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Introduction. In this paper we shall study the theory of Besov
spaces (or Lipschitz spaces) and Sobolev spaces on a nilpotent Lie group.
To admit a wide variety of applications to more problems we consider
the class of “stratified groups” as a class of nilpotent Lie groups. On
such Lie groups there is a natural notion of homogeneity which enables
one to duplicate many of the standard constructions of Euclidean spaces.
But we can not yet duplicate most of results in the theory of Fourier
transforms and distributions. Hence fractional integral operators play
a fundamental role in our paper. These operators have been extensive-
ly studied by G. B. Folland [5], A. Yoshikawa [24] and H. Komatsu [10],
[11], [12], [13], ]14], [15] in a general setting. By employing the Bessel
potential as one of these fractional integral operators we develop the
theory of Besov spaces and Sobolev spaces on a stratified group. Our
paper is heavily influenced by Flett’s paper [4].

The plan of our paper is as follows: In Section 1 we present nota-
tions used in later sections and recall the necessary background material
concerning homogeneous structures on nilpotent Lie groups. In Section
2, we consider the diffusion semigroup generated by the sub-Laplacian
X on a stratified group, and we use it to define the Bessel potentials
given as fractional powers of the operator (1 + ). Further, we dis-
cuss properties of the semigroup, its kernel function and the Bessel
potentials. In Section 3 we define an analogue of the classical Besov
space in terms of the Bessel potentials and extend several basic theorems
from the Euclidean case to our case. Further we investigate several
equivalent spaces to this Besov space. In Section 4 we shall see that
this Besov space coincides with that defined by use of the Poisson semi-
group for positive fractional powers. In Section 5 we define an analogue
of the classical Sobolev space in terms of the Bessel potentials. We see
that this space has an alternative representation in terms of ‘“the Riesz
potentials” and we use it to prove the inclusion theorem in this section
and the interpolation theorem in the next section. Several basic theorems
for the interpolation space of Besov spaces and Sobolev spaces are dis-
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cussed in Section 6. In Section 7 we shall give several results concern-
ing the duals of Besov spaces and Sobolev spaces. T. M. Flett [4] has
given a long series of lemmas to prove results concerning the duals of
certain Besov spaces in mn-dimensional Euclidean spaces. But some of
these lemmas are not applicable to our case. Hence we shall prove
them through a series of lemmas slightly different.

The author would like to thank Professor S. Igari for helpful con-
versations, and would also like to thank the referee for many helpful
suggestions. Work on this paper was partially supported by KAGAKU
KENKYUHI.

1. Preliminaries. In this section we will present notations and
terminology used in later sections.

If ® is a nilpotent Lie algebra, a stratification of ® is a decomposi-
tion of & as a vector space sum, 8 = V. P --- GV, such that [V,, V;]=
Vimfor 1<j<mand [V, V,]={0}. If @ is stratified, it admits a
family of dilations, given by

T X+ X+ - + X)) =X, + 72X, + - X, (Xje V).

Let G be the corresponding simply connected Lie group. Since &
is nilpotent, the dilations v, lift via the exponential map exp to give a
one-parameter group of automorphisms of G, say 7v,. We sometimes
denote v,x simply by 7x. Let ||-|| denote a Euclidean norm on @& with
respect to which the V,’s are mutually orthogonal. We define a homo-
geneous norm on the corresponding group G by

m m 1/2m!
lexp (3%, )] = (S1xlema)™ xevy.

A stratified group means a simply connected nilpotent Lie group G
together with a stratification & = @ V, of its Lie algebra and the
dilations and the homogeneous norm defined above. We fix once and for
all a (bi-invariant) Haar measure dx on G which is the lift of Lebesgue
measure on & via exp. We shall denote the identity element of G by
e. C, denotes the set of all bounded continuous real valued functions
on G. The set of all f’s in C, which vanish at infinity is denoted by
C,. The set of all f’s in C, whose support is compact is denoted by C..
C* denotes the space of real valued indefinitely differentiable functions
in G. The set of functions in C~ of compact support is denoted by C:.
L? (1 £p < ) will denote the standard L*-space with respect to the
Haar measure dx, with the L*-norm ||-||,. We denote by X, a charac-
teristic function of a measurable set E of G. We identify the Lie
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algebra & with the left-invariant vector fields on G. A measurable
function f on G will be called homogeneous of degree \ (A €C) if fov,=
r*f for all » > 0. A differential operator D will be called homogeneous
of degree N if D(fo7v,) = v"(Df)o~, for all feC=, » > 0. In particular,
Xe® is homogeneous of degree j if and only if Xec V;. We choose
once and for all a basis X, ---, X, for V, and set J=—37r X2 Jis a
left-invariant second-order differential operator which is homogeneous

of degree 2. If a = (a, ---, &) is an [-tuple of nonnegative integers
a; =z 0, we then put |a| = a, + -+ + «a, and define D* to be X ... X
(where X, ---, X, is the basis for V,), which is a homogeneous differ-

ential operator of degree |a].

We recall properties of the homogeneous norm on G (see G. B.
Folland [5], A. W. Knapp - E. M. Stein [9] and A. Koranyi - S. Vagi [16]).

(a) The homogeneous norm |-| is a continuous function from G to
[0, =) which is of class C~ away from e and homogeneous of degree 1.

(b) |x| = 0 if and only if 2 = e.

(e) x| =]x*] for all xeG.

(d) {xe@G: |z|] <1} is compact.

(e) There is a constant C > 0 such that |zy| < C(Jz] + |y|) for all
xz,YeqG.

(f) There exist C, C, > 0 such that C|||X|| £ |z| £ C.|| X||Y™ when-
ever |x| <1, where x = exp X.

(g) d(v,x) = r*dx for each » > 0 where p is the homogeneous dimen-
sion defined by > j(dim V).

(h) If aeC and 0 < a < b < <, then there exists a constant C
such that

B ICa‘l(b“ —a%) if a#0
S lx|*"?dx = .
aslalsh (C log(b/a) if a=0.

We use C to denote a positive constant different in each occasion.
It will depend on the parameter appearing in each problem. The same
notations C are not necessarily the same on any two occurrences.

2. The Gauss-Weierstrass integral and the Bessel potential. Hence-
forth we assume that G is a stratified group of homogeneous dimension
0> 2.

In this section we give some properties of the Gauss-Weierstrass
integral and the Bessel potential associated with the heat diffusion semi-
group on G. We can construct a semigroup {H,},, of linear operators
on L' + L® with the infinitesimal generator — according to a theorem
of G. A. Hunt [7]. These properties are summarized in the following
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theorem.

THEOREM 1 (G. B. Folland [5], G. A. Hunt [7]).

(1) Hf@ =hef@ = | Lo 9@y, t >0, where

(@) h(x) = h(x, t) is of class C* om G X (0, =),

(b) Sght(w)dx =1 for all t>0,

(e) h(z,t) =0 for all xe€G and all t > 0,

(d) hyx) = h(x") for all x€G and all t > 0,

@ lim| h@dy =1 for any neighborhood U of e,

t—0 12

(£)  hyxh, = hyy, for all T, s> 0,

(g) h(rz, r®t) = r~*h(x, t) for all x€G and all r,t > 0.

(i) ||H|, =1 A=Ep=) and if 1<p< oo, {H} can be ex-
tended to a holomorphic contraction semigroup

{H.:largz| < (@/2)(1 — |1 — (2/p)])} on L.

(iii) H, s self-adjoint, and f =0 implies H,f = 0. Moreover,
H1=1.

(iv) If feL’),1 <p < o, then H,f is of class C* on GX(0, )
and (8/0t)(H.f)(x) + JH.f(x) = 0.

(v) Extend h(x,t) to G X R by setting h(x,t) =0 for t < 0. Then
h is of class C* on (G X R) — {(e, 0)}. In particular, for each x +# e,
h(x, t) vanishes rapidly as t decreases to zero.

(vi) Let (—S,) be the infinitesimal generator of {H,} on L*; then

(a) Jp @8 a closed operator on L* whose domain is dense for p <co,
and whose range is dense for 1 < p < .

d) Jpf =Jf for all feCoNLY,,1=p = co. Also, if p < oo, I,
is the smallest closed extemsion of the restriction I~ on LP.

In later sections we shall require the convergence theorem and the
representation theorem associated with the semigroup on G.

THEOREM 2 (K. Saka [19]). Let f be a measurable function on G.
Then lim, ., H,f = f holds in the following senses:

(1) in the LP-norm if feL®?, 1< p < oo,

(ii) 1m the weak star topology of L* if feL”,

(iii) wuniformly on each compact subset of G if feC,,

@iv) wuniformly if f is uniformly continuous on G, and so in partic-
wlar, if feC,

(v) almost everywhere if feL?, 1 < p < oo.

THEOREM 3 (K. Saka [19]). Suppose that u(x,t) is of class C* on
G x (0, o) such that sup,,|lu(-, )|, < o (1 = p < o).
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(1) If 1 < p < oo, then it satisfies the heat equation (0u/ot) + Ju=0
on G X (0, ) if and only if it is of the form wu(x,t) = H,f(x) where
felL?”.

(ii) If p =1, then it satisfies the heat equation and ||u(-,t) —

u(-, =0 as t, t'—0, if and only if it is of the form wu(x, t) = H,f(x)
where fe L.

Moreover, these representations are unique and || f|],=sup.o||u(-, t)ll,-

THEOREM 4. Let h,(x) = h(x, t) be the kernel function of the semi-
group {H,}. Then,

(i) for all t >0,
Clz|™ if |z[f=t
Ct—r* if |zP<t.

