PROPERTY L AND W^{-*} ALGEBRAS OF TYPE I^{1}

Edward Sarian

(Received September 29, 1978, revised March 10, 1979)

Abstract. Tpye I W-* algebras do not have property L.

Let \mathscr{A} be a W^{-*} algebra acting in separable Hilbert space h and let $\mathscr{K}(\mathscr{A})$ denote the unitary operators in \mathscr{A}. Corollary I.5.10 of [3] states that \mathscr{A} has direct integral decomposition into factors given by $\mathscr{A}=\int_{\Lambda} \oplus \mathscr{A}(\lambda) \mu(d \lambda)$. This paper assumes the reader is familiar with [4] and Chapter I of [3].

Definition. \mathscr{A} has property L if there is a sequence $\left\{U_{n}\right\}$ contained in $\mathscr{U}(\mathscr{A})$ such that $\left\{U_{n}\right\} \rightarrow 0$ weakly and such that $\left\{U_{n} A U_{n}^{*}\right\} \rightarrow A$ strongly for each $A \in \mathscr{A}$.

Property L is a partial form of commutivity that was introduced by Pukánszky in [2]. We shall use direct integral theory to show that no type I W-* algebra has property L.

We establish some notation before proving two essential lemmas. \mathscr{A}^{\prime} denotes the commutant of \mathscr{A} and is also a W-* algebra. By the center of \mathscr{A}, we mean the abelian W_{-*} algebra $\mathscr{\mathscr { L }}(\mathscr{A})=\mathscr{A} \cap \mathscr{A}^{\prime} . \mathscr{A}_{1}$ represents the unit ball of \mathscr{A} and h_{∞} denotes the underlying Hilbert space of h, i.e., $h=\int_{\Lambda} \oplus h_{\infty} \mu(d \lambda)$ (cf. [3] Definition I.2.4).

Lemma 1. Let $\mathscr{A}=\int_{\Lambda} \oplus \mathscr{A}(\lambda) \mu(d \lambda)$ be a W-* algebra acting in h and let S denote $B\left(h_{\infty}\right)_{1}$ taken with the strong-* operator topology. Then if N is a Borel subset of Λ, the set $F=\{(\lambda, T) \mid \lambda \in N, T \in \mathscr{A}(\lambda) \cap S\}$ is a Borel subset of $\Lambda \times S$.

Proof. By [3] Lemma I.4.11, S is a complete separable metric space. Let d denote the metric which defines the topology on S. By [4] Lemma $1.5(\mathrm{a}, \mathrm{c})$, there is a countable sequence of disjoint closed subsets e_{i} of Λ such that if $e=\Lambda-\bigcup_{i=1}^{\infty} e_{i}$, then $\mu(e)=0$ and there is

[^0]a countable sequence of operators $\left\{A_{n}\right\}$ contained in \mathscr{A} such that $\left\{A_{n}(\lambda)\right\}$ is strong-* dense in $\mathscr{A}(\lambda)_{1} \mu$-a.e., and each $A_{n}(\lambda)$ is strong-* continuous on each set e_{i}.

Define subsets $F(i, j, m)$ of $\Lambda \times S$ as sets of all pairs (λ, T) satisfying the following conditions:
a) $\lambda \in N \cap e_{i}$,
b) $d\left(T, A_{m}(\lambda)\right) \leqq 1 / j$.

Condition (a) defines a Borel set. Condition (b) defines a closed set. Thus $F(i, j, m)$ is a Borel subset of $\Lambda \times S$ and so is $F=\bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} \bigcup_{m=1}^{\infty} F(i, j, m)$. q.e.d.

Lemma 2. Let \mathscr{A} be a type I W-* algebra acting in h. Let $\left\{V_{n}\right\}$ be a sequence contained in $\mathscr{C}(\mathscr{A})$ such that $\left\{V_{n}^{*} A V_{n}-A\right\} \rightarrow 0$ strongly for each $A \in \mathscr{A}$. Then $\left\{V_{n}\right\}$ has a subsequence that converges strongly to a unitary $V \in \mathscr{K}(\mathscr{A})$.

Proof. Let $\mathscr{A}=\int_{\Lambda} \oplus \mathscr{A}(\lambda) \mu(d \lambda)$ be the direct integral decomposition of \mathscr{A} into factors. Since \mathscr{A} is of type $I, \mathscr{A}(\lambda)$ is a type I factor μ-a.e. For each $x \in h$ and $A \in \mathscr{A},\left|\left(A V_{n}-V_{n} A\right) x\right|=\left|V_{n}\left(V_{n}^{*} A V_{n}-A\right) x\right| \leqq$ $\left|V_{n}\right|\left|\left(V_{n}^{*} A V_{n}-A\right) x\right|=\left|\left(V_{n}^{*} A V_{n}-A\right) x\right| \rightarrow 0(n \rightarrow \infty)$. Thus $\left\{A V_{n}-V_{n} A\right\} \rightarrow 0$ strongly for each $A \in \mathscr{A}$. By weak compactness of $B(h)_{1},\left\{V_{n}\right\}$ has a subsequence, again called $\left\{V_{n}\right\}$, that converges weakly to some operator V. Thus $|V| \leqq 1$. Since \mathscr{A} is weakly closed, $V \in \mathscr{A}$ and we may write $\quad V=\int_{\Lambda} \oplus V(\lambda) \mu(d \lambda) \quad$ by $\quad[3] \quad$ Lemma \quad I.5.2. Also $\quad|V|=\mu-$ ess. sup. $|V(\lambda)|$ by [3] Lemma I.3.1. We shall show that $|V(\lambda)| \geqq 1$ μ-a.e. so that $|V| \geqq 1$ also, and it follows that $|V|=1$.

