ALMOST SURE INVARIANCE PRINCIPLES FOR LACUNARY TRIGONOMETRIC SERIES

Shigeru Takahashi

(Received February 20, 1978)

1. Introduction. In this note let $\left\{n_{m}\right\}$ be a sequence of positive integers satisfying the gap condition

$$
\begin{equation*}
n_{m+1} / n_{m}>1+c m^{-\alpha} \quad(c>0 \text { and } 0 \leqq \alpha \leqq 1 / 2) \tag{1.1}
\end{equation*}
$$

and $\left\{a_{m}\right\}$ be a sequence of positive numbers such that

$$
\left\{\begin{array}{l}
A_{k}=\left(2^{-1} \sum_{m=1}^{k} a_{m}^{2}\right)^{1 / 2} \rightarrow+\infty, \tag{1.2}\\
a_{k}=O\left(A_{k} k^{-\alpha}\left(\log A_{k}\right)^{-\beta}\right), \quad \beta>1 / 2, \quad \text { as } \quad k \rightarrow+\infty .
\end{array}\right.
$$

Further, we put

$$
\begin{equation*}
\xi_{m}(\omega)=a_{m} \cos 2 \pi\left(n_{m} \omega+\alpha_{m}\right) \quad \text { and } \quad T_{k}=\sum_{m=1}^{k} \xi_{m} \tag{1.3}
\end{equation*}
$$

where $\left\{\alpha_{m}\right\}$ is a sequence of arbitrary real numbers, and consider ξ_{m} 's as random variables on a probability space ($[0,1$), \mathscr{F}, P) where \mathscr{F} is the σ-field of all Borel sets on $[0,1)$ and P is the Lebesgue measure on \mathscr{F}. Then we write, for $\omega \in[0,1)$ and $t \geqq 0$,

$$
\begin{equation*}
S(t)=S(t, \omega)=T_{k}(\omega), \quad \text { if } \quad A_{k}^{2} \leqq t<A_{k+1}^{2} \tag{1.4}
\end{equation*}
$$

for $k \geqq 0$, where we put $A_{0}=0$ and $T_{0}=0$.
The purpose of the present paper is to prove the following.
Theorem. Without changing the distribution of $\{S(t), t \geqq 0\}$ we can redefine the process $\{S(t), t \geqq 0\}$ on a richer probability space together with standard Brownian motion $\{X(t), t \geqq 0\}$ such that

$$
S(t)=X(t)+o\left(t^{1 / 2}\right) \quad \text { a.s. } \quad \text { as } t \rightarrow+\infty
$$

Using the almost sure limiting behavior of $\{X(t), t \geqq 0\}$ and the above theorem we can 'deduce the corresponding limiting properties of $\{S(t), t \geqq 0\}$ or $\left\{T_{k}(\omega)\right\}$. For example we can obtain the following

Corollary (cf. [3]). Under the conditions (1.1) and (1.2) we have, for a.e. ω,

$$
\begin{equation*}
\limsup _{k \rightarrow+\infty}\left(2 A_{k}^{2} \log \log A_{k}\right)^{-1 / 2} \sum_{m=1}^{k} a_{m} \cos 2 \pi\left(n_{m} \omega+\alpha_{m}\right)=1 . \tag{1.5}
\end{equation*}
$$

For $\alpha=0$, that is, when the sequence $\left\{n_{m}\right\}$ satisfies the Hadamard gap condition, Weiss [4] proved that if $a_{k}=o\left(A_{k}\left(\log \log A_{k}\right)^{-1 / 2}\right)$ as $k \rightarrow+\infty$, then (1.5) holds.

Recently, Philipp and Stout [1] have proved that if $\alpha=0, a_{k}=O\left(A_{k}^{1-\delta}\right)$ for some $\delta>0$, and $\left\{n_{k}\right\}$ is a sequence of real numbers, then for any $\lambda<\delta / 32$

$$
S(t)=X(t)+O\left(t^{1 / 2-\lambda}\right) \quad \text { a.s. } \quad \text { as } \quad t \rightarrow+\infty .
$$

For the proof of our theorem we approximate $\left\{T_{k}(\omega)\right\}$ by a martingale and then apply a martingale version of the Skorohod representation theorem due to Strassen ([2] Theorem 4.3 and also cf. [1]).

Theorem of Strassen. Let $\left\{Y_{k}, \mathfrak{\mho}_{k}\right\}$ be a martingale difference sequence. Then without changing the distribution of $\left\{Y_{k}\right\}$ we can redefine the sequence $\left\{Y_{k}\right\}$ on a richer probability space together with a sequence $\left\{T_{k}\right\}$ of non-negative : r andom variables and standard Brownian motion $\{X(t), t \geqq 0\}$ such that

$$
\sum_{m=1}^{k} Y_{m}=X\left(\sum_{m=1}^{k} T_{m}\right) \quad \text { a.s. }
$$

Moreover, if \mathbb{G}_{k} is the σ-field generated by $\left\{X(t), 0 \leqq t \leqq \sum_{m=1}^{k} T_{m}\right\}$, then T_{k} is \mathscr{A}_{k}-measurable and for some constant C

$$
\begin{gathered}
E\left(T_{k} \mid \mathscr{G}_{k-1}\right)=E\left(Y_{k}^{2} \mid \mathscr{G}_{k-1}\right)=E\left(Y_{k}^{2} \mid \mathfrak{S}_{k-1}\right), \\
E\left(T_{k}^{2} \mid \mathfrak{S}_{k-1}\right) \leqq C E\left(Y_{k}^{4} \mid \mathfrak{S}_{k-1}\right) \quad a . s .,
\end{gathered}
$$

where \mathfrak{S}_{k} is the σ-field generated by $\left\{Y_{m}, 1 \leqq m \leqq k\right\}$.
2. Preliminaries. I. Let us put, for each k,

$$
\left\{\begin{array}{l}
p(0)=0, \quad p(k)=\max \left\{m ; n_{m}<2^{k}\right\}, \tag{2.1}\\
\Delta_{k}=\sum_{m=p(k)+1}^{p(k+1)} \xi_{m} \text { and } \quad B_{k}=A_{p(k+1)}
\end{array}\right.
$$