Also, 1f a = (ay, +--, ;) is an l-tuple of nonnegative integers a;, =0
and k is a monnegative integer, then

I ak Clxl—(P+lal+2k) ’if Iml22t
ot Ctlovlalttbiz  4f g < ¢,

M@JNé{

Dh(z, t)l < {

Further, for all t > 0,

|7

5 D

,=C {llal 2o =1m2 gphope 1 < p < oo .

(ii) Let 1 <p =< o, and put w(x, t) = H,f(x), feL?. Let a,k be
as in (i). Then for all t >0,

i

Also, if L<p<r<co and 6 = o(Ljp — 1/7), then for all t>0,

Do, 1) = cruesnf,
V4

3" @ —(la}+2i 2
|- D, o) = oo,

(iii) For each t > 0 the functions x> u(x,t) and x> (3*/ot*)u(x, t)
are uniformly continuous on G. Moreover, the functions ¢t ||u(-, t)||,
and t||(0%/0t )u(-, t)||, are decreasing on (0, ) if 1 < p < o and are
continuous on (0, ) if L < p < oo,

Proor. If ¢ < |xz|% then we have

e, 01 = [(lel 2 ot che) = Lol (50 o)

<zl sup{lh(y, t)|: ly| =1, 0 < ¢ = 1}
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< C|z|™* by Theorem 1 (v).
If |z £ ¢, then we have

|h(, 0)| = [h(E"-t7" %, t)]
= ¢7F h(t ™, 1) < ¢ sup |h(y, 1) < Ct~"
ly]=1

by Theorem 1 (v) which proves the first part of (i).
Since

ak

ot*

the second part of (i) follows in the same way.

To prove the last part of (i) we use the property (h) of the homo-
geneous norm. That is, for each ¢t > 0,

k
D“h(”ry, ’I'2t) = p(ot+lal+2k) __;tT Dah(y’ t) ,

> Dﬂh(){”d —S * penipl’ d
SG Y Y = wizse | BEF Y \ Y
a —
——D*h < S Plo-+lel+2k) ]
+ Sm?q at" (y) dy =C Iylgtl/Zlyl Yy
+C S torletlalzhzgy — Cpplal/zeh—pp=0/2
Iyl<t1/2

This completes the proof of (i).
To prove (ii), we note that

2 Do, ¢) = ( ;; Dh, )+ f(@) .

By Young’s inequality and (i),

Du(-, Dehy || NIfll, = CET ™R i1,

' ot* ot*
and, if 1/r=1/p +1/¢g —1=0,

D"‘u(- < Ct—(|a|/2+k+pu—1/q)/2>Hf”p

=g

1%
= Ct=U+k+0r | ]
To prove (iii) we see that
-y s + DI, = [[hellllul, ), = llu(-, 9)ll, A=p=o)

and so, [|u(-,t)|[, is decreasing on (0, ). Since (0*/ot")u(zx, s + t)=
h,x(3*/ot*)u(z, s), || (8*/ot*)u(-, t)||, is also decreasing on (0, «). Further,
Theorem 2 implies that both of ||u(-, t)||, and ||(0*/6t*)u(-, t)||, are con-
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tinuous on (0, ) if 1 < p < .

Since h,e L*’(1/p + 1/p" =1) for each ¢ >0 and wu(x,t) = hxf(x),
u(x, t) is uniformly continuous on G, and so is also (0*/0t*)u(x, t). This
completes the proof of the theorem.

THEOREM 5. Let 1< p <, and let u be a temperature on
G % (0, ), that is, a solution of the heat equation Ju(x, t)+ (ou/ot)(x, t) =0
on G % (0, o), such that the function t—||u(-,t)||, is locally integrable
on (0, ). Then for each s > 0 and all (z,t)eG X (0, =),

u(x, s + t) = hyxu(zx, s) = Hu(x, s) .
To prove this theorem we need two lemmas:

LEMMA 1. Suppose that wu(x,t) s a continuwous function on
G X [0, ) with wu(x, 0) =0 such that wu(x,t) is a temperature on
G X (0, ) and the function t—||u(-, t)||, is locally integrable on [0, «).
Then u(x, t) is identically zero on G X [0, ).

Proor. Fix an arbitrary element (%, £)eG X (0, =) and let B(r)=
{yeG:ly| =7} (r >0). We choose a function @(x) € C* having the fol-
lowing properties:

1 if xeZB(r) o,

@ PO =10 i gezpey T

(b) 0 =9 =1

(¢) X5 | Xjo(@)| + 2= | Xip)| = C (xeq),
where C is a constant independent of x.

Since @(x)u(x, t) € C,, we obtain by Theorem 2 that

(1) @, ) = p@uE, ) = lim He@)u(y, D)@)

= tim| w7, Op@Wu, Hdy

= lim{ k"%, T ~ e, iy -
Put w(y,t) = h(y™'x,t — t)p(y). Since wu(x,t) is a temperature on
G x (0, <),

0

0

3 0
v — <2 Xiu e u)v

for 0<t<?t.
Hence, using (1) and that u(z, 0) = 0,

(2) S: Sa<u S X + uaitv )dydt
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Il

S?SG{ (w3 X5 — 3. Xju-v) + —;t—(uv)}dydt

:
_ S: gGaLt(uv)dydt - SG Sz %(uv)dtdy
= |, tim w(y, 00ty 1) — u(w, O)ety, )y
: 1ti1rg§0u<y, DPWRYF, T — Oy = u(E, T) -
Ifo<t<t,
3 X0+ v = 3 Xig() My ™7, T~ )

+ X XE 'y, t — t)-P(y)
+ 23 X,9(y)- X;MZh, T — t)

a -
— —h(y™'Z, t — ¢t
P(y) py (y™'=, )

= 3 X;p(y) - W(y™'%, t — t)
+ 23 X;9() X;h(@ 'y, T —t) .

Therefore, using Theorem 4 (i),
(3) S X0 + 20| < (3 Xipl |hy7F, T~ 1)

+ 2| Xl | X Xh@ ™y, T — 1)
= Cly7zl™ + [27y[7*)

if y¢ZB(r) for a large . By the definition of o,
0

4 X2 2 »v=0
(4) Wt
if yezZB(r).
Substituing (3) and (4) to (2) and using Holder’s inequality, we get
_ 1
w@ Dl=c |, ol dyae
0 JzB(r/)\zB(r)

s ol e, onae (], Jureay)”

B(r")\B(r)
if 1/p + 1/p’ = 1.
From the property (h) of the homogeneous norm,
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(§ yidy)” = {C(”_"““”’" — T f g’ >
BB C(log(a' [r))*’ if »=1.
In the case p’ > 1, this integral converges to zero as 7r—o. In the
case p’ =1, u(x,t) is bounded on G x [0,Z]. As in the proof of [K.
Saka, 19: Corollary 8], we get u(z,t) =0 on G x [0, t]. Hence u(x, t) is
identically zero on G X [0, ).

LEMMA 2. Suppose that a function f(x) is continuous on G and
feLl?,1<p< . Let u(x, t)=Hf(x). Then u(x,t) converges to f(x)
uniformly on each compact subset of G as t — 0.

Proor. Obvious from Theorem 1.

PROOF oF THEOREM 5. Let s be a positive number for which
u(-, 8)|l, < . We put v(z, t) = Sah(y"x, Hu(y, s)dy, t > 0 and v(x, 0)=
u(x, s). Since u(y, s) is continuous on G and u(-, 8) € L?, »(x, t) is contin-
uous on G X [0, o) by Lemma 2. Since ||v(-, )|, = |lu(-, s)||, for all
t =0, the function ¢+ ||v(-, t)||, is locally integrable on [0, ). On the
other hand, it follows easily that the function ¢+ u(x, s + t) is contin-
uous on G X [0, ) and the function ¢+ ||u(-, s + t)||, is locally integr-
able on [0, ). By Lemma 1, we obtain .

v(x, t) = u(x, s +t), that is,
uw(x, s +t) = SG h(y 'z, tuly, s)dy .
The theorem has been proved whenever ||u(-, s)||, < <, i.e., for almost
all s > 0, and hence for all s > 0.
By this theorem, Theorem 4 (ii) (iii) implies the following corollary:

COROLLARY. Let 1<p < and let u be a temperature on
G x (0, ) such that the function ti||u(-,t)||, is locally integrable on
(0, ). Then

(i) for all t,s>0,

F o
lﬁk_D u(-, s + 1)

< Gt u(-, )]
»

Also, if 1= p<r = and 6 = p(1/p — 1/r) then

ak
o
(ii) For each t > 0, the functions x+> w(x,t) and x> (3*/0t*)u(x, t)

D*u(-,s + t)

= v u., g)]) .
r
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are uniformly continuous on G. Moreover, the functions t— ||u(-, t)||,
and t ||(3*/0t*)u(-, t)||, are decreasing on (0, =) if 1 < p <, and are
continuous on (0, ) 1f 1 < p < oo,

We now define a Bessel potential for a class of certain temperatures.

