)) => Bn(f): Assume / : Nn —> Mn is a strong ^^resolution.
To show that Cf is a PL ^manifold we need only show that Lk(x, Cf)
is an ^^pseudodisc for each vertex x of M.

We have N(f~\x)f N) = D(x, f) = NΠ Lk(x, Cf) by [7], and Lk(x, Cf) =
D(x, f) U C/o, where fo = f\ dD(x, f): dD(x, f) ~> dD(x, M). Since / is a
strong ..^resolution, f0 is also, so that Cfo is a PL JP'in — l)-manifold
by CU.

Since ^ ^ is connected, Cfo U Z>(cc, ilί) is a PL .^manifold, and in fact
an ^^pseudodisc since it is contractible and ά?" is a homotopy class. Again
by connectedness, Lk(x, Cf) U D(x, M)e^~n_1. Therefore Lk(x, Cf) is an
j^pseudodisc. (Cn_u Bn(f)) => An(f): Assume Cf is a PL ^manifold,
so that for xeM, Lk(xf Cf) is an ^^pseudodisc. As before, Lk(x, Cf) =
D{x, f) U C/o, and since D(x, f) is a PL ^^manifold, C/Q is also. By
Cn-U /o is a strong ^resolution.

Again, ^ " is a homotopy class, so that C/o U JD(aί, Λf) is an ^ ^
pseudodisc, and so D(x, f) is an ^^pseudodisc, since &~ is coconnected
and Lk(xf Cf) U Z?(a?, M) zJ^-i- Therefore, / is an ^^resolution. Since
each /o above is a strong .^resolution, so is /.

COROLLARY 2.6. // &~ is a connected, coconnected homotopy class,
then the composition of strong ^resolutions is a strong ^-resolu-
tion.

Let f:N->M be a strong .irresolution. We say that / is a PL
J^-resolution if N is a PL-manifold. Two PL ^^resolutions /<: Ni~+ M
i = 1, 2 are concordant if there exists a PL ^^resolution F : TΓ —> ikf x I
defining a cobordism between /i and f2. It is easily checked that con-
cordance is an equivalence relation.
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Let M be a PL ^ m a n i f o l d , and define ^V(ikf) to be the set of
concordance classes of PL ^^resolutions f:N—>M. Much of the remainder
of this paper is devoted to the following questions: Is &^(M) Φ 0 ?
(Existence of PL ^resolut ions.) If so, compute ^y(Λf) . (Classification
of PL ^resolut ions.)

3. Groups of PL J^spheres. Let &~ be a manifold class. Define
a PL Ensphere to be a closed, oriented PL manifold Σ that belongs
to ^ n . If Σl9 Σ2 are PL ^w-spheres, we say that Σl9 Σ2 are PL J^-
cobordant if there is a compact, oriented PL-manifold W with dW = Σ±\J
(-Σ2) so that cΣx U W[J cΣ2eJ^n+1.

LEMMA 3.1. If ^ is connected, then the relation o/PL ^-cobordism
is an equivalence relation.

PROOF. Suppose Wx and W2 are PL ^cobordi sms between Σlf Σ2 and
Σ2, Σ3. Then cΣι U W1 and W2 U cΣ3 are ^pseudodiscs, and so since
is connected, cΣ, (J W1 U W2 U c l V e ^ + i Therefore W1 UW2 is a PL
cobordism between 2Ί and ^

If ^ is connected, we let 0Λ~ denote the set of .^cobordism classes
of connected PL ^^^-spheres, ^ > 0. (See [3], [5] for the cases

PROPOSITION 3.2. 0,Γ is α^ abelian group under the operation of
connected sum.

PROOF. Let Σlf Σ2 be PL ^w-spheres, and σ1aΣ1, σ2aΣ2 top dimen-
sional simplexes. Then Σ1 — σu Σ2 — σ2 are .^pseudodiscs, and so
Σ^Σ2 = (2Ί — όri)U(^2 — &2)> identified along dσ1 = dσ2J is a ^w-sphere
since ^ is connected.

The PL ^^cobordism class of Σ1 # Σ2 depends in fact, only on the
PL ^ c o b o r d i s m classes of Σu Σ2. To see this, let Wu W2 be PL ^*-
cobordisms from Σu Σ2 to Σ[, Σ2. Choose simplicially embedded paths
alf a2 in Wu W2 joining a vertex in Σlf Σ2 to a vertex in Σ[, Σ'2, so that
aλ Π Σlf ax ΓΊ Σ[, a2 Π Σ2, a2 (Ί Σ'2 are singletons. Let Rl9 R2 be closed regular
neighborhoods of au a2 in Wlf W2 and define V1 = WΊ — (Irit (i2i) U
I n t ^ n 3WΊ)), F 2 = W2 - (Int(Λa) U Int(Λ, Π 3W2)). Then i7 = V, U F2,
with the obvious identifications, is a PL cobordism between Σλ # ̂  and
Σ[ # j ; . Finally, c(Σ1 # ̂ 2) U Z7 U c( j ; # JJ) is PL-homeomorphic to (c2\ U ^ U
o j - f j U (cΣ2 UW2U cΣ'2-τ2), where τx - c(a(^ Π ^ ) ) U R, U 0(3(^0 ^0), ^ =
c(3(i22 Π ̂ 2)) U R% U c(3(i?2 Π -?£))> and is therefore in J ^ + 1 , since it is a
union of 2 .^pseudodiscs along their common boundary.