Then if $p(k)+1<p(k+1)$, we have, by (1.1),

$$
\begin{aligned}
2 & >n_{p(k+1)} / n_{p(k)+1}>\prod_{m=p(k)+1}^{p(k+1)-1}\left(1+c m^{-\alpha}\right) \\
& >1+c\{p(k+1)-p(k)-1\} p^{-\alpha}(k+1)
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
p(k+1)-p(k)=O\left(p^{\alpha}(k)\right), \quad \text { as } \quad k \rightarrow+\infty \tag{2.2}
\end{equation*}
$$

and if $m_{k}=o\left(p^{1-\alpha}(k)\right)$ as $k \rightarrow+\infty$, then

$$
\begin{equation*}
p\left(k+m_{k}\right) / p(k) \rightarrow 1, \quad \text { as } \quad k \rightarrow+\infty . \tag{2.3}
\end{equation*}
$$

Further, we obtain from (1.2) and (2.2)

$$
\left\{\begin{array}{l}
\max _{k}=\max _{p(k)<m \leqq p(k+1)} a_{m}=O\left(B_{k} p^{-\alpha}(k)\left(\log B_{k}\right)^{-\beta}\right), \tag{2.4}\\
p(k+1) \\
\sum_{m p(k)+1}^{p} a_{m} \leqq b_{k}\{p(k+1)-p(k)\}=O\left(B_{k}\left(\log B_{k}\right)^{-\beta}\right), \\
E \Delta_{k}^{2} \leqq b_{k}^{2}\{p(k+1)-p(k)\}=O\left(B_{k}^{2} p^{-\alpha}(k)\left(\log B_{k}\right)^{-2 \beta}\right), \\
\text { as } k \rightarrow+\infty
\end{array}\right.
$$

On the other hand, by (1.2) we have

$$
\sum_{m=1}^{k}\left(\log A_{m}\right)^{2 \beta} a_{m}^{2} / A_{m}^{2}=O(k), \quad \text { as } \quad k \rightarrow+\infty
$$

Therefore, we have

$$
\begin{equation*}
\log \log B_{k}=O(\log p(k)), \quad \text { as } \quad k \rightarrow+\infty \tag{2.5}
\end{equation*}
$$

II. Lemma 1. For any given integers k, j, q and h such that $p(j)+1<h \leqq p(j+1)<p(k)+1<q \leqq p(k+1)$, the number of solutions (n_{r}, n_{i}) of the equations

$$
n_{q}-n_{r}=n_{h} \pm n_{i}
$$

where $p(j)<i<h$ and $p(k)<r<q$, is at most $C 2^{j-k} p^{\alpha}(k)$ for some constant C which does not depend on k, j, q and h.

Proof. If $k<j+5$, the lemma is evident by (2.2). We assume that $k \geqq j+5$. Let m denote the smallest index r of the solutions $\left(n_{r}, n_{i}\right)$. Then the number of solutions is at most $q-m$. Since $\left(n_{h} \pm n_{i}\right) \leqq 2^{j+2}$ we have

$$
n_{m} \geqq n_{q}-2^{j+2}>n_{q}\left(1-2^{j+2-k}\right) \geqq n_{q}\left(1+2^{j-k} \cdot 5\right)^{-1}
$$

By (1.1) we have

$$
1+2^{j-k} \cdot 5>n_{q} / n_{m}>\prod_{s=m}^{q-1}\left(1+c s^{-\alpha}\right)>1+c(q-m) p^{-\alpha}(k+1)
$$

Therefore, by (2.3) we can prove the lemma.
Lemma 2. For any M and $N(M<N)$ we have

$$
E\left(\left|\sum_{m=M}^{N}\left\{\Delta_{m}^{2}-E \Delta_{m}^{2}\right\}\right|^{2}\right) \leqq C B_{N}^{2} \sum_{m=M}^{N} E \Delta_{m}^{2}\left(\log B_{N}\right)^{-2 \beta}
$$

where C is a positive constant which does not depend on M and N.
Proof. For $k=1,2, \cdots$ let us put

$$
U_{k}=\Delta_{k}^{2}-E \Delta_{k}^{2}-2^{-1} \sum_{m=p(k)+1}^{p(k+1)} a_{m}^{2} \cos 4 \pi\left(n_{m} \omega+\alpha_{m}\right) .
$$

Then by (1.2) and (2.4) we have

$$
\begin{aligned}
& \left\{E\left|\sum_{m=M}^{N}\left(U_{m}^{2}-E \Delta_{m}^{2}\right)\right|^{2}\right\}^{1 / 2} \leqq\left\{E\left(\sum_{m=M}^{N} U_{m}\right)^{2}\right\}^{1 / 2}+2^{-1}\left(\sum_{m=M}^{N} \sum_{j=p(m)+1}^{p(m+1)} a_{j}^{4}\right)^{1 / 2} \\
& \quad=\left|2 \sum_{k=M+1}^{N} \sum_{j=M}^{k-1} E U_{k} U_{j}\right|^{1 / 2}+O\left(\left\{\sum_{m=M}^{N} E \Delta_{m}^{2} B_{N}^{2}\left(\log B_{N}\right)^{-2 \beta}\right\}^{1 / 2}\right), \text { as } N \rightarrow+\infty .
\end{aligned}
$$

Further, by Lemma 1 and (2.4) we have for $k>j$

$$
\begin{aligned}
& \left|E U_{k} U_{j}\right| \leqq C 2^{j-k} p^{\alpha}(k) \sum_{q=p(k)+1}^{p(k+1)} a_{q} b_{k} \sum_{k=p(j)+1}^{p(j+1)} a_{h} b_{j} \\
& \quad=O\left(2^{j-k}\left\{E \Delta_{k}^{2} E \Delta_{j}^{2} p^{\alpha}(k) p^{-\alpha}(j)\right\}^{1 / 2} B_{N}{ }^{2}\left(\log B_{N}\right)^{-2 \beta}\right), \quad \text { as } \quad N \rightarrow+\infty .
\end{aligned}
$$

Since $p(j+1) / p(j) \rightarrow 1$ as $j \rightarrow+\infty$, we have for all k

$$
\begin{equation*}
\sum_{j=1}^{k-1} p^{-\alpha}(j) 2^{j-k} \leqq C p^{-\alpha}(k), \quad \text { for some } \quad C>0 \tag{2.6}
\end{equation*}
$$

Therefore, we have

$$
\begin{aligned}
& \sum_{k=M+1}^{N} \quad \sum_{j=M}^{k-1} 2^{j-k}\left\{E \Delta_{k}^{2} E \Delta_{j}^{2} p^{\alpha}(k) p^{-\alpha}(j)\right\}^{1 / 2} \leqq C\left\{\sum_{k=M+1}^{N} E \Delta_{k}^{2}\right\}^{1 / 2}\left\{\sum_{k=M+1}^{N} \sum_{j=M}^{k-1} E \Delta_{j}^{2} 2^{j-k}\right\}^{1 / 2} \\
& \leqq C\left\{\sum_{k=M+1}^{N} E \Delta_{k}^{2}\right\}^{1 / 2}\left\{\sum_{j=M}^{N-1} E \Delta_{j}^{2} \sum_{k=j+1}^{N} 2^{j-k}\right\}^{1 / 2} \leqq C \sum_{k=M}^{N} E \Delta_{k}^{2}
\end{aligned}
$$