DEFINITION 1. Let £ denote the linear space of temperatures w on
G x (0, ) with the property that if k¥ is a nonnegative integer, a=
(a,, -+, ;) an [-tuple of nonnegative integers and ¢ > 0, then there
exists C > 0 such that

k
2 Deulz, b =c foralezc.

sup
z€G

For any real number a and for any u e < we define J*u to be the funec-
tion defined on G X (0, ) as follows:

(a) if a =0,
—a — 1 * k—a/2—1,—t k
J T ux, 8) = —F(lc = a/Z)Sot e (1 + eulzx, s + t)dt

where k is a nonnegative integer such that & > «/2,

(o) if a >0,
1 (Casm—t -
Jeu(x, s) = Stw“ “u(x, s + t)dt .
w(x, s) Tz e ‘u(x, s )

Clearly J*u(z, s) is well-defined for all real numbers «.

PROPOSITION 1. (i) If a =0, the definition of J™* 18 independent
of the choice of inmtegers k> a/2.

(ii) If k is a nomnegative integer, then J * =1+ I)*. In partic-
wlar, J° = the identity map.

(iii) For each real mumber a, J* is a linear isomorphism of T onto
itself, with inverse J % and for all real a, B, J*J? = J**4,

The proof of this proposition is almost identical to that of Theorem
8 in Flett’s paper [4] and we omit it.

PROPOSITION 2. (i) If feL’,1<p < o and u(x,t) = H,f(x) then
uez.

(i) If wu(z,t) is a temperature on G X (0, =) and the function
t—lul-, D, A =< p < o) 18 locally integrable on (0, o) then ucX.

ProoF. This follows easily from Theorem 4 (ii) and Corollary (i) of
Theorem 5.

PROPOSITION 3. (i) Let 1< p < and let feL® and u(x, t)=
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H,f(x). Then for each t > 0

T “u(-, Ol = 11 £l of a>0,
T~ u(-, )1, = CA + 7| f1l, if az0.

(ii) Let u be a temperature on G X (0, ) such that t—|lu(-,t)|,
(1 £ p £ o) 15 locally integrable on (0, ). Then for all s,t >0

||J“%(',S+t>|lp§”u(°, s)“p ’Lf CY>0,
T~ u(-, s + D, = CA + t7)]fu(-, 8, if «a=0.

Hence for any real a ||J*u(-, t)||, s locally integrable and decreasing on
(0, ©) if L< p £ = and continuous on (0, ) 1f 1 < p < co. Moreover
for each real

Ju(x, s +t) = HJu(x, s) = J*Hu(zx, s) .

We use Theorem 4 (i) and Theorem 5 to prove this proposition fol-
lowing the arguments of Flett [4: Theorem 10 and its corollary], and the
last part of (ii) follows easily from Fubini’s theorem and the fact that
u is a temperature.

LEMMA 3. Let 1 < p < o and let u be a temperature on Gx(0, «).
(i) If for 8>0and 1 <q < oo,

\ o e tiuc, it < e
then for t > 0
llu(-, O], < CL + t‘ﬁ){gjt”-le‘tnu(., tmgdt}”"
and ||u(-, t)|], = ot?) as t —0. Also, if ¢ < r < o then

([Cermeiuc, vizad™ = o[ e uc, viat]

1/q

(ii) Let 1 =g < oo, a real and a < B, and let w be a temperature
on G X (0, ) such that S goanig=|| (-, §)||dt < oo then we® and
0

1/q

({Cewomomreaeuc, opae | < o] eweeuc, piat}

(iii) Let «a 7real, ax < B. If
sup{t#e~||u(, 1)[|,} < =

then we and
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supf{t® = 2¢7*||Jou(-, t)||,} < C sup{t*?e*||u(-, t)|l,} -
t>0 t>0

Moreover, if in addition ||u(-,t)||, = o(t™"*) as t—0 then ||J*u(-, t)|,=
o(t~# %) qs t — 0.

Flett has proved this lemma in the case of n-dimensional Euclidean
space by using the following two lemmas (see [4: Theorem 11, Theorem
12]. Note that 8 is not necessarily positive). The proof is applicable
to our case.

LEMMA 4. Let 6 > 0 and let @ be a decreasing nonnegative function
on (0, «) such thats tle~'p(t)dt < oo. Then
0 o
(i) o) < edt™ + l)g t’teT'p(t)dt  for all t >0, and @(t) = o(t™?)
0

as t— 0.
(ii) for all g =1

Smt"“e“cp(t)dt < CS‘ 916 (t)dt .
0 0

LEMMA 5 (Hardy’s inequality). If 1 <qg < o, <1, and h is mea-
surable and nonnegative on (0, ) then

S:s—r {Sm h(t)dt}"ds < (g/(1 — )" Sjt—r+qhq(t)dt .

The following lemma is used later.

LEmMA 6 (Flett [3], [4]). (i) Let 1<p<r<o, p=qg< o, 0=
o1/p — 1/r) and let fe L* and w(x,t) = H,f(x). Then

{[emeuc, piae | < ciigll, -

(ii) Let 1<p<r<o,1<q=r, 6 =pd/p—1/r) and a>0, a>4.
Suppose that u(x, t) is a temperature on G X (0, ) such that

[ eeme g, pllde < oo .
Then ue¥ and
1w, )1l = Cf| tremmefuc, jat ™
Hemnce there exists a function fe L™ such that J*u = H,f and

Il = ¢ {[ eeormeac, pjsar 1.

3. Besov spaces. We shall give a definition of the Besov spaces on
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G and its alternative representations equivalent to the original definition.
Most of these are listed in Flett [4] and Taibleson [22] in the case of
n-dimensional Euclidean spaces.

DEFINITION 2. We define the space TA(a; p, q), where a is real,

1<p=Z o and 1<q< o, to be the space of temperatures ue < for
which

S: @l T ul, O],) et 7dt < oo,

equipped with the norm
*© 1/q
[ llain = {], E T2, Oyt at)

We define also the space TA(a; p, ), where « is real and 1 <p <, to
be the space of temperatures € T for which sup,., {te¢||J *2u(-, t)||,} < o,
equipped with the norm

1% [lasp,c0 = sup{te™(| (-, £)[[,} .
t>0

We denote by 2\(a;p, <), the subspace of those temperatures
u € TA(at; p, o) for which ||J**u(-, t)|l, = o(t™) as t—0. It is easily
verified that the subspace I\(a; p, =) is a closed subspace of the space
TA(a; p, ).

THEOREM 6. Let a and B be real with 3 >a,1 < p < . Then
(1) tf1=q< oo,
TA(e; p, q) = {uezz S:(t“"“’”l[.}‘ﬂu(-, DI, et dt < oo} .
Moreover, the norm ||+||s,, 18 equivalent to
(oo rru., oyl ye et

(ii) ZTA(a;p, ) = {w € T: sup.o{t¥ % "||J Pu(-, ?)|[,} < oo}
Moreover, the norm ||-|lwy. S equivalent to

sup{t*™e||J "Pu(-, D]}

(iii) TMa; p, o) = {w e Td(a; p, °): || ?u(-, Oll, = o(t™*"*") as t—0}.

This theorem follows directly from Lemma 3 (ef. Flett [4: Lemma
12]).

THEOREM 7. Let a, B be real and let 1 < p < 00,1 <q = . Then
J*? is a linear homeomorphism of TA(a; p, q) onto TA(a + B; v, q@) and of
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f‘E)"(af; D, O:’) onto I)x,(a + B, D, oo),
This theorem is immediate from Definition 3 (cf. Flett [4: Theorem
18]).

LEMMA 7. If ueZA(a;p, q), where a is 7real, 1< p < = and
1<q £ o, then
(i) for each t >0,

T u(, ), = CA + )] %]lwipg »
(ii) +f B 1s real and ¢ > 0, then for all t = ¢,
”Jﬁu(., t)”p = CHuHa;p,q .

Hence ||J*u(-,t)||, is locally integrable and decreasing on (0, =) &f
1 < p < o and continuous on (0, =) if 1 < p < oo,

This is verified easily from Proposition 3 (ii) and Lemma 3 (i) (cf.
Flett [4: Lemma 10 and Lemma 11]).

THEOREM 8. (i) Let a be real and B>a, and let 1 <p=<co. Then

T(e; p, q) = {weT:sup|luC-, B,
+ {S;(t‘ﬂ“’WHJ‘ﬂu(-, t)u,,yt-ldt}”" <co} .
Moreover the norm ||-||u,,, 18 equivalent to
sup ||u(-, O, + {|, @177, olreae |
In the case q = <o,

e p, =) = (we T gup ([uC:, D, + sap (1471, D) < )

Moreover the morm |||, 18 equivalent to

sup [[u(-, O)|l, + sup {¢7"%||J "Pu(-, 0)],} .
t21/2 0<t=1

(ii) Let a be real and let k be a monnegative integer with k> a2
and 1 < p < oo, Then if 1 £ q < oo,

T(e; p, 9) = {ue:sup fjuC-, v,
AL el ) e} <o},

Moreover the norm ||:|wp, 18 equivalent to
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k q 1/q
| > t”ldt} .

»

sup fju(-, o), + {[, (¢ |2

1
0

u(+, 1)

In the case q = <o,

k
TA(@; p, ) = fueTsup|lu(-, )ll, + sup { 7| Z_u(, 0 } < sl
t21/2 0<t=1 ot* p )
Moreover the norm ||-||ap.. 18 equivalent to
k
sup [[u(-, &), + sup {#- || -Zu(-, ) |
t21/2 0<t=1 otk 'p

and

In(a; p, <o)

k
= {3u e TAa; p, «o): H;T u(-, t)

= ot~ %) as t— O} .

»

Part (i) follows from Proposition 3 (ii), Theorem 6 and Lemma 7

(cf. Flett [4: Lemma 13]). For the proof of part (ii), see Flett [4:
Lemma 14].