Thus # defines an abelian semigroup operation on θξ~, and clearly Sn
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represents an identity element. We show that Σ #( — Σ) is PL .^cobordant
to Sn, which shows that θ« is a group. Choose x e Σ and y e Σ — St(x, Σ)
so that Lk(y, Σ)czΣ — St(x, Σ). Then (subdividing if necessary) Σ x
/ - (St(x, Σ) x I U Lk((y, 1/2), J x /)) is the desired PL j^cobordism.

COROLLARY 3.3. If Σ is a PL ^n-sphere, n > 0, and Σu •—, Σk

the connected components of Σ, then Σ and 2Ί # # 2^ are PL

cobordant.

Define a PL J^pseudodisc to be a PL-manifold that is also an
pseudodisc. Clearly, if Σn is an orientable PL ^ s p h e r e , then [Σ] = 0 in
ΘZ if and only if Σ bounds an orientable PL j^pseudodisc.

4. Existence theory for PL ^^resolutions. Let J^~ be a connected
coconnected homotopy class and Mn a compact connected locally orientable
PL «^{0)-manifold. In this section, we develop an obstruction theory to
determine when ,^^{M) Φ 0 . The methods are due to Sullivan [27] and
Cohen [9].

Define the singularity set of M by S(M) = {xeM: bLk(x, M) Φ 0};
it is easily seen that S(M) is a subcomplex of M. We seek to built a
PL ^resolution of M by constructing a strong ^resolution f:N—>M
with dim(STO < dim(S(M».

Assume dM = 0 and dim(S(Λf)) = k. Choose a fc-simplex σ0 and an
orientation of St(σQ, M). Let T be a fixed maximal tree in M. For
every fc-simplex σ of M, the local coefficient system of §1, the ori-
entation of St(σ0, M) and T determine an orientation of St(σ, M), and
so an orientation of Lk(σ, M). Since S(M) is /b-dimensional, Lk(σf M) is
a PL ^{n -k- l)-sphere. Define a chain μk(M) e C£(Λf; ^ . - 0 by jδfc(Λf) =
JfLfcίσ, M)](7, taken over all &-simplexes σ.

LEMMA 4.1. βk(M) is a cycle.

PROOF. Let τ be a (k ~ l)-simplex of M. For each fc-simplex σ with
σ > r, let ασ be the 1-simplex δσ6Γ of ikΓ'. Then Lk(σ, M)*baσ — ba<j is a
PL-manifold with boundary Lk(σ, M). Let β σ denote the boundary of
a PL-collared neighborhood of Lk(σ, M) in Lk(σ, M)*baσ — bUσ.

Define Wτ = Lifc(r, Af) - U*>rlnt(i2ff*&ασ). Then T7 is an oriented PL-
manifold with boundary equal to the disjoint union of the PL ^spheres
Lk(σ, M), σ > r. Let σu -, σr be a list of the Λ-simplexes with τ as a
face, and V, a regular neighborhood, in T7r — (dWT U Ui«^y)> °f a PL-
embedded path from a (single) point in Lk(σu M) to a (single) point in
Lk(σi+l9 M), i < r. (Here we need ikf to be a PL ^^mani f old, so that ft <£
n-2). Then T7r - UΓ=ϊ Int(y,) is a PL-manifold bounding #Γ=1 Lft(σ,, Λf).
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Since άΓ is connected and coconnected, and Wτ e ^\-k9 Wτ — \JΊZ{ Int( Vt)
is an J^pseudodisc. This implies that the coefficient of τ in dβk(M) is 0.

Define μk(M) e Hk(M; θn-k-d to be the homology class of βk(M). Our
main result is:

THEOREM 4.2. Let J^ be a connected, coconnected homotopy class
and Mn a closed, locally orientable PL *β~{0)-manifold with dim(S(M)) = ft.
Then there exists a strong ^-resolution f: N—>M, with άim(S(N)) < ft,
provided μk{M) = 0.

PROOF. First suppose βk(M) = 0. Then for every ft-simplex σ of
M, Lk(σ, M) bounds an oriented PL ^pseudodisc Vo. Let D(σ, Mf) denote
the dual cell of σ; we have dD{σ, Mf) = Lk(σ, M). Define iSΓby replacing
each σ*D(σ, Mf) in Mf with ά* Va9 with the obvious identifications. Clearly
άim(S(N)) < k, and we define f:N->M by collapsing the exterior of
an open PL collar of d(σ*Vσ) in σ*Vσ to ba.

First notice that / is bijective away from the barycenters bσ and
f\ba) = σ* Vo. We have N(f~\bσ), N) = σ* Vo9 which is an ^^pseudodisc,
since it is equal to σ*(Vσ ΌcdVσ)~Int(c(σ*3Fσ)). Since / is a PL embedding
when restricted to 3i\Γ(/~1(δσ), N), f is a strong .^resolution.

Now assume βk(M) = dd, where d = Σ[Στ]τ, taken over all (k + 1)-
simplexes τ of M. Since dim(S(M)) = ft, dD(τ, M) ^ Sn~k-\ Let Δτ =
ΣT — a, where a is some (n — k — l)-simplex of Στ9 oriented so that BΔτ

is compatible with dD(τy M). Replace, as above, each τ*D(τ, M) with
τ*Δτ9 to get a strong .^resolution /0: NQ —> M. By construction, μk(N0) =
0, and so there is a strong J^resolution /' : N-> No with dim(S(JV)) < k.
By Corollary 2.6, f0of: N-+ M is the desired strong ^^resolution.