To prove our assertion we argue as follows. Let $\left\{x_{i}\right\}$ be an orthonormal basis for h_{∞} such that $\left\{x_{1}\right\}$ is a basis for $h_{1},\left\{x_{1}, x_{2}\right\}$ is a basis for h_{2}, etc., where $\left\{h_{i}\right\}$ is an increasing sequence of finite dimensional Hilbert spaces generating h_{∞} (cf. [3] Definition I.2.4).

Let S, e and the e_{i} be as in Lemma 1 and define subsets $E(i)$ of $A \times S$ as sets of all pairs (λ, T) satisfying the following conditions:
a) $\lambda \in e_{i}$,
b) $T \in \mathscr{A}(\lambda) \cap S$,
c) $T x_{1}=x_{1}, T x_{j}=0$ for $j>1$.

Condition (a) defines a closed set. By Lemma 1, conditions (a) and (b) define a Borel set. Condition (c) defines a closed set and shows that T is an operator belonging to S. Thus $E(i)$ is a Borel subset of $\Lambda \times S$ and so is $E=\bigcup_{i=1}^{\infty} E(i)$. By [3] Lemma I.4.3, E is analytic.

If Π is the projection of $\Lambda \times S$ onto Λ, then $F=\Pi(E)$ is contained
in $\Lambda-e$ and by [3] Lemmas I.4.4 and I.4.6, F is analytic and μ measurable. Since $\mathscr{\Omega}(\lambda)$ is a type I factor μ-a.e., we know that $T \in$ $\mathscr{A}(\lambda) \mu$-a.e., and it follows that F differs from Λ by a μ-null set. By [3] Lemma I.4.7, there exists a Borel subset F_{1} of F with positive measure and a μ-measurable mapping g of F_{1} into S such that $(\lambda, g(\lambda)) \in E$ for each $\lambda \in F_{1}$. Put $g(\lambda)=0$ for $\lambda \notin F_{1}$ and define μ measurable operator valued function $B(\lambda)$ by $B(\lambda)=g(\lambda)$. Then by [3] Definition I.2.5, we may write $B=\int_{A} \oplus B(\lambda) \mu(d \lambda)$ and $B \in \mathscr{A}$ by [3] Lemma I.5.2. By hypothesis, $\left\{V_{n}^{*} B V_{n}\right\}$ converges strongly and hence weakly to B.

Since \mathscr{A} is decomposable, V_{n} is decomposable for each n and we may write $V_{n}=\int_{\Lambda} \oplus V_{n}(\lambda) \mu(d \lambda)$. By [4] Lemma 1.7, ([$V_{n}(\lambda)^{*} B(\lambda) V_{n}(\lambda)-$ $B(\lambda)] x, y) \rightarrow 0$ in μ-measure for each $x, y \in h_{\infty}$ and in particular for $x=$ $y=x_{1}$. Since $\left\{V_{n}\right\} \rightarrow V$ weakly, the same reasoning shows that $\left(V_{n}(\lambda) x_{1}, x_{1}\right) \rightarrow\left(V(\lambda) x_{1}, x_{1}\right)$ in μ-measure. Since μ is a finite measure it follows that $\left|\left(V_{n}(\lambda) x_{1}, x_{1}\right)\right|^{2}-1 \rightarrow\left|\left(V(\lambda) x_{1}, x_{1}\right)\right|^{2}-1$ in μ-measure also (cf. [1] Section 3.20).