DEFINITION 3. Let « be a positive numberandl1 < p < 0,1 < q <o».
We define the space A(a; p, q) by

Aa; p, q) = ‘If e L go TP H f) et dt < w}
if 1<¢9g< o, and
Aa; p, o) = {f e L" sup {te "t [|J“H.f|l,} < o}

equipped with the norms

Pl = {§ € 1T HF e et}
and
£l = suplte™ |J-HLS |

respectively.
We also define the subspace Ma; p, ) of A(a; p, «=) by

Ma; p, @) = {f e M(a; p, o) |J*H.f|l, = ot™) as t—0}.

REMARK. The referee showed me that the space A(a; co, o) coin-
cides with the Lipschitz space I', defined in Folland [5, p. 193].

THEOREM 9. Let « be a positive number andlet 1 Sp < oo, 1 Sq= oo,
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Then the map f—H.f is an isometric isomorphism of A(a;p, q) onto
TA(a; p, 9).

Proor. Although this proof is similar to the one of Flett [4:
Theorem 19], we exhibit it in order to show a corollary below.

If fed(a;p, q) and w(x,t) = H,f(x), then by Proposition 2 (i) we
have u €% and ||ullx:p,e=!|flaip,.- Conversely, suppose that u € TA(a; p, q).
Put v = J7*%u, then

u(x, 8) = J*(x, 8) = 1 rt"‘“e"’v(x, s + t)dt .

T2 + 1) Jo

Hence, using Lemma 7 (i),
lu-, 9)ll, = €] tre o, 5 + ), dt
< 0| e 4 o+ 7L [l = Ol -

From Theorem 3 there exists fe L” such that u(x, t) = H,f(x) and ||f]],<
Cllullaipg = Cllfllasp,e if 1 < p. To apply Theorem 3 for »p =1 we have
to check that ||u(-, t) — u(-, t")|[,—0 as ¢, t"—0. For this, see Flett [4].

COROLLARY. Let a be a positive nmumber and B> a, and let
l=sp=<c,1=5q=oco. If fedlo;p, q) then

Flls = Cllf llasp,e -

THEOREM 10. Let a > 0 and let 8> a,1 < p < . Then,
(1) Wf1=q< e,

A p, @) = | eLr: | @0 ToHSIl,ve tdt < oo .
0
Moreover the morm ||-||a,, 18 equivalent to
{S: @R TP H, f[],)"e" "t dt }w :

If q = oo,
Aa; p, o) = {f € L*: Stu?{t(ﬁ_“)/ze—'ﬂJ_ﬁHtpr} < oo} .
>
Moreover the morm ||-||a,, 18 equivalent to

sup {¢#-"%¢”| TV HL |}

and
Ma; p, o) = {feL” ||JPH,f|l, = ot ¥ %7 as t — 0} .
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(ii) Let k be a positive integer with k> a/2. If 1 < q < oo,

Aa; p, q) = {f e L S:( ghar

) t7dt < oo }

3t’°

Moreover the norm |||l ©8 equivalent to

oo ka2 a > - }l/q
f1ls + {S(t = t7'dt
If ¢ = o,
- o*
. o0) = . k—a/2 co
Aa; p, =) {feLv. stgop{t = (-, }< }
Moreover the norm ||«||ap. %8 equivalent to
_ oF
k—e/2
1£1l + sup{ e |-Zuc, ) |,
and
Mai g, ) = {f e L [Tt )| = ot ) as £ 0} .

PrROOF. The part (i) follows from Lemma 8.
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To prove the part (ii) let 1 < p << and fe L”. Put u(z, t) = H,f(x).
We suppose that 8 trEmem T |(0% ot )u( -, t)||sdt < oo where k> /2 is an

integer. Then
ak

1
. q(k—a/2)—1
sup lu(-, O, + {{, ¢ 3

q 1/q
dt }
P

< 11l + {{ oo )" <o

ak
e u(-, t)
By Theorem 8,

k
”f”ar:pq = ||pr {S tq(k a/2)—1 a

ot

u(-,

) dt}w

On the other hand, we suppose feA(a;p,q) and wu(x, t) = H,f(x).

By Corollary (i) of Theorem 5, we get

|- u: sup u(:, 0,

Hence, using Theorem 8,

L k
S (e L

u(-, , dt}uq
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< C{S t""““’”“t"“’dt} “sup |u(-, B)ll,
1 tz1]2
= Cts>ul/1; Ju(:, Oll, < Cll fllaspa

and

(2) {SI gatk—arm—1

0

%u(-, t)H:dt}w < C1f laspns -

Combining (1) and (2), we get
bl e ak q 1/q
q(k—a/2)—1 .
{| L, 8 8 S C IS e

so that by Corollary of Theorem 9,

”f”,, + {S: gatk—asn—1

%u(., t)H:’dt}l/q = Cllfllaspa -

This completes the proof for 1 < p < «. For p = <, the proof is simi-
lar to the above.

LEMMA 8 (Muramatsu [17]). Let (M, p,), (M, tt,) be two o-finite
measure spaces, and let K(x,y) be a (¢, X t,)-measurable function such
that

S |K(x, y)|"dp(x) < Cr for almost all ye M, ,
My

S |K(z, y)|"dp(y) = C;  for almost all xe M, ,
uy
A =Zr< o)

Then the integralo perator T: f r——»S Kz, v)f(y)dpr(y) is @ bounded linear

operator from L*(M,, tt,) into L"(}llzll, M) with ||T|| £ C7°CY?, where
1/r + 1/p — /g = 1. In particular if

| K(z, y)| =< C for almost all (x, y)e M, x M, ,
[, 1K@, 9)ldpm(@) < C for almost all ye M, ,
My

and

Sy | K(x, y)|dpe(y) < C for almost all xe M, ,
2

then the integral operator T with the kermel K(x,y) is bounded from
L*(M,, pt,) into LI(M,, pt,), where 1 = p < q < oo.

THEOREM 11. If 0<a <2 and 1 < p < o, then for 1 £q < o,
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a@; 9,0 = {f e 72 | @A Hf @) — Sl # <ol

Moreover the norm ||+||a,, 18 equivalent to
© 1/
171+ ([ @1 Bs@) - oy -2)".
For g = o,
@ p, ) = (f € L7 sup(t | Hf @) — f@)ll,) < <o} .
Moreover the morm ||:||wp,. t8 equivalent to
1£1l, + sup(e™"| H,.f(z) — f@)ll,) -

PROOF (cf. Taibleson [22: Theorem 4]). If feL? and wu(x,t) =
H,f(x), then from Theorem 2

(1) lut, & = F@)ll, < | |- (s, )

ds, 1<p=< .
V4

Let 1 < p <o and let f be any element in A(a;p, q) (0 <a <2). Then
substituting (1) to the below,

(& rluw, & = saly-2o)" < ([ (e==

o
= g ol 5 SH"

Taking K(t, s) = t™*8* Xy, dft, = t7'dt and dp, = s™'ds in Lemma 8 we
obtain

—gti (@, )

)y

% (x, 3)

(S:(t—axel[u(x, t) —_ f(x)Hp)" %)1/.1

zo(( (s gt o] Y )<

s
Conversely, suppose that

o
—i (z, 8)

[ & llu@, & - f@)ll)-2 <
Since || (0u/ot)(x, t)||,—0 as t—c by Theorem 4(ii),

(2) \_gtl@,t) ~ lim

P N—oo

o ou
—(x, t) — — (x, 2"t
% (¢, t) o (¢, 2V¢)

4

By Theorem 4 (i), we observe that
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oo | 0L (o, 8) — 2, 20|
< pan é 0% gy g—:‘@c, 249
= o 5 | O, 2000 @) — ulw, 271) |
< pen 3 [0 (g, 2)| 1 £@) — wle, 270,

2

< CE™ 3, 2747 f(2) — (e, 270,

=C f: @2kt ) | f(a) — (e, 20)], -
From the fact that

(1@ o= 17w — utw, 2 11y-2) "

= ([, &1 7@ = uta, piLy-2-)
for all k=1,2, ---, it follows that
* 1—a/2 ! dt Y
=

cs, <2m-1>k-1(§0 (t‘“”IIf(w) —u@, B, L) < e

2L (@,

Hence by Fatou’s lemma and (2),

(1, (e )

= o[ £@) — uta, oll,-2) " <o

-a_u’ (2, t
at

so that feA(a; p,q) (0 < a <2). Moreover the norm || f||u,,, iS equiv-
o 1/q

alent to || f|], + <S " |lu(z, t) — f(x)[l,,)"t‘ldt> . The proof for p =

is similar to the above.

LEmMMA 9 (R. Johnson [8]). Let h(t) be a mnonnegative, decreasing
function on (0, ), @ real, and 0 < p < q < oo. Then

{S:(tah(t»qd—;}w < C{S:uah(t»vd—;}”’ .
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For q = oo,

ne) = co | S;”(tﬂh(t»?’%—}”"

LEMMA 10. Let 1 <p < oo, if feL’NC® such that X;felL?, j=
1, .-+, n then

1£@y) = F@l < Cly |1 Xl -

PrOOF (cf. G. B. Folland [5: Proposition (5, 4)]). Suppose y =exp Y
with YeV, then floy) — f@) = Sl Yf(wexptY)dt, so that ||f(ey)—
F@l, < 171, < || S X:f 1], Next, given any y €@, write y = I1¥ ,
with y,eexp V, and |y;| < Clyl,2 =1, ---, N. Then

floy) — f@) = (f@y, - - yy) — f@y, -+ Yn-1))
+ -+ (fayy.) — flay) + (f(@y) — f(@)
so that

£y = f@)l, = €3 1wl (S Xafl,) < Clol SUES |, -
THEOREM 12. Let 1 < p < oo.
(1) For 0<a<1,

Ae; p, q) = {feL”: Sgﬂyl‘“llf(xy) — J@)I)"y"dy < o}

when 1 < q < =
and
Aa; p, ) = {f eL” Sup {ly|™ | f@xy) — flw)|}}, < e} when q = o .