We now turn to the relative version of Theorem 4.2. Again assume
that J^ is a connected coconnected homotopy class, and let Mn be a
compact, locally orientable PL ^w-manifold with dim(S(Λf)) — ft. Assume
further that dM is collared in M (which we can always do by Lemma
2.4) and that QΛ-1 is a PL-manifold embedded as a full subcomplex of
M with dQ collared in dM. Homology will have coefficients twisted by
the local system on M of §1.

Define βk(M) e Ct(M; 0£L*_i) by βk(M) = Σ[£&(tf > -M")]̂  over all ft-simplexes
σ not contained in 3M.

LEMMA 4.3. dim(S(3ΛΓ)) ^ ft - 1, dβk(M) = βk^(dM)9 and βk

lies in CU^dM - Q; ^ 4 - 0 .

PROOF. Let σ be a ft-simplex of dM. Then Lft(σ, Af) = c(Lk(σ, dM))
(since 3Λί is collared in M) is a PL-manifold and so Lk(σ, dM) ~ Sn~k~2.
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Write DM as the union of two copies Mlf M2 of Af. It follows that
μk(DM) = μk(M1) + μk(M2) since [Lk(σk, DM)] = 0 for σkadM. But
μk{DM) is a cycle, and so dμ^M,) = -dμk(M2) lies in CLi(3Af; Θ ζlk^).

Let τ be a (k — l)-simplex of 3 AT, and OΊ, , σr the &-simplexes of
M - dM with r a s a face. Construct Wτ— UΓ=ί Int( ̂ ) as in Lemma 4.1.
Then Wτ - UΓ=ί Int( Vt) is a PL J^pseudodisc bounding Lk(τ,dM)Ό
#Γ=1 Lk(σif AT), and so the coefficient of τ in dμk(M) is [Z/&(τ, dM)]. Finally,
for τ c ζ > , Lfc(τ, dM) = S7 1^"1 since Q is a PL-manifold with collared
boundary, so that the coefficient of r in μk-γ(dM) is 0.

Thus μk(M) defines a homology class μk(M, Q) e Ht(M, dM - Q; ΘζLk^).

THEOREM 4.4. If μk(My Q) = 0, ί/^e^ ίfcβrβ exists a strong ^resolution
f: N-> M, rel(Q), so that άim(S(N)) < k.

PROOF. Write DΛf=Af1u Af«, Λfi^JIf^Ar, i^ni t f^SAr. If ^(Λf, Q) =
0, then since iΓi (AT - Q, δikf - Q) = Hi (M, dM - Q), there exist cί, 6
ClniMi - Q; θZLu-J, i = 1, 2, ce C&dM - Q; ΘCu-i) so that μ^M,) = 3d, +
(-l)*c. Therefore, μk(DM) = did, + d2) and by Theorem 4.2, we may
construct a strong ^ r e s o l u t i o n F: W-> DM with dim(S(TF)) < k. But
since d1 — d2e CU^DM — Q; ΘZ-k-ι), the preliminary modification of DM
does not touch Q, and so F is a resolution rel(Q). The strong ^ r e s o l u t i o n
/ is now obtained by letting N= F'\M^ D = F\N.

Let 3* : Hf

k(M, dM - Q; ΘC-k^) -> HU(dM - Q; ΘCu-ύ be the boundary
homomorphism, and j : dM — Q —> dM the inclusion. By Lemma 4.3, we
have

PROPOSITION 4.5. j*d*μk{M, Q) = μk_x{βM).

We now show that the obstructions μk are natural. Let Mn be closed
and suppose AT*, M2

Λ a PL ^^manifolds embedded as full subcomplexes
of Λf so that M = M,[j M2 and Afi (Ί Af2 = 3Afx = 3Af2 is a PL-manifold.
Let ji: Afi —> M be the inclusions.

PROPOSITION 4.6. /ιfc(AΓ) = {j^MM,, dM,)) + (jt)*(μk(Mt, dM2)).

The proof follows immediately from the fact that μk(M) =
μk(M2). There is a similar result if dMly dM2 are not PL-manifolds.

Let / : N—> M be a map between closed PL .^^-manifolds. We say
that / is orientation-preserving if f*ΓM = Γ^. Such a map induces a
homomorphism on homology with twisted coefficients, /* : Hi(N)->Hl(M).

Let f:N^M be an orientation-preserving strong .^resolution so
that / : iSΓ—> M and / ' : N-> M' are simplicial and dim(S(C/)) = A; + 1.
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THEOREM 4.7. f*μk(N) = μk(M).

PROOF. Let σ0 be a fc-simplex of M and {σu •••, σr) the set of k-
simplexes of N so that f(σt) c σ0. Choose an orientation for St(σ0, M)
and give St(σl9 N) the induced orientation.

Since / is a strong ^resolution and dim(S(N)) ^ k, D(f, σ0) is an
.J^pseudodisc bounding a PL J^~{n — k — l)-sphere J?. By the proof of
Lemma 4.1, D(f, σ0) may be modified to obtain a PL ^cobordism W
between Σ and ^r

ί=1dD(σiy Nr) ^ ^r

i=1Lk(σu N.) Furthermore, since
dim(S(C/)) = fc + l, Lfc((70, C/)-Int(ί)(α 0, /)) is a PL-manifold. By Proposition
2.5, Cf is a PL ^^manifold and Lk(σ0, M) ~ dD(σQ, M') and Σ are PL άT-
cobordant.

Let (7i, , σs be the fc-simplexes of N so that f(σs) g σ0, 0 ^s <̂  r.
If s > 0, then it follows that Lfc(σ0, Λf) ^ S*"*""1: Suppose v0, vx are
vertexes of σ0 so that voί/(^i)> ^ ^ / ( O Then Lkiσ^^Gf) is a PL-
manifold containing vo*dD(σo, M) so that dD(σ0, M) is a PL (w — fe — 1)-
sphere. This also shows that [Lλ fo, iV)] = 0 for i = 1, , s.