Also we need the following
Lemma 3. For any M and $N(M<N)$ we have

$$
E\left(\max _{M \leq r \leq N}\left|\sum_{k=M}^{r} \Delta_{k}\right|^{4}\right) \leqq C \sum_{k=M}^{N} E \Delta_{k}^{2}\left\{B_{N}{ }^{2}\left(\log B_{N}\right)^{-2 \beta}+\sum_{k=M}^{N} E \Delta_{k}^{2}\right\},
$$

where C is a positive constant independent of M and N.
Proof. From the definition of Δ_{m} we obtain
(i) $E\left(\max _{M \leqq r \leqq N}\left|\sum_{k=M}^{r} \Delta_{k}\right|^{4}\right) \leqq C E\left|\sum_{k=M}^{N} \Delta_{k}\right|^{4}$,
(ii) $E\left|\sum_{k=M}^{N} \Delta_{k}\right|^{4} \leqq C E\left(\sum_{k=M}^{N} \Delta_{k}^{2}\right)^{2}$,
which are (4.4) and (2.7), respectively, of Chapter XV in [5]. Hence for our proof it is sufficient to show that

$$
E\left(\sum_{k=M}^{N} \Delta_{k}^{2}\right)^{2} \leqq C \sum_{k=M}^{N} E \Delta_{k}^{2}\left\{B_{N}{ }^{2}\left(\log B_{N}\right)^{-2 \beta}+\sum_{k=M}^{N} E \Delta_{k}^{2}\right\} .
$$

By Lemma 2 we have

$$
\begin{aligned}
E\left|\sum_{k=M}^{N} \Delta_{k}^{2}\right|^{2} & \leqq 2 \sum_{k=M}^{N} E\left|\Delta_{k}^{2}-E \Delta_{k}^{2}\right|^{2}+2\left(\sum_{k=M}^{N} E \Delta_{k}^{2}\right)^{2} \\
& \leqq C \sum_{k=M}^{N} E \Delta_{k}^{2}\left\{B_{N}{ }^{2}\left(\log B_{N}\right)^{-2 \beta}+\sum_{k=M}^{N} E \Delta_{k}^{2}\right\}
\end{aligned}
$$

3. Division into blocks. I. Let us put $q(0)=1$ and for every $k \geqq 1$

$$
\begin{equation*}
q(k)=\min \left\{m ; B_{m}^{2}-B_{q(k-1)}^{2} \geqq B_{q(k-1)}^{2}\left(\log B_{q(k-1)}\right)^{-1-5 c}\right\}, \tag{3.1}
\end{equation*}
$$

where ε is a positive number such that $2 \beta=1+10 \varepsilon$.
Then by (2.4) and (3.1) we have

$$
\left\{\begin{array}{l}
B_{q(k)} / B_{q(k-1)} \rightarrow 1, \quad \text { as } k \rightarrow+\infty, \tag{3.2}\\
q(k)-q(k-1)>C p^{\alpha}(q(k-1))\left(\log B_{q(k-1)}\right)^{5 \varepsilon}, \quad \text { for some } \quad C>0
\end{array}\right.
$$

Putting $\psi(k)=\left[\left\{\alpha \log p(q(k-1))+2 \beta \log \log B_{q(k-1)}\right\} / \log 2\right]$, (2.5) implies that

$$
\psi(k)= \begin{cases}O(\log p(q(k-1))), & \text { if } \quad \alpha>0, \tag{3.3}\\ O\left(\log \log B_{q(k-1)}\right), & \text { if } \quad \alpha=0, \text { as } k \rightarrow+\infty\end{cases}
$$

Since $\psi(k)=o(q(k)-q(k-1))$ as $k \rightarrow+\infty$, if we put

$$
q^{\prime}(k)=q(k-1)+\psi(k)+1
$$

then $q^{\prime}(k)<q(k)$ for all $k>k_{0}$. Without loss of generality we may assume that $q^{\prime}(k)<q(k)$ for all k. We write

$$
\left\{\begin{array}{l}
V_{k}=\sum_{m=q^{\prime}(k)}^{q(k)-1} \Delta_{m}, \quad W_{k}=\sum_{m=q(k-1)}^{q^{\prime}(k)-1} \Delta_{m} \tag{3.4}\\
C_{k}^{2}=\sum_{m=q(k-1)}^{q(k)-1} E \Delta_{m}^{2} \quad \text { and } \quad D_{N}^{2}=\sum_{k=1}^{N} C_{k}^{2}
\end{array}\right.
$$

Then from (3.1), (3.2), (3.3) and (2.4) we obtain

$$
\begin{equation*}
C_{k c}^{2}=D_{k}^{2}\left(\log D_{k}\right)^{-1-5 \varepsilon}(1+o(1)) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{align*}
E W_{k}^{2} & =O\left(D_{k}^{2} \psi(k) /\left(\log D_{k}\right)^{2 \rho} p^{\alpha}(q(k-1))\right) \tag{3.6}\\
& =o\left(C_{k}^{2} /\left(\log D_{k}\right)^{4 \varepsilon}\right), \quad \text { as } \quad k \rightarrow+\infty .
\end{align*}
$$

Lemma 4. Let μ_{k} and μ_{k}^{\prime} denote respectively the maximum and minimum frequencies of a trigonometric polynomial $\sum_{m=q(k-1)}^{q^{\prime}(k)-1}\left(\Delta_{m}^{2}-E \Delta_{m}^{2}\right)$. Then we have

$$
\mu_{k}^{\prime} / \mu_{k-1} \rightarrow+\infty \quad \text { and } \quad \mu_{k} / \mu_{k}^{\prime} \rightarrow+\infty
$$

as $k \rightarrow+\infty$. The same conclusion holds for $V_{k}^{2}-E V_{k}^{2}$.