Moreover the norms ||-|lwp., and ||*|lcp.. are equivalent to

1/q

1711+ (| (1l £ @) — f@)ll,) 1yl vdy)

and

1A, + sup {ly [~ fl@y) — f(@) I}

respectively, and
Ma; p, ) = {feL" || f(xy) — f@)|l, = o(y[*) as [y|—0}.
(ii) For 0 < a < 2,

Aa; p, q) = {feL”r Sa(lyl‘“!lf(wy) + fley™) — 2f (@) |,)" ]y dy < }
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when 1 < q < o and

A@; p, o) = {f e L7: sup {|y[™llflwy) + flay™) — 27 @)l;} < oo}
when q = o .
Moreover the norms ||-|lap,e and ||+||ap. are equivalent to

171, + (], Gl r @) + fay™ — 27@11)rlylrdy)
and
171, + sup {ly|™I[f@y) + flay™) — 2f @)}
respectively, and
Ma; p, ) = {feL” || flxy) + flay™) — 2f(@)|l, = o(ly|*) as |y|—0}.

ProoF (cf. E. M. Stein [20: Chapter V §4, §5]). Let feL® and put
u(z, t) = H,f(x). To prove the part (i) we assume 0 < a <1l. Note
that ga(aht/at)(w)dx — 0. Thus

2@t = D @) — f@Ndy .
Hence

S

=, |2 @i - r@ldy

Put  ,(%) = | f(xy) — f@)|l, and suppose that SG(IyI““IIf(xy)—
F@),)y|*dy < . We see from Theorem 4 (i) and (1) that

AR = tl—a/2<g , aht (y)l || f(xy) f(x) || dy
? lyl“zt
3_t _
+ Slvl2<t at (y) l ”f(xy) f(m)llpdy>
é Ctl_“ﬂX |yl“(p+2)wp(y)dy
lyl2zt
+ Ct_(l’+a)/2§ 0,(5)dy .
lyl2<t
Hence

(el 47

o, i 4
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+C(gw< (p+a)/2smz<t ,,(y)dy)q dtt >1/¢

C( °°<S 7 Xyizzal Y1 2*“(wp(y)1y|-a)1y|—pdy>" dtt

+( <§ t“”"““%«wmly|ﬂ+ﬂ<w,,<y>|yr«>|yl-ﬂdy) - )

By Lemma 8,
(1, (22 @, 0] ) 2)" < ([, Gulw,@rlyivdy)

By Theorem 10 (ii) we obtain

1 llewne < (171 + (| (19171 7@) — @)1, ) 1910w )™) .

(This inequality includes the corresponding inequality to ¢ = «.) There-
fore fe Ad(a; p, q).

Conversely, let fe A(a;p,q) and u(x, t) = H,f(x). By Theorem 2,
for each ¢t >0

Sflzy) — flx)
= lim{—-S: —%";’— (xy, s)ds + S: g—?(w, s)ds + (u(xy, t) — u(zx, t))}

-0

in the LPnorm (1 < p < <) or for almost all x€G (p = «~). Hence

2) i@y — @l <2 | [ 22 @ 9 ds + llu@, ) — e, B,

l=p=so).
From Theorem 4 (i) and Theorem 5 it follows that
3 |2 S 1 Xhuall
=Ct™” _a%"_(m, t/z)H , J=1 - m.
b4

Since H(&/&t)X,uHm—>0 as t—oo, j = 1, e, m by Theorem 4 (ii), we get
Xiu(x, t): _Sw‘%‘Xju(w, s)ds ’ j = 1’ e, M
t

Hence (3) gives that

Xt ol = |72

ot

ds <C rs‘l’z
t

ou
ot

ds
p
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- 0
—_ C S 1/2 ,
= S —t u(w S)

2t

ds, 3=1,---,n.
P

From Lemma 10,

lu@y, & — u@, O, < Cly| 5[ Xul, = Cly| | s

0
@) ds,
80 that (2) implies that
(4) lf@y) — f@)ll,

ng:Hg_t“(x,s) ’ds.

p

ds + Cr|y|s‘”2i
» 2t

—Z@‘— (@, 3)

Taking ¢ = |y|* we get

£<Sg(|y|"”||f(xy) — f(x)||p)q|y|"”dy>l/q
<ol - dt) |yl dy )
) o ol )

G
o[ ([t |28, )
[ [ (e |2 ] ) )

By Lemma 8 we obtain

1/q

ou
== (x, t
e (x, t)

ou
U (gt
~ (x, t)

ou
2% (¢
P (x, t)

ou
ot

(1 wi=nr@n = @iy vdy)”
2L @)

so(l, (e | 5w ol )

(This inequality includes the corresponding inequality to ¢ = <o.) This
proves the first parts of (i). To prove the last part of (i) we have to
see that w,(y) = o(|y|*) as |y|—0 if and only if ||(0u/dt)(z, t)||, = o(t™*+*?)
as t—0. First suppose that w,(y) = o(ly|*) as |y|—0, that is, given ¢>0
there is a positive number ¢, such that w,(y) <el|y|* if |y]P<t. (1)
gives that

tl——a/?

2@ o) sl | L) |o,wy

— tl—-a/?S

oh,
L )]0,y

lyl2<t
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+ tl“’ﬂg o ,(y)dy

oh,
T (¥)

t<lyl2<t,
oh,

S (¥)
=L+L+1I (Gf t<¢t).

We will estimate integrals I, I, and I, using Theorem 4 (i):

+ tH/ZS ®,(y)dy

toslyi2

L= 0stoen| ety ldy = Ce,
lyi2<t

I2 < Cetl—2 St<]y‘2|yl—(p+2)|y|ady = Ce ’

and

13 — Ctl—lx/2§ ‘2|y l—(p+2)+a'dy — Ctl—a/f’.to—l+ @2 0

to=ly!
(as t—0) .
Since ¢ is arbitrary, ||(du/ot)(z, t)||, = o(t7*+*"*) as t—0.

Conversely, suppose that || (ou/ot)(z, t)|[, = o(t****) as t—0, that is,
given ¢ > 0 there is a positive number ¢, such that ¢~ ||(ou/ot)(x, t)||, <e
for all 0 < ¢ < t,. By Theorem 4 (i), (4) gives that

Jat
V4

y|?
I y I—awp(y) é 2 |y 1—a'S t—1+z\'/2<t1—-a/2

|
0

o 1
R (, t)‘

1 |1—a fo as2—3/2( p1—ay2 ou 3 >
+Cly| Szwt (¢ 2@, 0) Jat
_ * _ _ | au |

1—a\ pa2—32( y1~as2 d
e e A

Sete+ [yt i 20y <.

Hence w,(y) = o(ly|®) as |y|—0. This completes the proof of (i).

Next we shall prove part (ii). Let 0 < a < 2andlet feL?, 1< p<co
and u(x, t) = H,f(x). Put o (y) = || fley) + fley™) — 2f(@)]],. We omit
the proof of the case ¢ = -« since the resulting inequality includes the
corresponding  inequality  for q = oo. First, suppose that

Sa(lyl‘“w;z’(y))"jyr”dy < co. Note that S (0*/ot*)h,(y)dy = 0. Therefore,
G

2, ) = )| T () + o) - 27@)dy

so that
azht
ot*

N o*u

!

sap)|, | 2w 0wy .
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From Theorem 4 (i),

tz —a/2

o'u 2—a/2 —(0+4) 7y (2)
—at—z(x; t) ) =Ct 1yl ) (y)dy

lyl22t

+ Ct“/zs L U ol (y)dy

lyl2<t

Hence, using Lemma 8,

({2 ol 2

ot
=c([" (Satz—“ﬂx“,.z;,.m @@y v |y -2-)"

0

+ C(Sw<Sat—(p+a)/2xflu12<u|?Il”’”((!);,”(y)]y|‘“)}y|”pdy>q %_)I/"

=¢(|, tyrop@yiyiay )" <o

Next, we shall prove the converse inequality. Since

u(x, €)= ——S (x, 8)ds + t——— (x, t) + ulx, t) — ¢ aa’; (x, €)
for 0 < e < t, we have
u(xy, €) — 2u(x, €) + u(xy™, e)
=—St s o s)ds + ¢t (my, t) + ulxy, t) — ¢ ——(my, €)

—St s—azlz(xy", s)ds + t —é;‘—(xy“, t) + uley™, ©)

ou - S‘ o
—e—— (x e)+2)\ s
o (xy™, €) 5

ou
— 2t —— (o,
o (x, ?)
—2u(x, t) + 2¢ g—?(m, €) .