It is easily checked that the orientations involved are correct, and
we have

fJt [LMβi, N)]σ<) = Σ [LK*i, N)](±σ0) = Γ # Lfc(σ<f N)]σQ

Doing this for every λ -simplex of M (retaining the orientations on
St(σ0, M), St(σlf Λf)), we get that f*βk(N) = μk(M).

There is a corresponding result for resolutions relative to a codimension
0 submanifold of dM. Theorem 4.7 implies the converse to Theorem 4.2:

COROLLARY 4.8. // ^^r{M) Φ 0 , then μk{M) = 0.

5. A product structure theorem. Let I be a compact PL J7~{Q)-
manifold with dM a PL-manifold. We have the following generalization
of the product structure theorem of Edmonds and Stern [10]. Let J =
[-1,1].

THEOREM 5.1. Let f : N-> M x Jk be a PL ^-resolution τel(dMxJk).
Then there is a PL ^resolution rel(3Λf) fQ: No—> M, where NQ is a PL
submanifold of N with trivial normal block bundle, and a proper PL
embedding h : M —> M x J \ isotopic to the standard embedding M—>Mx
0 so that
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No -^ M

commutes.

PROOF. The proof is identical to the proof of Theorem 3.1 of [10]
(treating the case ά?" = 3$f), which we give for completeness sake.

Assume / is simplicial and M x Jk~x x 0 is a full subcomplex of
Mx Jk. Let V = N(Mx Jk~ι x 0, (Mx Jk)f) and W = f~\ V). By [7], W is
a PL-manifold, and since / is a strong ^resolution, so is f\W:W->V.
The boundary of V has two components; let M+ be one of them, and
No = f~1(M+). Since No is a boundary component of a codimension 0
submanifold of W, the normal bundle of No is trivial.

By the theory of derived neighborhoods, there is a proper PL-
homeomorphism φ : (M x Jk~\ M x J16'1) —• (M+, M+ Π (dM x J*"1)) so that
h, defined to be the composition M x Jk~ι —> M+ c M x Jk is isotopic to
M x Jk~x -*M x J16-1 x 0 c M x Jk. The result follows by letting f0 =
φ~1o(f\N0) and proceeding by induction.

We will need a variant of this result for our classification theorem.
Let M be a PL .^manifold and xoeM. A based ̂ -resolution is a PL
^resolution f:N—>Mso that for some subdivision Mf of M, f : /^(Stίxo,
M')) —> St(x0, M

f) is a PL-homeomorphism. Two based ^resolutions f0, f
of M are (based) concordant if there exists a concordance .P: W —> ikί x
J between /0 and /x so that for some subdivision (M x I)', F: F~\N(x0 x I,
(M x I)')-*N(x0 x I, (Mx I)') is PL-homeomorphism. Let ^gy(M, a?0)
denote the set of concordance classes of based ^^resolutions of M.

THEOREM 5.1 (based version). Let f: N-^Mx Jk be a PL ^-resolution
rel(3ikf x Jk) based at (x09 0). Then there is a PL ^-resolution f0: No->
M rel(3M), based at xOf satisfying the conclusion of Theorem 5.1.

The proof is the same, assuming M x Jk is subdivided so that
/1 f~XSt((x0, 0), M x Jk) is a PL-homeomorphism.

LEMMA 5.2. Suppose ^ is a connected, coconnected homotopy class
and there exists an n so that θf = 0, i Φ n. Then for any PL ^
manifold M and xoeM — S(M), the natural map &jr(M, x^-^^S^ (M)
is bijective.

PROOF. We show surjectivity; injectivity follows from the appropriate
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relative argument. Let f:N-^M be a simplicial PL ^resolution and
U = St(x0, M). Since U is a contractible PL-manifold, and θf = 0 for
i Φ n, any PL .^resolution of U is concordant to 1 .̂ (If f:V-*U is a
PL .^resolution, the only obstruction to such a concordance lies in
Hm_n(U xlΌCg,dUx lUC9ldv; θf) = Hm_n(U x I, dU x I; θ?) = 0 by
Theorem 4.2, where m = dim(Λf).)

Let F:W->Ux I be a concordance from f\f~\U) to lv. Define
P = N x / u TF, identifying f~\U) x 1 and F~\U x 0), and G: P->ΛΓ x
IU UxI^MxI by G\NxI=fxlI9 G\W=F. Then G is a concordance
from / to the based ^resolution GIG^Λf x 1). By [15], the condition
of the lemma holds if ^ = ά or

then ε* : ^ V

PROOF.

and F : P - >

(M, dM,

Let ft:
Mx J

Nt

x /

Let I be a compact PL .^manifold so that dM is a PL-manifold.
We define ^V(Λί, 3Λf) (.^r(lf, 3Λf, x0), x0 6 Int(M)) to be the set of con-
cordance classes of PL ^resolutions (based at x0) of M rel(3Λf), with
concordances to be relative to dM x I.

If f:N-*M is a PL ^resolution rel(SΛf), then fxljiNxJ->MxJ
is a PL ^^resolution rel(3Jkf x J), based at (a?0> 0) if / is based at xQ.
It follows easily that this construction yields a well-defined map ε* : &jr(M,
dM, x0) -> ̂ r (Λf x J,dMx J, (xQ, 0)).