Proof. Since (2.3) and (3.3) imply that $p(q(k-1)-\psi(k)) / p(q(k-1)) \rightarrow 1$, as $k \rightarrow+\infty$, we have, by (2.4) and (3.3),

$$
\begin{aligned}
& B_{q(k-1)}^{2}-B_{q(k-1)-\psi(k)}^{2} \geqq \psi(k) D_{k-1}^{2} / p^{\alpha}(q(k-1)-\psi(k))\left(\log D_{k-1}\right)^{2 \beta} \\
& \quad=o\left(D_{k-2}^{2} /\left(\log D_{k-2}\right)^{1+9 \varepsilon}\right), \quad \text { as } k \rightarrow+\infty .
\end{aligned}
$$

Therefore, by (3.1) it is seen that $q^{\prime}(k-1)<q(k-1)-\psi(k)$, if $k>k_{0}$. On the other hand from the definition of Δ_{m} we can see that the frequencies of terms of $\sum_{m=q(k-1)}^{q^{\prime}(k)-1}\left(\Delta_{m}^{2}-E \Delta_{m}^{2}\right)$ lie in the interval

$$
\left[c 2^{q(k-1)} / p^{\alpha}(q(k-1)), 2^{q^{\prime}(k)+1}\right]
$$

Hence we have

$$
\begin{aligned}
\mu_{k}^{\prime} / \mu_{k} & >c 2^{q(k-1)-q^{\prime}(k-1)-1} p^{-\alpha}(q(k-1))>c 2^{\psi(k)} p^{-\alpha}(q(k-1)) \\
& >c\left(\log D_{k-1}\right)^{2 \beta} \rightarrow+\infty, \quad \text { as } \quad k \rightarrow+\infty
\end{aligned}
$$

In the same way we can prove the remaining part of the lemma.
Lemma 5. We have
(i) $\sum_{k=1}^{N} \sum_{m=q(k-1)}^{q^{\prime}(k)-1} \Delta_{m}^{2}=o\left(D_{N}{ }^{2}\left(\log D_{N}\right)^{-2 \varepsilon}\right)$ a.s.,
(ii) $\sum_{k=1}^{N} V_{k}^{2}=D_{N}{ }^{2}+o\left(D_{N}{ }^{2}\left(\log D_{N}\right)^{-2 c}\right)$ a.s., as $N \rightarrow+\infty$.

Proof. (i) By Lemma 2 and Lemma 4 we have, for some $C>0$,

$$
\begin{aligned}
& E\left|\sum_{k=1}^{\infty} D_{k}^{-2}\left(\log D_{k}\right)^{2 \varepsilon} \sum_{m=q(k-1)}^{q^{\prime}(k)-1}\left(U_{m}^{2}-E J_{m}^{2}\right)\right|^{2} \\
& \quad \leqq\left.\left. C \sum_{k=1}^{\infty} D_{k}^{-4}\left(\log D_{k}\right)^{4 \varepsilon} E\right|_{m=q(k-1)} ^{q^{\prime}(k)-1}\left(\Delta_{m}^{2}-E \Delta_{m}^{2}\right)\right|^{2} \\
& \quad \leqq C\left(\sum_{k=1}^{\infty} D_{k}^{-2}\left(\log D_{k}\right)^{4 \varepsilon-2 \beta} E W_{k}^{2}\right)<+\infty
\end{aligned}
$$

This shows that the series $\sum D_{k}^{-2}\left(\log D_{k}\right)^{2 \varepsilon} \sum_{m=q(k-1)}^{q^{\prime}(k)-1}\left(\Delta_{m}^{2}-E \Delta_{m}^{2}\right)$ is the Fourier series of some square integrable function and by Lemma 4 this series converges a.s. Hence by Kronecker's lemma we have

$$
\lim _{N \rightarrow \infty} D_{N}^{-2}\left(\log D_{N}\right)^{2 \varepsilon} \sum_{k=1}^{N} \sum_{m=q(k-1)}^{q^{\prime}(k)-1}\left(\Delta_{m}^{2}-E \Delta_{m}^{2}\right)=0, \quad \text { a.s. }
$$

(ii) In the same way as in the proof of (i) we have

$$
\begin{aligned}
& E\left|\sum_{k=1}^{\infty} D_{k}^{-2}\left(\log D_{k}\right)^{2 \varepsilon}\left(V_{k}^{2}-E V_{k}^{2}\right)\right|^{2} \leqq C \sum_{k=1}^{\infty} D_{k}^{-4}\left(\log D_{k}\right)^{4 \varepsilon} E\left(V_{k}^{2}-E V_{k}^{2}\right)^{2} \\
& \quad \leqq C \sum_{k=1}^{\infty} D_{k}^{-4}\left(\log D_{k}\right)^{4 \varepsilon}\left\{E V_{k}^{4}-\left(E V_{k}^{2}\right)^{2}\right\}
\end{aligned}
$$

On the other hand, by Lemma 3, (3.4) and (3.5) we have

$$
\begin{aligned}
E V_{k}^{4} & =O\left(D_{k}^{2} E V_{k}^{2}\left(\log D_{k}\right)^{-2 \beta}+\left(E V_{k}^{2}\right)^{2}\right) \\
& =O\left(D_{C}^{2} C_{k}^{2}\left(\log D_{k}-\right)^{-2 \beta}+C_{k}^{2} D_{k}^{2}\left(\log D_{k}\right)^{-1-s_{c}}\right) \\
& =O\left(D_{k}^{2} C_{k}^{2}\left(\log D_{k}\right)^{-1-s_{c}}\right), \quad \text { as } k \rightarrow+\infty .
\end{aligned}
$$

Hence we have

$$
E\left|\sum_{k=1}^{\infty} D_{k}^{-2}\left(\log D_{k}\right)^{2 c}\left(V_{k}^{2}-E V_{k}^{2}\right)\right|^{2}<+\infty,
$$

and in the same way as in (i) we can see that

$$
\lim _{N \rightarrow \infty} D_{\bar{N}}^{-2}\left(\log D_{N}\right)^{2 c} \sum_{k=1}^{N}\left(V_{k}^{2}-E V_{k}^{2}\right)=0 \quad \text { a.s. }
$$

Since (3.6) implies that

$$
D_{N N}^{2}-\sum_{k=1}^{N} E V_{k}^{2}=\sum_{k=1}^{N-1} E W_{k}^{2}=o\left(D_{N}{ }^{2}\left(\log D_{N}\right)^{-2 t}\right), \quad \text { as } \quad N \rightarrow+\infty,
$$

we can prove the second part of the lemma.
II. Lemma 6. We have $\lim _{N \rightarrow \infty} D_{\bar{N}}^{-1} \sum_{k=1}^{N} W_{k}=0$ a.s.