Hence,
(5) |u(xy, &) — 2u(=, &) + ul@y™, &)ll,
< 48: I ds + 4e H-gTu(x, €) Hp

ot*

+2tl~£—(xy,t)——g—:1'—(%t)'p

+ ||uxy, t) — 2u(w, t) + ul@y™, 1), .
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Now, let fe d(a;p, ). Then by Theorem 10
{5 @l ) )" =p< =
Applying Lemma 9 with k() = [|(0u/ot)(z, t)||,, we get
€ Ha_u (=, S)H < Ce-g7t7 ] = Ce*?D—0 as &—0.
ot »
Hence (5) implies that
(6) Il f(xy) — 2f(w) + fley ™),
< 48 (x S)H ds + ZtH—— (xy, ) — — (=, t)“
—+ Ilu(wy t) — 2u(x, t) + ulxy™, )], -
From Theorem 4 (i),
0° 0* t
(7) H—at—z-Xa’u(W t)“ = (| Xkl W’MGE’ E) ,
_ t y pomnnd LY
éCt at <xE>P’ .7_1’ in
and so
0 * 62
(8) HTX,.u(m, t)Hp < S ds
® i || O _
=< Csts o ( ) ds, j=1,
Since by Theorem 4 (i), ||t(d*/0t?) Xu(z, t)||.—0 as t—0, 7 =1, ---, n, we
have
— 0"
Xu(z, t) S pYE
= o 8 .
= S: Py —Xu(z, s)ds + tS ——X,u(x, s)ds ,
j=1, -+, m, so that (7) gives that
0° = o
) <
(9) |1 X, 0, < S |2 ds+ tS at ds
< Tge
< C(SuS ’ Py (x, s)” ds + tS at2 (x, s)\lpds) ,
Jj= 1,---m

By Lemma 10, (9) gives that
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10)  u(zy, t) — 2u(=, ) + ul@y™, 1),
= [luley, ©) — ul@, DI, + [lulx, 1) — ul@y™, 1),

= Clyl (11 Xull,)

<Cly| (St v ]au (, S)H ds + tS:s‘“Z %— ) !pds>.
Further, using (8), Lemma 10 gives that
ay [y -2 @) < 2 @)
=clyl| s 2l @, s>\l ds .

Combining (10) and (11) with ¢ = |y|?, (6) implies that
(], w17 @) — 27 + fay e 1y edy)

s o] (w7 2 @, )] as) 1yl va)”

w20 (] (lwr] e [ 5
=, ('W‘ S

:C<SG So < - gtu
R G v
o e

By Lemma 8 we obtain the inequality required:

(], 0wl 11 r@w) = 2£@) + Sy ll,)rly - dyye

o2t ] J 4

The proof of the remaining part is similar to the corresponding proof
of (i).

THEOREM 13. Let a >0 and B> «a, and let 1 < p < . Then
Aei v, @) = {F el [T@rom I Hf )2 < o) @sq< o)

@ 9)| ds) |yl dy )"

ot*
au (@,

TN d8> lyl” dy)

) 'is ) ly|” ”dy>
Y (x, S)H > > lyl ”dy)
o] ) )

au
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and
Ala; p, =) = {feL” sup {tF 2 I H, f 1]} < oo} .

Moreover the mnorm  ||*|lape and ||*|lap. are equivalent to

o /g
171, + A | s T f e ae) ™ and 1171, + suped{ee = T2HL 1L} re-
spectively, where

[Hf@) = | 3 Hf@)ds, k= [6/2] + 1.

Proor. The space B}'3.(J,), 8> a >0, defined by Komatsu[ll: Def-
inition 5.1] coincides with the space { felr rw—awn IH,f ||yt dt < oo}
in the case discussed in our paper. Komatosu [11: Proposition 2.5] has

proved that Bj%.(J,) = B3 + J,). The fact that —(1 + J) generates
a semigroup e¢ 'H, implies that

Pia @+ ) = {Feln | (e om,) A < o

From Lemma 4 and Theorem 10 (i), we get
B3y = Ala; p, @) if 1< p<oeo.
THEOREM 14. Let 1 £ p < .
(i) If1=2q¢,=q, < and B =« then
TA(e; p, 1) C TA(e; p, q,) C TA(; D, q,)
CEMa; p, ) CZA(a; p, =) CTAB; p, 1) .
(ii) If 1=Ep<r=c, 6=p1/p—1/r) and 1=qg= < then

TA(a; p, q) CZA(a — d; 7, q) and In(a; p, =) CTIN@ — §; r, ).
In each case the imclusion mapping 1S ContinuUouUs.

PrOOF. The part (i) follows from Lemma 3 (i) and Lemma 7 (i) and
the part (ii) follows from Theorem 4 (iii), Theorem 5 and Proposition 3
(ii) (ef. T.M. Flett [4: Theorem 20]).

THEOREM 15. Let « be real and let 1 < p,q < oo. Then the space
TA(a; p, q) is a Banach space with respect to the norm ||-||xp,q-

Flett [4: Appendix II] has proved this theorem in the case of =
dimensional Euclidean space by using the following series of lemmas
and the same results also hold in our case.

LEMMA 11. Let o be real, and let 1 S p < 0,1 £ q £ oo,
(1) Let u(x, t) be a temperature on G X (0, ) such that ||u(-, t)||,
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18 locally integrable on (0, <) and let u'(x, t) be the function given by
w'(x, t) = u(x, s +t), where s >0. Then wu'eZTA(a;p,q) N INa; D, =),
and for each ¢ > 0, ||u'||xp,, < C for all s =c. The same results hold
also for the function u**(x, t) given by u*(x, t) = u(yx, s + t) where yeG
and 8> 0.

(ii) Let weZA(a;p,q). Then for each s> 0,u’cZITA(a; v, q) and
4 laipg = [|%llaip,e-  Further,

(iii) of L £q < oo, then w'—u in TA(a; », ¢) as s—0, and

(iv) if @ = oo, then w'—u in TA(a; p, ) as s—0 if and only if
u € In(a; p, o).

LEMMA 12. Let a be real, and let 1 < p < 0,1 <9< o and let
u€Z such that ||w|lwp, =01) as s—0. Then wecZTA(a;p,q) and
”u”u:p.q = lim,_, ”u’“a:p,q'

LEMMA 13. Let o be real and let 1 < p < o, feL? and u(x, t)=
H,f(x). Then for each s > 0,

CA + s fll» (a>0)
1% [lasp,s ={CA + log* 1/ f1l, (@ =0)
Cllfll, (@<0).

LEMMA 14. Let o 7real, L p < 0,1 g < oo, and let {f,} be a
sequence of functions converging in L? to a function f. Let u,(x,t)=
H,f,(x) and u(x, t) = H,f(x). Then for each s > 0, u, converges to u* in
TA(a; p, q) as n—co.

4. Besov spaces in terms of the Poisson semigroup.

DEFINITION 3. For any a > 0 and feL?, 1 <p £ «, we define J*f
by

o —_ 1 * a/2—1 _,~t
Jef(2) = Wgot/ e~ H,f()dt .

This integral exists for almost all x€ G, and ||J*f||, £ ||fll,, 1 £ p < .
It follows easily that J*J? = J*** for all @, 3> 0. If w = H,f, J*u in
this definition coincides with that of Definition 1. Moreover it follows

that J*H,f = HJ*f. For each a > 0 we define G.(x) by

— 1 * a/2—1 ,—t
G.(x) = F(a/Z)So t** e th,(x)dt .

This integral has following properties:
(a) For each ¢ >0, G, L'.
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(b) For‘a > 0, B > 0, Ga*Gp = Ga-(.p.
(¢) For each @« >0 and an [-tuple v = (v, ---,7;) of nonnegative
integers,

1 it
"Gy — a/2—1 tDTh,
D'G@) = /2)801: ¢t D7h,(z)dt
for all x # e.

(d) For each a >0 and feL?, 1 <D < o, Jf(®) = Gu* f(%).
We define the operator P, by

P =_1_S”LLHZ AN (&> 0)
t l/?l," 0‘/)' t2/4. .

Then for each ¢ > 0 we have P,f = p,xf if feL?, 1 £ p < «, where

o =2
P@) = —=|" - hyula)dn
(say p.(x) = p(=, t)).
The operator P, and its kernel p, satisfy most of properties in Theorem
1, Theorem 2 and Theorem 3 except the following properties:

(a) If feL?, 1< p < o, P,f satisfies the Laplace equation, that is,

—2-(P)@) = SPH@) .

(b) p(rs, rt) = r~*p(x, t) for all » > 0.
Further important properties for P, and p, are listed below:

(¢) For ¢t >0 and s> 0, p,h, = h,*D,.

(d If feL’”,1<p <o and a >0, PJ(x) = J*P,f(x) and p,xG,=
G.+p, for each ¢ > 0. These properties imply a following lemma analo-
gous to Theorem 4.

LEMMA 15. Let p(x) = p(x, t) be the kermel function of the semi-
group {P.}.».. Then
(i) forall t>0

Cle|™ of lzl=t
|p(, )| = { _ .
Ct if |z|<t.
If a = (a, -+, ay) 18 an l-tuple of nonnegative integers and k is a non-

negative integer them

|-2-Dpe, | = Clafmor® if o] 2 ¢
ot Cg—(o+lal+h if x| <t.