PROPOSITION 5.3. // ^ * is α connected, coconnected homotopy class,
^ &jr(M x J, dM x J, (x0, 0)) is injective.

-> Λf, ΐ = 0, 1, be based ^^resolutions rel(3Λf)
a based concordance between them. Assume

M x J x I is subdivided so that J?7 is simplicial and M x J x {0, 1}, M x
{ —1, 1} x I, Λf x { —1, 1} x {0, 1} are full subcomplexes.

Let W = Cf0ΌMx I\jCfι, with the obvious identifications. Since ^
is a connected, coconnected homotopy class and fOf fx are PL ^^resolutions
rel(3Λf), W is a PL J^manifold with dW a PL-manifold. We have P =
F - W x J x 0 ) x / U P U F-^ΛΓ x J x 1) x /, and define F : P - > l f x J
by F\P = F and F I F ' ^ M x J x i) equal to the natural projection to
Cfi. Clearly, F is a based .^resolution rel(3TΓx J), and by Theorem
5.1, there exists a based ^resolution Fo: P0-+Wτe\(βW). The map

Po -* TΓ -̂-> Λf x /, where π is the natural projection, is then a based
concordance between f0 and /i (rel(3Λf)).

We generalize the map ε* as follows. Let ζ be a PL Jfc-bundle
over Mf and f:N-+M a PL ^resolution rel(3Λf) based at xQ. Define
ξ*(f)=f:E(f*ξ)->E(ξ); clearly f*(/) is a PL ^resolution, τelE(ξ\dM),
and is based at i(xo)9 where i:M-+E(ζ) is the zero-section. It follows
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that there is a well-defined map ξ* : ̂ -(Λf, dM, x0) -+ &jr(E(ξ), E(ξ\dM),

THEOREM 5.4. // ̂ ~ is α connected, coconnected homotopy class, then
f* is ίnjective.

PROOF. Suppose 77 is a PL Jz-bundle over E(ξ), and let η<>ξ denote the
composite bundle over M. Obviously, 0?°f)*(/) = V*°ξ*(f) '• E(f*(V°S)) =
E{f*η) -> #0?°f) = #07). Choose 77 so that η 0 p*f is trivial, where
p: E(ξ) -> M is the projection. Then p*()?°f) = p*{i*η ®ζ) = η®p*ξ is
trivial, and so rjoξ ^ εfe+ί. By Proposition 5.4, (^of)* = yf oξ* is injective,
and so ξ* is injective.

In particular, if M is a closed PL manifold and vM is the normal
bundle of M in some Euclidean space, we have:

COROLLARY 5.6. y$: &jr{M, x0) —> &(E(vM)y xQ) is ίnjective.

The maps ε* do not appear to be bijective in general, as they are
for &~ — £%f, [10], but we do have the following important special case:

PROPOSITION 5.7. & (Dn, 0) contains only one element.

PROOF. Let f: N-> Dn be a PL ^ r e s o l u t i o n and U a PL w-disc in

Dn containing 0 so that f~\U)-*U is a PL-homeomorphism. Let D* =

{x eRn : IIx\\ ^ 2} and define ^ , F2: D? x / - ^ D2

n X ̂  by

ί((l + ί)*,ί) 11*11^1/2

^ife ί) - ]((1 - «)» + txj\\x\\, t) 1/2 ̂  | |g | | ^ 1

ί((l

((»,«) | | α | | ^ l + ί/2 .

Since ^(ίc, ί) = F2(x, t) = (x, t) for ||aj|| = 2, F2°F1 induces a map
F:(Dϊ/dDϊ) I-+(D;/dD;) x I.

Let iVo = N U 9iV x / and extend / in the natural way to an ^
resolution f0: iV0 -> Z>? (/0(a?, ί) = (1 + «)/(») for x e dN). Let ̂ : Ώl -> D2

W

be a PL-homeomorphism taking Z7 to {ίc: | |g | | ^ 1/2} that is the identity
on D* — Dn Let G be the composition

(NJdNx 1) x\I—-^{Dt!dDΐ) x i^^U^DtldDt) x ^

We may assume that G is simplicical on (iVo — dN x 1) x I and that Dn x I

is a full subcomplex of Z)* x 7.
Let TΓ = (^(.D* x / ) ; by [7], G | W: W-> Z>Λ x / is a PL ^ r e s o l u t i o n ,
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and clearly (Γ^O x I) -> 0 x /, G~1(Dn x l ) - > ΰ B x l are PL-homeo-
morphisms and G \ G~\Dn x 0) = /. Therefore, / is based concordant to
a PL-homeomorphism g: G'\Dn x 1) —> Dn x 1. The proof is completed
by noticing that the mapping cylinder of g provides a based concordance
from g to lDn.

Note that this proof also shows that &j?-(Dn, 0) has cardinality 1.
The proof of Proposition 5.7 can be generalized to prove the following
relative result, which we leave to the reader.

PROPOSITION 5.8. Let f\M^Jm~γ be a PL ^-resolution based at 0,
and F:W—> Jm a based concordance between f and itself. Then there
is a PL ^-resolution G:V->Jm+1 so that dV = WU (M x {-1, 1}) x
JUMxJ and G\M x J = / x 1J9 G\W = F, G\M x {±1} x J = f x 1,
and G\G~\0 x J2): G~\0 x J2) -»0 x J 2 is a PL-homeomorphism.