Proof. For every positive integer N let us put $I_{N}=\{m ; q(k-1) \leqq$ $\left.m<q^{\prime}(k), k=1,2, \cdots, N\right\}, I_{N}^{\prime}=\left\{m ; m \in I_{N}\right.$ and m is even $\}$ and $I_{N}^{\prime \prime}=$ $\left\{m ; m \in I_{N}\right.$ and m is odd $\}$. If $m \in I_{N}$ and $\lambda_{N}=\left(\log D_{N}\right)^{2 \varepsilon} / D_{N}$, then $\left|\lambda_{N} \Delta_{m}\right|<$ $1 / 4$ for all large N. Since $|x|<1 / 2$ implies that $\exp (x) \leqq(1+x) \exp \left(x^{2}\right)$, we have

$$
\begin{aligned}
& \exp \left(\lambda_{N} \sum_{m \in I_{N}} \Delta_{m}\right)=\left\{\exp \left(2 \lambda_{N} \sum_{m \in \in_{N}^{\prime}} \Delta_{m}\right) \exp \left(2 \lambda_{N} \sum_{m \in I_{N}^{\prime}} \Delta_{m}\right)\right\}^{1 / 2} \\
& \quad \leqq\left\{\prod_{m \in I_{N}^{\prime}}\left(1+2 \lambda_{N} \Delta_{m}\right) \prod_{m \in I_{N}^{\prime N}}\left(1+2 \lambda_{N} \Delta_{m}\right)\right\}^{1 / 2} \exp \left(2 \lambda_{N}^{2} \sum_{m \in I_{N}} \Delta_{m}^{2}\right) .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& E\left\{\exp \left(\lambda_{N_{N}} \sum_{I_{N}} \Delta_{m}-2 \lambda_{N}^{2} \sum_{m \in I_{N}} A_{m}^{2}\right)\right\} \\
& \quad \leqq E\left\{\prod_{m \in I_{N}^{\prime}}\left(1+2 \lambda_{N} \Delta_{m}\right) \prod_{m \in I_{N}^{\prime N}}\left(1+2 \lambda_{N} \Delta_{m}\right)\right\}^{1 / 2} \\
& \quad \leqq\left\{E \prod_{m \in I_{N}^{\prime}}\left(1+2 \lambda_{N} \Delta_{m}\right) E \prod_{m \in I_{N}^{\prime N}}\left(1+2 \lambda_{N} \Delta_{m}\right)\right\}^{1 / 2} .
\end{aligned}
$$

Estimating the frequencies of terms of Δ_{m} for $m \in I_{N}^{\prime}$, we have

$$
E \Delta_{m} \prod_{j \in \ell_{N}}^{j<m}\left(1+2 \lambda_{N} \Delta_{j}\right)=0 .
$$

Therefore, we have

$$
E \prod_{m \in I_{N}^{\prime}}\left(1+2 \lambda_{N} \Delta_{m}\right)=E \prod_{m \in I_{N}^{\prime \prime}}\left(1+2 \lambda_{N} \Delta_{m}\right)=1
$$

and we obtain

$$
E\left\{\exp \left(\lambda_{N} \sum_{m \in I_{N}} \Delta_{m}-2 \lambda_{N}^{2} \sum_{m \in I_{N}} \Delta_{m}^{2}\right)\right\} \leqq 1
$$

If we take $x_{N}=D_{N} /\left(\log D_{N}\right)^{\text {e }}$, then we have

$$
\begin{equation*}
P\left\{\sum_{m \in I_{N}} \Delta_{m}>2 \lambda_{N} \sum_{m \in I_{N}} \Delta_{m}^{2}+x_{N}\right\} \leqq \exp \left\{-\left(\log D_{N}\right)^{\varepsilon}\right\} \tag{3.7}
\end{equation*}
$$

Next we take $m_{k}=\min \left\{m ; D_{m}^{2} \geqq \exp \left(k^{\gamma}\right)\right\}$, where γ is a positive number such that $1 /(2+5 \varepsilon)<\gamma<1 / 2$. Since

$$
\left\{\exp \left(k^{r}\right)\right\} k^{-r(1+5 \epsilon)}=o\left(\exp (k+1)^{r}-\exp \left(k^{r}\right)\right), \quad \text { as } \quad k \rightarrow+\infty,
$$

(3.5) implies that there exists an integer k_{0} such that if $k>k_{0}$, then

$$
\begin{equation*}
\exp \left\{(k+1)^{r}\right\}>D_{m_{k}}^{2} \geqq \exp \left(k^{r}\right) \tag{3.8}
\end{equation*}
$$

By (3.7) we have

$$
\sum_{k} P\left\{\sum_{m \in I_{m_{k}}} \Delta_{m}>2 D_{m_{k}}^{-1}\left(\log D_{m_{k}}\right)^{2 \varepsilon} \sum_{m \in I_{m_{k}}} \Delta_{m}^{2}+D_{m_{k}}\left(\log D_{m_{k}}\right)^{-\varepsilon}\right\}<+\infty .
$$

Therefore, by Lemma 5 (i) we have

$$
\begin{equation*}
\limsup _{k \rightarrow+\infty} D_{m_{k}}^{-1} \sum_{m \in I_{m_{k}}} \Delta_{m} \leqq 0 \quad \text { a.s. } \tag{3.9}
\end{equation*}
$$

Putting $Z_{k}=\max \left\{\left|\sum_{m=q\left(m_{k-1}\right)}^{r} \Delta_{m}\right| ; m \in I_{m_{k}}, q\left(m_{k-1}\right) \leqq r<q^{\prime}\left(m_{k}\right)\right\}$, we have, by Lemma 3 and (3.8),

$$
\begin{aligned}
E\left|Z_{k}\right|^{4} & =O\left(D_{m_{k}}^{2}\left(D_{m_{k}}^{2}-D_{m_{k-1}}^{2}\right)\left(\log D_{m_{k}}\right)^{-2 \beta}+\left(D_{m_{k}}^{2}-D_{m_{k-1}}^{2}\right)^{2}\right) \\
& =O\left(D_{m_{k}}^{4} r^{r-2-2 \gamma \beta}+D_{m_{k}}^{4} k^{-2+2 r}\right), \quad \text { as } \quad k \rightarrow+\infty .
\end{aligned}
$$

Hence, we have $\sum D_{m_{k}}^{-4} E\left|Z_{k}\right|^{4}<+\infty$ and this implies that

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} D_{m_{k}}^{-1} Z_{k}=0 \quad \text { a.s. } \tag{3.10}
\end{equation*}
$$