Also, forall t >0,
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H az—: Dep, || = Certwbeesmmt (1< p < o) .
Further,
(ii) let u(x, t) = P,f(x), fel? (1<p= ). Then for all t >0,

-

2 Deu(-, 1) = o,

Also, if L= p<r = and é§ = p(1/p — 1/r), then for all t > 0,
ak

2 D, t)H < Gtk 7]

(ili) For each t >0 the functions x+—u(x, t) and x> (3*/0t)ux, t) are
uniformly continuous on G, and the functions t— ||u(-,t)||, eand t—
|| (@%/ot*)u(-, t)||, are decreasing on (0, =) if 1 < p < o and are contin-
wous on (0, ) 1f 1 < p < oo,

LEMMA 16. Let 1 < p < oo, and let u(z, t) be a harmonic function
on G X (0, =), that s, u(x,t) is a solution of the Laplace equation
Fufot: = Ju on G X (0, o), such that for each t, > 0, u(x, t) is bounded
for t = t, and ||u(-, t)||, exists for each t > 0.

(i) Let 8>0and 1 <q = 0., If Swt”“llu(-, t)|]idt < oo, then
0
for t >0,

had 1/q
lut, 11, = oo | e, e |
Moreover, 1f q <1 < oo, then

(e, olaet” = of[Teriuc, oigad

1/q

(ii) Let k be a mnonnegative integer and let B be real. If
S P u(-, Ol3dt < oo, then
0

{Sm tq(ﬂ+k)—1
0

(iii) Let a be a positive number and let k be a monnegative integer.

15
) (e

1/q

o
ot*

u(.7 t)

Larf < o{[ e, ol

Py
ot*

u(-, t)

q
>ﬂ<w,
» t

then
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ak
—u(-, t)

(17 e, o1 2)" 5 o] (142 yoaye

Further, ||@* /ot u(-, t)|], = o(t"**®) as t—0 if and only if ||u(-,t)|,=
ot™) as t— 0. (In the case q =  we consider these inequalities under
usual modification using sup notation instead of integral notation.)

ProOOF. Part (i) follows from Lemma 9 and part (ii) follows from
Lemma 15 (ii). To prove (iii), we note that

u@, ¢ = |2, 9ds

so that
“l| ou
. < T (.
e, 0l = 2% ¢, 9 ds -
For 1 < ¢ < «, using Lemma 5, we get
© dt \ve S“ arl o T dt \Ve
. q_Y < _ .
(1, e, o2 < (17(e 1722, 9] as) 42

= (G, )

“ \Na/\Jo » t
By induction, part (iii) follows if 1 < ¢ < . For q = « it is easy to
prove. The last part of (iii) is also easy to prove.

o
I (-t
at(’)

DEFINITION 4. Let a > 0. We define the space A(a; p, q), where k
is a positive integer with k> a, and 1 <9 < 0,1 £ ¢ < ~ to be the
space of fe L? for which

- k—a o q_dt oo < oo
(o pr| ) Ece A=<
or
sup{t"““ 9" PfH }<°<> (@ = =)
t>0 atk i » ’

equipped with the norm

)
0

1 leine = D711 + ({7 827

wrr ] )5
or
ak

otk
ot* » } )

We denote by X(a; », ) the subspace of those fe A(a; p, «=) for which

1 llaiso = 11 £ 1l + p | 7|0 P
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HiP fH — o(t=*") as t—0.
ot =l
Lemma 16 implies that the definition of the space A(a; p, q) and Ala;

P, ) is independent of the choice of the integer k.
We obtain the following theorem similar to Theorem 12.

THEOREM 16. Let 1 < p < co.
(i) For 0<a<l,
A p, @) = {rel: | (i ife@w - f@IL) Wl dy < =} A=sq<)

and
Ale; p, ) = {feL” sup{|y| ™l f(@y) — f@)lls} < >} .

Moreover the norm |||-||lap.. and |||*||la:ip,. @7€ equivalent to
1l + (§ Qui=l few) = f@l,) 1yl dy)

and || fll, + sup, 5o {ly| 7l f(@y) — f@)|],} respectively, and
Na; p, ) = {f e L || fxy) — f@)Il, = o(ly|) as |y[—0}.
(ii) For 0 < a <2,

Ale; p, @) = {feLP‘ SG(WI”“Hf(xy) + fley™) — 2f@)||,)"y|*dy < =}

1 =qg< )

and
Al p, =) = {feL” sup {ly|™ll f(zy) + floy™) — 2f @I} < o} .

Moreover the norm |||:|llaip.g ARA |||*||laip,c @T€ equivalent to
1l + (], Quiis@w) + faw) — 27@I1)y 1yl dy )

and ||fll, + supyiso {[y| 7| f (ey) + fley™) — 2f(x)||,} respectively, and
Ma; p, ) = {f el || fxy) + flwy™) — 2f @), = o(|¥]*) as |y|— 0} .

THEOREM 17. Let 3> 0,a >0 and let 1 S p < 0,1 Sq =< co. Then
J? 18 a linear homeomorphism of A(a; p,q) onto Al + B; »,9) of
X(a; p, o) onto Ma + B; P, ).

To prove this theorem we need the following lemma:

LemMMA 17. Suppose that w(z, t) 18 harmonic on G X (0, =), which
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Jor each ¢ > 0, u(x, t) is bounded in t =c and ||u(-,t)||, exists for each
t>0. Given D>0,aa>0,t, >0 and an integer k> a such that

© f—a ak . q dt 1/q o
(S()(t prak Q) ,,) T> SD< o (1=2¢<e)
or
sup {t"“’ 0" u(- t)” }< D<o (= o0)
t>0 otk ! ») 7=

and ||u(-, t)|l, < D for all t=1t, Then there exists a function fe A(a;
D, Q) such that

(@) u(z,t) = P.f(x),

(b) (ou/at)(-, t), = o(t™) as t—0

©) WS Maip,e = CD.

This follows from Lemma 15 and Lemma 16 (cf. M. H. Taibleson
[22: Lemma 5]).

We return to the proof of Theorem 17 (cf. M. H. Taibleson [22:
Theorem 5]). First we shall show G,€ 4(8;1, =) for all 3> 0. Sup-
pose 0 < 8 < 1. For z +# ¢ we see that using Theorem 4 (i),

. 212
(1) 1G,@)| = C S £=tgth, ()it ] < CS' " pnmig=t) | odt
0 0

s o

|z|2
n CS ety C[xl””g teidt + CS
2| 0

= C|a| ™+t

te—Br2-1gg
2

£l

and
) x12

(2) XG4l éCS 171674 X, |dt = CSl "6 Xhy |dt
(1] (1]

oo |Z|2
w0 ere i Xhldr = |7 e ol ea
|zl 0
+ O et < Claees, G =1,

12|12

We write
SGle(xy) — Gy(x)|do = Slm]g]yllGﬂ(xy) — Gy()|da
+ Slxl>2ly||Gﬁ(xy) — Gy(2)|de .

The first integral can be estimated by using (1). Then
[ 16w —G@lds || (e + |G

IGp(x)Idx_gCS le|"*de < C |y .

lzl<3C1yl

=2

Slzlswlul
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Next to estimate the second integral we use (2) and Lemma 10. Then
[, [Gia) — Gi@lds < Clyl S| |XGy(w)lde
lzl<2lyl 7 JlzI>2lyl

=Clyl|  |olemide = Clyp.

lzl>2lyl

Therefore, ||Gs(xy) — Gp(x)||, < Cly|?, so that by Theorem 15, Gy e A(B;

1, «), that is, ||(0/0t)P,G;||, < Ct¥"*. To pass to the general case g8 > 0,

let & be a positive integer with &k = [B] + 1. We write 8 = B,+ -+ 84
0< B, <1. We observe that

PG, = Pz(G,al *Gﬁz Kook Gp,c) = (Duss *Gﬁl) * (pt/k*Gﬁz) Kook (p:/k*ka) .
Consequently,

9 Pt/kGﬂz

PG| =

=< C(% >51_1 .. <_Z >p"—1 = Cti*

so that G,e A(B; 1, «) for all g8 > 0.
Since it follows easily from Proposition 1 (iii) that J? is one-to-one,
we shall show that the image of A(a;p, q) under J*# lies in A + B p,
q). To prove this it is enough to see that if %k, and k, are positive in-
tegers with k, > «, k, > B, then
ofitke o  Jdt \e
)5

(S:(tkﬁkr(”ﬂ) prerll S04 ,,>q_0l1t—t—>1 SC(S (t"l"a oth

for fe A(o; p, q). Since || (6*2/0t2)P,,G4|l, < CtF 2, we get

it" Pt/kGﬁl

E s

P.f

o1tk ok o
H at"l+’°2 t , = ” at" Pc/zGﬁ atk Pt/2f
akz ak B k
= H%—kth/zGﬂ . : P.f ) = Cti™ 3{1':1 Py f )
Hence,
© _ ak1+k2 q dt 1/q © _ akl‘ q dt 1/q
ky+kg— (a4 ) 8 < S ky—a ‘ v
(So <t FYRTS tJ f p) ¢ > = C< , <t 1 o Pt/zf p) P >
. dt \e
< ky—a =
= C(So (t at" > t ) !

so that J?A(a; p, 9)cA(a + B; p, q). The corresponding inequality also
holds for g = . To see that J? is onto, let feA(a + B:p, q) and
u(x, t) = P,f(x), and let 0 < 8 < 2. Then for (x, t) G X (0, ),
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(3) JﬂJH( a" )u(x £) = ( a" )u(w £)

= s & = o o * *
= Soe H, (1 + _atT> u(x, t)ds = Soe (1 Py )pt (h,* )(x)ds
= S:e"(l + NH,u(zx, t)ds = u(x, t) .