6. The classification theorem. Throughout this section, assume that
^ is a fixed connected, coconnected homotopy class. All spaces will be
assumed to be pointed (the basepoint of X will be denoted xQ), maps
basepoint preserving and homotopies relative to the basepoint. Let S€Λ0

denote the category of pointed sets.
Let ^ C denote the category of compact, pointed PL ^-manifolds and

codimension 0 embeddings. Define a contravariant functor ^ J ^ ^C—>
S£άQ as follows: If (Λf, m0) e Ob(^C), let &P(M, m0) = &*-(M, m0), with
basepoint 1^ (usually denoted 1). If (i : N —• M) 6 Mor (^^C), let
i* : &£\M, m0) -> ^P(Nf n0) be defined by ΐ*(/) : i~ι° f\f~1{i{N)):
f~\i{N)) -> iSΓ where ikΓ is subdivided so that / is simplicial and i(N)
is a full subcomplex. If F:W-*M x / is a (simplicial) concordance be-
tween /o and /i, then (i x I / J ^ O J P I F " 1 ^ ^ ) x /) is a concordance between
ΐ*(/0) and i*(/i), so that i* is well-defined.

To get our classification theorem, we must first stabilize &p\ For
8 ^ 0, let F8(M, m0) = ^J^+S)(ikί x J% (m0, 0)). Define an equivalence
relation ~ on F(M9 m0) — ]l8ez+ FS(M, mQ) by a ~ β, aeFS(M, m0), β e
Ft(M,m0), if there exists an r ^ max{s, ί} so that (εr~ψa = (εr"s)*iδ.
(Here εfc denotes the appropriate trivial bundle. See §5.) Define

LEMMA 6.1. A morphism i:N-+M of ^fn induces a map i* :
&P\M9 m0) —> &£\N9 n0), depending only on the isotopy class of i.

PROOF. Let ξ be a PL JMmndle over M9 and i : E(ξ\N) -+ E(ξ). It
is easy to verify that ί*of* = (ξ\N)*oi* : &p\M, m0) -> &J?\E(i*ξ)9 e0),
and it follows that ΐ* : ^J?\M9 m0) —> &P(N, nQ) is well-defined.
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Let F: N x I —> M X / be a simplicial isotopy between % and it. If
/ : W —• M is a simplicial based .^resolution, then clearly (/ x 17) | (/ x
li)~\F(N x /)) is a concordance between io*(/) and i*(/) and the result
follows.

Let ^££ be the category with objects the same as ^fn, but with
morphisms replaced by isotopy classes of embeddings. Define a covariant
functor Tn : Λ£ -> ̂ ° + 1 by Γ.CM, m0) = (AT x J, (m0, 0)), Γ,(i) = i x ^
This defines a direct system of categories, and we let ^ = lim ^/C0.

By Lemma 6.1, &p] defines a contravariant functor ^C* 0 -* <5^0> and
clearly, ^ / ^ o ^ = ^ J - 1 . Therefore, there is an induced functor

0

Let ^o denote the category of finite pointed simplicial complexes
and simplicial maps. Let Λ": ^ 0 —> ̂ " be the regular neighborhood
functor, as in [25], sending an object X to the regular neighborhood of
X under some embedding of X into the interior of some cube In, and a
simplicial map f:Y—> X to a codimension 0 embedding defined as follows:
Let Mf be the reduced mapping cylinder of /, identifying (yOf t) with αv
Let Λf be a regular neighborhood of Mf in /" and ^ a regular neigh-
borhood of Y in Λf. Then M\Mf\X and so ikf represents ^V(X) by
[12]. We define iV(/) to be the isotopy class of the inclusion N(zM.

Define a contravariant functor H:^Q-^> ^ ^ 0 by H = ^ ^ o ^^: We
first show that H satisfies the axioms of Brown [6].

PROPOSITION 6.2 (Homotopy axiom). Let f,g:Y->X be homotopic.
Then H(J) = H(g).

PROOF. Let F:Y x I->X be a homotopy between / and g, and
define F:Yx I-^X x I by F(y, t) = (F(y,t), t). Let M^ be M^ with
((2/o> *), s ) identified with (x0, t). Embed M/f Mg as subcomplexes of Im x 0,
Im x 1, and assume m is large enough so that these embeddings extend
to an embedding of Mp in Im+1. Let If be a regular neighborhood of
MF in Im + 1, and V a regular neighborhood of Y x I in W.

An element a of JHΓ(-3Γ) is represented by a based .^resolution φ: N-+
W, since TF represents ^ r ( Z x I) = ^T(X)9 and ^ I ^ C T Γ Π J Γ " X i)
represents H(f)a if i = 0 and H(g)a if i = 1. The concordance ̂ |^ - 1( V):
^-1( F) -> F then shows that Jϊ(/)α = H(g)a, since F Π ( / m x i) is a regular
neighborhood of IT and we may choose m large enough so that V =

(Fn(/m x ΐ)) x/.

Combining this with Proposition 5.7, we have:
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COROLLARY 6.3. If X is contractible, then H(X) = {1}.

Let Z be a finite simplicial complex, which is the union of two
subcomplexes X, Y, with basepoint in the subcomplex A — X CiY. Let
ΐi: A-> X, i2: A-+Y, j:X-+ Z, k:Y-+ Z be the inclusions.

PROPOSITION 6.4 (Mayer-Vietoris axiom). Let a e H(X\ βeH(Y) and
suppose H{i^)a = H{i2)β. Then there exists an element 7 e H(Z) with
H(j)y = a and H(k)j = β.

PROOF. Let Z be embedded as a full subcomplex of the interior of
Im, and let M, N be the regular neighborhoods of X, Y as constructed
in Proposition 1.3. Then P=MΠ N, Q=M\J N are regular neighborhoods
of A, Z. Let a, β be represented by simplicial based ^'-resolutions
f:U->M, g:V->N. Since H{i^a = H(i2)β, there is a concordance
F:W->P x / between f\f\F) and g\g~ι(P) by Theorem 5.1.