Since $D_{m_{k}} / D_{m_{k-1}} \rightarrow 1$ as $k \rightarrow+\infty$, (3.9) and (3.10) show that

$$
\limsup _{k \rightarrow+\infty} D_{\bar{N}}^{-1} \sum_{k=1}^{N} W_{k} \leqq 0, \quad \text { a.s. , }
$$

and replacing $\left\{W_{k}\right\}$ by $\left\{-W_{k}\right\}$, we have

$$
\liminf _{k \rightarrow+\infty} D_{N}^{-1} \sum_{k=1}^{N} W_{k} \geqq 0, \quad \text { a.s. }
$$

III. Lemma 7. For any $t \geqq 0$ let $N(t)$ and $M(t)$ denote the integers such that $D_{M(t)}^{2} \leqq A_{N(t)}^{2} \leqq t<A_{N(t)+1}^{2} \leqq D_{M(t)+1}^{2}$. Then we have

$$
S(t)=\sum_{k=1}^{M(t)} V_{k}+o\left(t^{1 / 2}\right), \quad \text { a.s., } \quad \text { as } \quad t \rightarrow+\infty
$$

Proof. By (1.4) and (2.4) we have

$$
S(t)=T_{N(t)}=\sum_{k=1}^{M(t)} V_{k}+\sum_{k=1}^{M M(t)} W_{k}+T_{N(t)}-T_{p(q(q(x)(t))}
$$

and $\left|T_{N(t)}-T_{p(q(M(t)))}\right| \leqq Z_{M(t)}+o\left(D_{M(t)}\left(\log D_{M(t)}\right)^{-\beta}\right) \quad$ as $\quad t \rightarrow+\infty$, where $Z_{k}=\max _{r}\left\{\left|\sum_{m=q(k)}^{r} \Delta_{m}\right| ; q(k) \leqq r<q(k+1)\right\}$. By Lemma 3 and (3.5) we have

$$
\begin{aligned}
\sum_{k=1}^{\infty} D_{k}^{-4} E Z_{k}^{4} & =O\left(\sum_{k=1}^{\infty} D_{k}^{-2} C_{k}^{2}\left(\log D_{k}\right)^{-2 \beta}+\sum_{k=1}^{\infty} D_{k}^{-4} C_{k}^{4}\right) \\
& =O\left(\sum_{k=1}^{\infty} D_{k}^{-2} C_{k}^{2}\left(\log D_{k}\right)^{-1-5 \varepsilon}\right)<+\infty .
\end{aligned}
$$

Hence by Lemma 6 we can prove Lemma 7.
4. Martingale representation. For each positive integer k let $r(k)=q(k)+\left[\left(2^{-1} \alpha \log p(q(k))+\beta \log \log D_{k}\right) / \log 2\right]$ and \mathfrak{F}_{k} be the σ-field generated by the intervals $\left\{\left[\nu 2^{-r(k)},(\nu+1) 2^{-r(k)}\right) ; 0 \leqq \nu<2^{r(k)}\right\}$. Then we put

$$
X_{k}=V_{k}-E\left(V_{k} \mid \Im_{k}\right) \quad \text { and } \quad Y_{k}=E\left(V_{k} \mid \Im_{k}\right)-E\left(V_{k} \mid \mathfrak{\Im}_{k-1}\right) .
$$

Clearly $\left\{Y_{k}, \mathfrak{F}_{k}\right\}$ is a martingale difference sequence.
Lemma 8. We have
(i) $\left|X_{k}\right|=o\left(C_{k}^{2} D_{k}^{-1}\left(\log D_{k}\right)^{-2 \varepsilon}\right) \quad$ a.s.,
(ii) $E\left(V_{k} \mid \mathfrak{F}_{k-1}\right)=o\left(C_{k}^{2} D_{k}^{-1}\left(\log D_{k}\right)^{-2 \varepsilon}\right) \quad$ a.s. as $k \rightarrow+\infty$.

Proof. (i) Since $\left|\xi_{j}-E\left(\xi_{j} \mid \mathfrak{F}_{k}\right)\right| \leqq a_{j} n_{j} 2^{-r(k)}$ a.s., we have by (2.2)

$$
\begin{aligned}
& \left|\Delta_{m}-E\left(\Delta_{m} \mid \mathfrak{F}_{k}\right)\right| \leqq \sum_{j=p(m)+1}^{p(m+1)} a_{j} n_{j} 2^{-r(k)} \\
& \quad=O\left(\left\{E \Delta_{m}^{2} p^{\alpha}(m)\right\}^{1 / 2} 2^{m-r(k)}\right) \quad \text { a.s. } \quad \text { as } k \rightarrow+\infty .
\end{aligned}
$$

On the other hand we have, by (2.6), (2.3) and (3.5),

$$
\begin{aligned}
& \sum_{m=q^{\prime}(k)}^{q(k)-1}\left\{E D_{m}^{2} p^{\alpha}(m)\right\}^{1 / 2} 2^{m-r(k)}=O\left\{C_{k}^{2} \sum_{m=q^{\prime}(k)}^{q(k)-1} p^{\alpha}(m) 2^{2 m-2 r(k)}\right\}^{1 / 2} \\
& \quad=O\left(C_{k} p^{\alpha / 2}(q(k)-1) 2^{q(k)-r(k)}\right)=O\left(C_{k} p^{\alpha / 2}(q(k)-1) p^{-\alpha / 2}(q(k))\left(\log D_{k}\right)^{-\beta}\right) \\
& \quad=o\left(C_{k}^{2} D_{k}^{-1}\left(\log D_{k}\right)^{-2 \varepsilon}\right), \quad \text { as } k \rightarrow+\infty
\end{aligned}
$$

By the above two relations we can complete the proof of (i).
(ii) Since $\left|E\left(\xi_{j} \mid \vartheta_{k-1}\right)\right| \leqq 2\left(2 \pi n_{j}\right)^{-1} a_{j} 2^{r(k-1)}$ a.s., we have

$$
\left|E\left(\Delta_{m} \mid \Im_{k-1}\right)\right|=O\left(\left\{E J_{m}^{2} p^{\alpha}(m)\right\}^{1 / 2} 2^{r(k-1)-m}\right) \quad \text { a.s. } \quad \text { as } k \rightarrow+\infty .
$$