We have

$$
\begin{aligned}
& \left(\left[V_{n}(\lambda)^{*} B(\lambda) V_{n}(\lambda)-B(\lambda)\right] x_{1}, x_{1}\right) \\
& \quad=\left(V_{n}(\lambda)^{*} B(\lambda) V_{n}(\lambda) x_{1}, x_{1}\right)-\left(B(\lambda) x_{1}, x_{1}\right) \\
& \quad=\left(B(\lambda) V_{n}(\lambda) x_{1}, V_{n}(\lambda) x_{1}\right)-\left(x_{1}, x_{1}\right) \\
& \quad=\left(\left(V_{n}(\lambda) x_{1}, x_{1}\right) x_{1}, V_{n}(\lambda) x_{1}\right)-1 \\
& \quad=\left(V_{n}(\lambda) x_{1}, x_{1}\right)\left(x_{1}, V_{n}(\lambda) x_{1}\right)-1 \\
& \quad=\left(V_{n}(\lambda) x_{1}, x_{1}\right)\left(V_{n}(\lambda) x_{1}, x_{1}\right)-1 \\
& \quad=\left|\left(V_{n}(\lambda) x_{1}, x_{1}\right)\right|^{2}-1 .
\end{aligned}
$$

That $B(\lambda) V_{n}(\lambda) x_{1}=\left(V_{n}(\lambda) x_{1}, x_{1}\right) x_{1}$ can be obtained as follows. Let $V_{n}(\lambda) x_{1}=$ $\sum_{i=1}^{\infty} c_{i}(\lambda) x_{i}$. Then $B(\lambda) V_{n}(\lambda) x_{1}=c_{1}(\lambda) x_{1}=\left(V_{n}(\lambda) x_{1}, x_{1}\right) x_{1}$. Thus $\left|\left(V_{n}(\lambda) x_{1}, x_{1}\right)\right|^{2}-$ $1 \rightarrow 0$ in μ-measure and it follows that $\left|\left(V(\lambda) x_{1}, x_{1}\right)\right|=1 \mu$-a.e. (cf. [1] Section 3.20 Theorem 3). Now $\left|\left(V(\lambda) x_{1}, x_{1}\right)\right| \leqq|V(\lambda)|\left|x_{1}\right|^{2}=|V(\lambda)|$ by the Schwarz inequality; thus $1 \leqq|V(\lambda)| \mu$-a.e. Then by the last sentence of the first paragraph of the present proof, we have $|V|=1$.

We shall show next that $V \in \mathscr{F}(\mathscr{A})$ and that V is unitary. Since strong convergence implies weak convergence, we know that $\left\{A V_{n}-\right.$ $\left.V_{n} A\right\} \rightarrow 0$ weakly for each $A \in \mathscr{A}$ and since $\left\{V_{n}\right\} \rightarrow V$ weakly, it follows that $\left\{A V_{n}-V_{n} A\right\} \rightarrow A V-V A$ weakly for all $A \in \mathscr{A}$. Thus $A V-$ $V A=0$ or, equivalently, $V \in \mathscr{A}^{\prime}$ so that $V \in \mathscr{F}(\mathscr{A})$. By [3] Theorem I.5.9, V is a diagonal operator. Thus for $\mu-$ a.a. $\lambda, V(\lambda)$ is a bounded

Borel measurable scalar valued function by [3] Definition I.2.5. Then if we apply [3] Lemma I.3.1 to $V V^{*}$, we have $V V^{*}=\int_{A} \oplus V(\lambda) V(\lambda)^{*} \mu(d \lambda)=$ $\int_{\Lambda} \oplus V(\lambda) \overline{V(\lambda)} \mu(d \lambda)=\int_{\Lambda} \oplus|V(\lambda)|^{2} I \mu(d \lambda)=\int_{\Lambda} \oplus I \mu(d \lambda)=I$ and we can show $V^{*} V=I$ similarly.

Finally, the strong convergence of $\left\{V_{n}\right\}$ to V is an immediate consequence of the weak convergence, the identity $\left|\left(V_{n}-V\right) x\right|^{2}=$ $\left(\left[V_{n}-V\right] x,\left[V_{n}-V\right] x\right)=\left(V_{n} x, V_{n} x\right)-\left(V x, V_{n} x\right)-\left(V_{n} x, V x\right)+(V x, V x)$ and the fact that $\left(V_{n} x, V_{n} x\right)=(x, x)=(V x, V x)$. q.e.d.

Theorem 3. Type I W-* algebras do not have property L.
Proof. If $\left\{U_{n}\right\}$ is a sequence of unitaries demonstrating property L, then by putting $V_{n}=U_{n}^{*}$ and applying Lemma 2, we arrive at a contradiction.
q.e.d.

References

[1] S. K. Berberian, Measure and Integration, The Macmillan Co., New York, 1965.
[2] L. Pukánszky, Some examples of factors, Publ. Math. Debrecen, 4 (1956), 135-156.
[3] J. T. Schwartz, W-* algebras, Gordon and Breach, New York, 1967.
[4] P. Willig, Trace norms, global properties, and direct integral decompositions of W_{-}* algebras, Comm. Pure Appl. Math., 22 (1969), 839-862.
Department of Computer and Information Science
New Jersey Institute of Technology
Newark, New Jersey 07102
U.S.A.

[^0]: AMS (MOS) subject classifications (1970). Primary 46 L 10.
 Key Words and Phrases. Type I W-* algebra, property L.
 ${ }^{1}$ This paper is part of the author's doctoral dissertation which was completed at Stevens Institute of Technology under the direction of Dr. Paul Willig.