Define T = UxI\jW[jVx I/F'\z0 x I), identifying f-\F) x 1 with
^ " ' ( P x 0) and g'\P) x 0 with F'\P x 1), and Q = Λf x IU P x / U
iNΓx I/20 x / with similar identifications (regarding z0 x IaP x I). The
functions f x lIf F and ^ x l z then define a based ^resolution G: T-> Q

Let h:Q-+QxI be a basepoint-preserving PL-homeomorphism taking
Λf x / U P x [0, 1/2] onto M x I. Define T e jff(Z) to be the equivalence
class of hoG.

We show that H(j)y = a. By construction, H(j)j is represented by
Φ = ΛoGIG ί̂Λf x ί U P x [ 0 , 1/2]) and it is easily checked that the com-

position U x Γ U F-XP x [0, 1/2]) x il^^l^U M x Γ U P : [0, 1/2] x

/ >ikfx/ is a concordance between / x 17 and φ. Similarly,
H{k)y = β.

This theorem and Corollary 6.3 imply the following result, which we
will need in order to show that H(X) has a natural abelian group
structure. For convenience, we let a\Y denote H(ϊ)a if i YczX and
a e H(X).

COROLLARY 6.5. Suppose Z = X u cA, X n cA = A, αmZ α e ΐί(X).
T f e e ^ there exists y e H ( Z ) with y \ X = a if and only if a \ A = 1 .

Let X and Y be objects of <if0 and let i:X->X\/Y, j:Y->X V Y
be the inclusions. Define H(i, j): iϊ(X V Y) -> fΓ(JSΓ) x fΓ( Y) by jff(i, i)α =
(a\X,a\Y).

PROPOSITION 6.6 (Wedge axiom). H(i, j): H(X VY)-> H{X) x H(Y)
is a bijection.
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PROOF. We construct an inverse Φ: H(X) x H{Y) -> H{X V Y) to
H{i, j). Consider Xx y0, xoxYaX V Y. Since X x y0 n x0 X Γ = (a?0, 2/o)>
iϊ(X x y0 n tfo x Γ) = {1} by Corollary 6.3. Let a e iϊ(X), £ e H{ Y). Then
by Proposition 6.4, there exists a 7 e H(X V Γ) with iϊ(i)τ = α, jff(i)τ =
/3. Pick one of these to be Φ(a, β). Clearly H(ί, j)oφ is the identity.

Suppose 7 e H(X V Y) is represented by G : T -> Q with f = g, F =
/ x l j (using notation as in the proof of Proposition 6.4). Then
H(i, j)oΦ{y) is represented by G': T -> Q', where G' = G on G^Af x / U
N x I) and is some concordance F on T7. Since P is a regular neighbor-
hood of a point, P = Jm, and G and (?' are concordant by Proposition
5.8.

By Propositions 6.2, 6.4 and 6.6, we have:

THEOREM 6.7. H is a homotopy functor.

Since H is not defined for all simplicial complexes, we cannot apply
the results of [6]. Let S& be the category of abelian groups. We show
that H is a functor from ^ 0 to J ^ , which implies H is representable
by [l].

To do this, we need still another condition on our class ^~. We say
that J^" is representable if ά^ is a connected, coconnected homotopy
class satisfying the following product axiom: If Δu Δ2 are .^pseudodiscs,
then A1 X A2 is an ^^pseudodisc.

If &* is representable, then we may define a product H(X) x H(X) —>
H(X) as follow: Let al9 a2eH(X) be represented by based ^^resolutions
fi: Ni —> M, i = 1, 2. It follows from the product axiom that fx x f2:
Nλ x N2 -> M x M is a based .^resolution. Since Λf is compact, M x
M\M x X\X x X, and so M x M represents a regular neighborhood
of X x X. Therefore fλ x /2 defines an element ^ x ^ e H ( X x X),
which is easily seen to be well-defined. We now let a^a^^HfJK) be
J*(a± x a2) where A : X-± X x X is the diagonal. This product is natural
and 1 acts as an identity.

THEOREM 6.8. H(X) has a natural abelian group structure.

PROOF. We need only show that every element in H{X) has an
inverse. Suppose first that X is the reduced suspension of a complex
Y. Let v:X-^XvX be the standard comultiplication and T:X->X
the standard reflection. Define f: X V X-> X to be lz on the first copy
of X and T on the second, and let pt: X V X->X, i = 1, 2, be the

composition XW XaXx X^X. For α, β e H(X), let a V β e H(X V X)
be H(Pl)(a) H(pάβ).
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First notice that a V H(T)a = H(f)a by Proposition 6.6 since

H(ί, j)(a V H(T)a) = H(i, j)(H(Pl)(a) H(p2oT)(a))

- (α, 1) (1, #(T)(α)) - (α, H(T)(a))

= £T(i, j)oH(f)(a) .

Since /°v is null-homotopic, we have H{v)(a V H(T)a) = 1 by Propositions
5.7 and 6.2. Therefore

1 = #(v)(α V H(T)a) = Jff(v)(fί(ί91)(α).ίf(p2)oJff(Γ)(α)) (as above)

- H(PlovXa) H(p2ov)oH(TXa) = a-H(T)a ,

so that αΓ1 = if(T)α.
Now assume that X is a finite simplicial complex of dimension n.

By the case above and Proposition 6.2, H(X) is a group if % = 0 or 1.
Assume the result for complexes of dimension n — 1.