On the other hand by (2.6), (2.3), (3.5) and the definitions of $\{r(k)\}$ and $\left\{q^{\prime}(k)\right\}$ we have

$$
\begin{aligned}
& \sum_{m=q^{\prime}(k)}^{q(k)-1}\left\{E D_{m}^{2} p^{\alpha}(m)\right\}^{1 / 2} 2^{r(k-1)-m}=O\left(C_{k}\left\{\sum_{m=q^{\prime}(k)}^{q(k)-1} p^{\alpha}(m) 2^{-2 m}\right\}^{1 / 2} 2^{r(k-1)}\right) \\
& \quad=O\left(C_{k} p^{\alpha / 2}\left(q^{\prime}(k)\right) 2^{r(k-1)-q^{\prime}(k)}\right)=O\left(C_{k} p^{\alpha / 2}\left(q^{\prime}(k)\right) p^{-\alpha / 2}(q(k-1))\left(\log D_{k}\right)^{-\beta}\right) \\
& \quad=o\left(C_{k}^{2} D_{k}^{-1}\left(\log D_{k}\right)^{-2 \varepsilon}\right), \quad \text { as } k \rightarrow+\infty
\end{aligned}
$$

Hence we can prove (ii).
Lemma 9. We have
(i) $\quad \sum_{k=1}^{N}\left|Y_{k}-V_{k}\right|=o\left(D_{N}\left(\log D_{N}\right)^{-2 \varepsilon}\right)$ a.s.
(ii) $\sum_{k=1}^{N} Y_{k}^{2}=D_{N}^{2}+o\left(D_{N}^{2}\left(\log D_{N}\right)^{-2 \varepsilon}\right)$ a.s. as $N \rightarrow+\infty$.

Proof. (i) follows trivially from Lemma 8.

(ii) By Lemma 5 (ii) it is sufficient to show that

$$
\left|\sum_{k=1}^{N} Y_{k}^{2}-\sum_{k=1}^{N} V_{k}^{2}\right|=o\left(D_{N}^{2}\left(\log D_{N}\right)^{-2 \varepsilon}\right) \quad \text { a.s. } \quad \text { as } N \rightarrow+\infty
$$

Since $\max _{1 \leq k \leq N}\left|Y_{k}+V_{k}\right| \leqq \max _{1 \leqq k \leq N}\left(2\left|V_{k}\right|+\left|X_{k}\right|+\left|E\left(V_{k} \mid \mathfrak{F}_{k-1}\right)\right|\right)=O\left(D_{N}\right)$ a.s. as $N \rightarrow+\infty$, (i) implies (ii). Therefore, by Lemma 7 and Lemma 9 (i) we have

$$
\begin{equation*}
S(t)=\sum_{k=1}^{M(t)} Y_{k}+o\left(t^{1 / 2}\right), \quad \text { a.s. } \quad \text { as } t \rightarrow+\infty \tag{4.1}
\end{equation*}
$$

5. Embedding procedure. We apply the theorem of Strassen stated in $\S 1$. Let $\{X(t), t \geqq 0\}$ be standard Brownian motion. Then there exist non-negative random variables T_{k} such that

$$
\left\{X\left(\sum_{m=1}^{k} T_{m}\right), k \geqq 1\right\} \quad \text { and } \quad\left\{\sum_{m=1}^{k} Y_{m}, k \geqq 1\right\}
$$

have the same distribution. Hence without loss of generality we can redefine $\left\{Y_{k}\right\}$ by

$$
\begin{equation*}
Y_{k}=X\left(\sum_{m=1}^{k} T_{m}\right)-X\left(\sum_{m=1}^{k-1} T_{m}\right) \tag{5.1}
\end{equation*}
$$

and can keep the same notation. Thus \mathscr{S}_{k} becomes the σ-field generated by $\left\{X\left(\sum_{j=1}^{m} T_{j}\right), m \leqq k\right\}$ and \mathscr{G}_{k} is the σ-field generated by $\{X(t), 0 \leqq t \leqq$ $\left.\sum_{m=1}^{k} T_{m}\right\}$. Note that $\mathscr{S}_{k} \subset \mathbb{G}_{k}, k \geqq 1$ and each T_{k} is \mathbb{S}_{k}-measurable. Moreover, for some constant C we have

$$
\left\{\begin{array}{l}
E\left(T_{k} \mid \mathscr{\oiint}_{k-1}\right)=E\left(Y_{k}^{2} \mid \mathscr{S}_{k-1}\right) \quad \text { a.s. } \tag{5.2}\\
E\left(T_{k}^{2} \mid \mathscr{S}_{k-1}\right) \leqq C E\left(Y_{k}^{4} \mid \mathfrak{S}_{k-1}\right) \quad \text { a.s. }
\end{array}\right.
$$

Lemma 10. We have

$$
\sum_{k=1}^{N} T_{k}=D_{N}^{2}+o\left(D_{N}^{2}\left(\log D_{N}\right)^{-2 \varepsilon}\right) \quad \text { a.s., } \quad \text { as } N \rightarrow+\infty
$$

Proof. By (5.2) we have

$$
\begin{aligned}
\sum_{k=1}^{N} T_{k} & -D_{N}^{2}=\sum_{k=1}^{N}\left\{T_{k}-E\left(T_{k} \mid \mathscr{G}_{k-1}\right)\right\} \\
& -\sum_{k=1}^{N}\left\{Y_{k}^{2}-E\left(Y_{k}^{2} \mid \mathfrak{S}_{k-1}\right)\right\}+\sum_{k=1}^{N} Y_{k}^{2}-D_{N}^{2}, \quad \text { a.s. }
\end{aligned}
$$

Since $E Y_{k}^{4} \leqq 16 E V_{k}^{4}$ we have, by Lemma 3 and (3.5),

$$
\begin{aligned}
E Y_{k}^{4} & =O\left(D_{k}^{2} E V_{k}^{2}\left(\log D_{k}\right)^{-2 \beta}+\left(E V_{k}^{2}\right)^{2}\right) \\
& =O\left(D_{k}^{2} C_{k}^{2}\left(\log D_{k}\right)^{-1-5 c}\right), \quad \text { as } k \rightarrow+\infty
\end{aligned}
$$

Therefore, we have

$$
\sum_{k=1}^{\infty} D_{k}^{-4}\left(\log D_{k k}\right)^{4 c} E Y_{k}^{4}<+\infty
$$

Hence by (5.2) we have

$$
\left\{\begin{array}{l}
\sum_{k=1}^{N}\left\{T_{k}-E\left(T_{k} \mid \mathscr{S}_{k-1}\right)\right\}=o\left(D_{N}^{2}\left(\log D_{N}\right)^{-2 \varepsilon}\right) \quad \text { a.s. } \\
\sum_{k=1}^{N}\left\{Y_{k}^{2}-E\left(Y_{k}^{2} \mid \mathscr{S}_{k-1}\right)\right\}=o\left(D_{N}^{2}\left(\log D_{N}\right)^{-2 \varepsilon}\right) \quad \text { a.s. } \quad \text { as } N \rightarrow+\infty
\end{array}\right.
$$

for two martingales. Therefore, by Lemma 9 (ii) we can prove the lemma.

Next let us define a random process $\left\{S^{*}(t), t \geqq 0\right\}$ by

$$
\begin{equation*}
S^{*}(t)=\sum_{k=1}^{N} Y_{k}, \quad \text { if } \quad D_{N}^{2} \leqq t<D_{N+1}^{2} \tag{5.3}
\end{equation*}
$$

Observe that $\{S(t)\}$ and $\left\{S^{*}(t)\right\}$ are not necessarily defined on the same probability space, since we redefined $\left\{Y_{k}\right\}$ by (5.1). But we can redefine $\{S(t)\},\left\{S^{*}(t)\right\}$ and $\{X(t)\}$ on still another probability space so that the joint distribution of $\left\{S^{*}(t)\right\}$ and $\{X(t)\}$ as well as that of $\{S(t)\}$ and the old version of $\left\{S^{*}(t)\right\}$ remains unchanged. Hence without loss of generality we can assume that $\{S(t)\},\left\{S^{*}(t)\right\}$ and $\{X(t)\}$ are defined on the same probability space and that the lemmas proved so far continue to hold in this new setup.

Therefore, by (4.1) and (5.3) it is enough for the proof of our theorem to show the following.

Lemma 11. We have $S^{*}(t)=X(t)+o\left(t^{1 / 2}\right)$ a.s., as $t \rightarrow+\infty$.
Proof. Let $\varepsilon_{n}=\left(\log \log D_{n}\right)^{-\varepsilon}$ and define the sets as follows:

$$
\begin{aligned}
& E_{n}=\left\{\max \left(\left|X\left(\sum_{k=1}^{n} T_{k}\right)-X(t)\right| ; D_{n}^{2} \leqq t<D_{n+1}^{2}\right)>4 \varepsilon_{n} D_{n}\right\}, \\
& F_{n}=\left\{\left|\left(\sum_{k=1}^{n} T_{k}\right)-D_{n}^{2}\right|>D_{n}^{2}\left(\log D_{n}\right)^{-2 \varepsilon}\right\} \\
& G_{n}=\left\{\left|X\left(\sum_{k=1}^{n} T_{k}\right)-X\left(D_{n}^{2}\right)\right|>2 \varepsilon_{n} D_{n}\right\} \\
& H_{n}(r, s)=\left\{\max \left(\left|X\left(D_{n}^{2}+h\right)-X\left(D_{n}^{2}\right)\right| ; 0<|h| \leqq r D_{n}^{2}\left(\log D_{n}\right)^{-2 \varepsilon}\right)>s \varepsilon_{n} D_{n}\right\}, \\
& \quad \text { for } 0<r, s<\infty .
\end{aligned}
$$

For the proof it is sufficient to show that $P\left(\lim \sup _{n \rightarrow+\infty} E_{n}\right)=0$. Since (3.5) implies

$$
E_{n} \subset G_{n} \cup H_{n}(1,2) \subset F_{n} \cup\left\{\left(F_{n}^{c} \cap H_{n}(1,2)\right)\right\} \cup H_{n}(1,2) \subset F_{n} \cup H_{n}(1,2)
$$

for $n \geqq n_{0}$ and since Lemma 10 implies $P\left(\lim \sup _{n \rightarrow+\infty} F_{n}\right)=0$, it is sufficient to show that

$$
\begin{equation*}
P\left\{\limsup _{n \rightarrow+\infty} H_{n}(1,2)\right\}=0 \tag{5.4}
\end{equation*}
$$

Let $m_{k}=\min \left\{m ; D_{m}^{2} \geqq \exp (\sqrt{k})\right\}$. Then by (3.5) there exists an integer k_{0} such that $k>k_{0}$ implies

$$
\left\{\begin{array}{l}
\exp (\sqrt{k}) \leqq D_{m_{k}}^{2}<\exp (\sqrt{k+1}) \tag{5.5}\\
D_{m_{k+1}}^{2}\left\{1+\left(\log D_{m_{k+1}}\right)^{-2 \varepsilon}\right\}<D_{m_{k}}^{2}\left\{1+2\left(\log D_{m_{k}}\right)^{-2 \varepsilon}\right\}
\end{array}\right.
$$

For $n \geqq m_{k_{0}}$ and $m_{k} \leqq n<m_{k+1}$ (5.5) implies that $H_{m_{k}}^{c}(2,1) \subset H_{n}^{c}(1,2)$. Therefore, by (5.4) it is sufficient to show that

$$
\begin{equation*}
P\left\{\limsup _{k \rightarrow+\infty} H_{m_{k}}(2,1)\right\}=0 \tag{5.6}
\end{equation*}
$$

Using Lévy's maximal inequality we have

$$
\begin{aligned}
& P\left\{H_{m_{k}}(2,1)\right\} \leqq 2 P\left\{\left|X\left(4 D_{m_{k}}^{2}\left(\log D_{m_{k}}\right)^{-2 \varepsilon}\right)\right|>\varepsilon_{m_{k}} D_{m_{k}}\right\} \\
& \quad \leqq 2 P\left\{|X(1)|>\varepsilon_{m_{k}}\left(\log D_{m_{k}}\right)^{\varepsilon} / 2\right\}<\exp \left\{-(\sqrt{k})^{\varepsilon} / 8\right\}, \quad \text { for } k>k_{0}
\end{aligned}
$$

Hence by the Borel-Cantelli lemma we can prove (5.6).

References

[1] W. Philipp and W. Stout, Almost sure invariance principles for partial sums of weakly dependent random variables, Mem. Amer. Math. Soc., No. 161 (1975).
[2] V. Strassen, Almost sure behavior of sums of independent random variables and martingales, Proc. Fifth Berkeley Symp. Math. Statist. Prob. 2 (1965), 315-343.
[3] S. Takahashi, On the law of the iterated logarithm for lacunary trigonometric series, Tôhoku Math. J. 24 (1972), 319-329 and 27 (1975), 391-403.
[4] M. Weiss, The law of the iterated logarithm for lacunary trigonometric series, Trans. Amer. Math. Soc. 91 (1959), 444-469.
[5] A. Zygmund, Trigonometric Series, Vol. II, Cambridge Univ. Press, 1959.
Department of Mathematics
Kanazawa University
Kanazawa, 920 Japan