Let aeH(X) and i :X ( % 1 ) -^X the inclusion of the (n — l)-skeleton.
By the induction hypothesis, there is an element /90 € H(X{n~1]) so that
H(i)(a)-β0 = 1. Let σ be an ^-simplex. By Corollary 6.3, H(ί)(ά)\σ = 1
and so jβ01 cr == (H(i)(a) βQ)\σ = 1. Therefore, by Corollary 6.5, /30 may
be extended over σ. Doing this for each ^-simplex, there exists a βt e
H(X) so that iϊ(i)(A) = A

Let 7 = I U c(Z(%-1}) and &: X - > F the inclusion. By Corollary 6.5,
and the suspension case, there exists an invertible yeH(Y) so that
H(k)7 = a-β19 since H(i)(a-βύ = 1. Define β = β^HikXy-1). We have
α /9 = α ft CffίfcXT))"1 = 1, and so if(X) is a group.

This method of constructing inverses is due to Milnor [22]. By
Theorems 6.7 and 6.8 and Adams [1], we have:

THEOREM 6.9. Let ^~ he a representable class. Then there is a
weak H-space R^- and a natural equivalence H(X) = [X, <^V].

Let M be a closed PL-manifold, x0 e M, and ^ a representable class.

Define a map Φ : &^(M, x0) -> [M, R^\ by the composition ^^(Λf, a;0)
 VΛ

&ΛE(PM), e0) — ώAH(yM\ e0) -> H(M, x0) - [M, i ^ ] .

CLASSIFICATION THEOREM. Φ : ̂ -(Λf, a?0) -^ [Λf, Λ^] is injective.

PROOF. By Corollary 5.6 and Theorem 6.9, Φ is the composition of
injective maps.

Appendix. Λ-acyclic resolutions. A compact ^-dimensional poly-
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hedron M is called a Λ-homology manifold if H*(Lk{x, M)\ Λ) = H^Sn~1\ A)
or 0 for every x e M; dM = {x e M: H*(Lk(x, M); A) = 0} is an unbounded
Λ-homology manifold of dimension w — 1.

LEMMA 1. M is a PL ^κ-manifold if and only if M is a Λ-homology
manifold.

PROOF. Clearly every ^1-manifold is a Λ-homology manifold. For
the converse, assume dM = 0 , the bounded case being similar. We have
M is a PL ^-manifold if and only if H*(Lk(a, M); Λ) ^ H^S"-'-1; Λ)
for each i-simplex α, if and only if H*(Lk(x, M); Λ) = H^(Sn-1; Λ) for
each xeM, since S'-^Lhia*, M) = Lk(bσj M').

A proper PL-surjection f;N—>M between Λ-homology ^-manifolds
is called a Λ-acyclic resolution if H*(f~~\x); A) = 0 for each xeikf and
f\dN:dN-+dM is also a Λ-acyclic resolution.

LEMMA 2. f is a strong c

(^κ-resolution if and only if f is a Λ-
acyclic resolution.

The proof is immediate from Proposition 5.4 of [7] since any Λ-
acyclic, PL /^-manifold is an ,^1-pseudodisc.

LEMMA 3. £%fκ is representable.

The proof is clear from Mayer-Vietoris and Poincare duality.

Define &κ = &srκ and Rκ = i?^^, and let BH(K) denote the clas-
sifying space for stable Λ-homology cobordism bundles of [3], [4]. Let
f'.N^Mbe a yl-acyclic resolution between PL-manifolds.

LEMMA 4. TN and f*TM are stably isomorphic as Λ-homology
cobordism bundles.

PROOF. Let p: N x I—>Cf be the projection. By Lemmas 2 and 3,
and Proposition 2.5, Cf is a Λ-homology manifold, and p*TCf defines the
desired isomorphism between Γ ^ φ s 1 and f Γ ^ φ e 1 .

Therefore / defines an element of [N, HK/PL]. Define T(f) to be

the image of [f*TM] under the maps [N, HJPL] -> [Nκ, (HK/PL)κ] ~
[MKf (HK/PL)K] = [ikf, (HK/PL)K]. It is easily checked that Γ induces a
natural transformation H-> [, (HK/PL)K] (as functors to SJϊ). Therefore:

PROPOSITION 5. There is a map φ:Rκ~^ (HK/PL)K of weak H-spaces.

PROPOSITION 6. πn(Rκ) contains a subgroup G isomorphic to ψ£ so

that φ$\G:G —> πn(Hκ/PL) (x) A ~ fξ (x) A is the localization map.



516 G. A. ANDERSON

PROOF. Define / : ψξ -> πn(Rκ) by f[Σ] = Φ(g), where g: Σ -+ Sn is the
map of Lemma 2.1; / is well-defined by an argument similar to the one
used in Proposition 2.4 of [21]. It is clear that / is a homomorphism
(using the usual homotopy group multiplication on πn(Rκ)), and / is
injective by the Classification theorem. The remainder of the proof
follows from the proof of Theorem 3.6 of [3].

COROLLARY 7. Rκ ~ HK/PL if and only if K = 0 .

PROOF. If K — 0 , then it follows immediately from [10] that Rκ ~

HK/PL. If Kφ 0 , then ψ£, and so πn(Rκ), contains a subgroup isomor-
phic to Λ/Z@Λ/Z by [3] and the proposition. But by Theorem 6.1 of
[4], πn(Hκ/PL) is isomorphic to Λ/ZφA where A is a finite group, so
that πn(Rκ) £ πn(Hκ/PL).
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