Put g(x, t) = J**(1 + 0¢*/ot)u(x, t). Then using Lemma 15 (ii),

(0 llg@, 0ll, = ||(1+ =2) ute 0| = 0@+ e,

= Clllf|||a+,s;p,q it ¢=1.

Now, let %k, k, be two positive integers with &k, > «, k, > 8. Since
Gis€ A2 — B; 1, ),

_ak1+k2 I 20— 0* o1tk
latk1+k2 g(x, t) » So 8(2 Arlg ((1 + at )pt/2 s) ( tk ks Dise* f)ds )
ofrtke P
RSPy BIE P
Hence,
” 1+ke—a glit 7 dt \V?
(F; (| S 9620, =)

) _ ak1+k2 < t ) >q dt )1/41
< ky+hg—a i v
=C<So<t st \" ), T

) _ outks < t> )q dt >1/<1
ky+lg— (a+ ) v
+C<So<tl 2 ‘at"ﬁ"Z u(x, a)\.) 5
The first integral is divided into the integrals over (0,1) and (1, ),
say I, and I, respectively. Then
>41
J-E)

1 ky+k
I = (So<tﬂ.tkl+kr(“+ﬁ> __gt;l+; u(x, i)

dt
t
< o[, (ermeen || 2w (20 2)] ) 22 )" S Ol lersin -

from Lemma 15 (ii),

© q 1/q
Ié"‘ <C <Sl thitkp—ap— (ki +kg) ||f|[p) %_) = C||f||,, < Cllflla+ﬁ;p,q .

Since

Jhithe (

atk1+k2 w

e
2/1lp
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Hence

o0 q 1/q
(5) ([ (e ) ) <2)" S Ol lersina -
On the other hand, by Lemma 15 (ii),

(2—p)/2—1,—s

(6) llow Dl <| s*0=e(1 + %)
4), (5) and (6) imply the hypothesis of Lemma 17 are valid, and so there

exists a function g e /T(a; ?,9) (1 =q < ) such that g(x, ) = P,g(x). (3)
gives

ak 1+ kg

tk 1+kg

dsg Cterw + 72 em)|| fl],

P.f(x) = u(x, t) = JPg(x, 1) = J*P,g(x) = PJ?g() ,

so that f(x) = JPg(x), that is, J? is onto if 0 < 8 <2 and 1 < q < co.
To pass the general case 8> 0, let k' =[g/2] +1 and put g.(z, t)=
J* (L + 04/0t)*u(x, t). Then

Tigu(, t) = J* (1 + >ku(x £ = u(w, £)
’ atz ’ ’

and
19x@, D), = CA + )| fll, = Cll f llatpine if t=1.
We write 8 = 8,+:--+8, where 0 < B, < 2. Then

2], <+ 2o
s £ | 25
<O+t o (L + ) tk Tl b0 +
< C + ¢ H e * uz, t( + 1))H,,
Hence
(1, (errer| ot 1) ) -2) < C I lavinn -

From Lemma 17, there exists a function ge A(a;p, ¢) (1 < ¢ < «) such
that g.(x, t) = P.g(x), so that JPg(x) = f(x). In the case ¢ =  the cor-
responding result also follows. Moreover the result for X(a;p, «) is
verified easily from the above paragraph.

THEOREM 18. Let a >0, and let 1<p < 0,1 <qE 0. Then
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Ala; p, @) = A p, q) and Ma; p, =) = X(a; p, ).

Proor. This theorem is an immediate consequence of Theorem 7,
Theorem 12, Theorem 16 and Theorem 17.

5. Sobolev spaces. We summarize the fundamental properties of
the operator J% derived from the general theory of fractional powers of
operators. We shall refer to the comprehensive treatment of this sub-
ject in the papers of Folland [5] and Komatsu [10], [11]. Suppose that
l1<p< o,Rea>0and t =[Rea] + 1. The operator I* is defined by

. 1
«f — lim ———
35 = lim Th—a
on the domain D(J;) of all fe L? such that the limit exists in the L*-
norm. The operator J,” is defined by

|- rat

_ . 1 Sv _
of =1 t* H, fdt
Sof lim T Vs S

on the domain D(;%) of all f€ L? such that the limit exists in the L*-
norm. If Rea > 0 and &k = [Rea] + 1, we define (1 + J,)* by

@ + §,)°f = lim —*

wtk‘*a—l -t 1 k
i |[#eta + QB fat

on the domain D((1 + J,)%) of all fe€ L? such that the limit exists in the
Lr-norm. Also, we define (1 + ,)™ by

. 1

AL+J)f = T@
on L?. The function (1 + J,)™*f of this definition coincides with the
function J*f of Definition 8 for fe L?. To consider the case Rea =0,
let &, = rx dE(\) be the spectral resolution of the operator &,. Then
for Rea ;Oé 0,

("ot
0

3 = [ vame), @+ =T+ naEe .

These make sense even if Rea = 0 and can be extended to other values
of p. The fractional powers J% (@eC)of I, (1 < p < ) defineda bove
coincide with the fractional powers in the sense of Komatsu. We shall
list the fundamental properties of fractional powers J; (@¢eC) of J,
L<p<oo)

(a) ¢ is a closed operator on L’.

(b) If k is a positive integer, D(J%) is defined inductively to be the
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set of all fe D(JE™) such that J4ife DG,), and Jbf = Jo e .

(¢) If fe D) ND(J;) then Jif € D(J;) and JpJ5f = J3+f.  More-
over, %% is the smallest closed extension of 2X2. In particular

=R

(d) 3¢ is the dual operator of J%, where 1/p + 1/p" = 1.

() If feDIHNL* then fe DG if and only if J5f € L, in which
case J3f = Jif.

) If Rea < RepB and fe D) NDEE), then fe D) whenever
Rea <Rev < Re B, and |[J}fll, = ClI33 S5 11351157 where 6 = Re(v—a)/
Re(B — a). Moreover, {5 f is an analytic L” valued function of v on the
strip Rea < Rev < Re 8 and is continuous on Rea < Rev < Reg.

(g If Rea =0, ||3:fll, = CITA — &) fll, for feLr.

The same results from (a) to (g) also hold for the operator (1 + ,)*
(ae ().

(h) If Rea >0, then DI = D(A + Jp* = BR(A + J,)™ where
R((1 + J,)™ is the range of the operator (1 + J,)™

(i) For any feL? and Rea >0, H,feD(Q% and e ‘H,f € D(A+
Ip)%). Moreover, HJ:f = JeH,f for fe D(J%). Henceforth we use some-
times the properties (a)~(i) in the proofs below without mention. Now
we shall give a definition of Sobolev spaces LZ.

DEFINITION 5. Let a be a real and let 1< » < . We define the
space LZ to be the space of all forms J°u where w(z, t) = H, f(x), feL?,
equipped with the norm ||J*u||.;, = ||fll,- This space L% is obviously a
Banach space. If a >0, then we shall identify L with the space
{J°f: fe L*} under the canonical isomorphism. Folland [5] has defined
the Sobolev space S2 as S2 = D(J*®) where a =0 and 1 < p < . This
definition coincides with our definition when @ =0 and 1 < » < < from
the property (h) of % mentioned previously.

PROPOSITION 4. (i) Let 1 < p < o and let a, 8 real. Then J* is
an isometrical isomorphism of L% onto LZi,.

(i) If a =B, and 1 < p £ « then LYC L} and the inclusion map-
ving 8 continuous.

i) Ifl<p<qg<ec and 8 =a— p(1/p — 1/q), then L;C L} and
the inclusion mapping 18 continuous.

(iv) If k is a positive integer and 1 < p < oo, then L = {f e L":
Defe L” for |a| £k} and the norm in L} is equivalent to Dja<: || DS,
where D*f is a derivative of f im the semse of distributions.

PROOF. Parts (i) and (ii) are obvious. To prove (iii), let u(x, t)=
H,f(x), fe L*. From Lemma 6 (i) taking » = (p + ¢)/2 and 6 = p(1/p — 1/q),



BESOV SPACES AND SOBOLEV SPACES 423

{{"eme uc, vt | = Clifl, < o
0
Hence
{Sootq(a—ﬂ*P(l/r—l/q))/2e—tllu(.’ t)”zdt }l/q .
0

From Lemma 6 (ii), there exists a function g € L? such that J* *u(z, )=
H,g(x) and ||g|l, < C||fll,, so that Ju = J*(J*Pu) = J?H,qg, that is, LiC
L% and the inclusion mapping is continuous. Part (iv) is that of Corol-
lary (4.13) in Folland’s paper [5].

THEOREM 19. (i) Assumethat 1 < p=q=< 0,1 <p<r <o and
0 =pQ/p — 1/r). Then LicC IA(a — d;7,q).

(ii) Assume that 1 <p<r < o,1<q=7r0=pd/p —1/r). Then
TA(a + 0; p, Q) L. Further, these inclusion mappings are continuous.

ProOOF. Let we L2, then there exists a function feL” such that
Ju(x, t) = H,f(x). Let 8> a — 6. Then from Lemma 3 and Lemma 6,

{S: gotmata 1ot | J by (. §) ||gdt}1/q — { S:o gaorpm/2m1g=t| | J =m0 T may, (. 8|\t }1/(,
—{[ wesrmansie oo g pat < 0| ee BpaY < ClpL

so that u e TA(a — 0; 7, q). (For ¢ = oo, the corresponding inequality also
follows similarly.) This completes the proof of (i).
Let ueZA(a + 6; p,q) and let 8 > a + 6. Then, using Lemma 6,

1=, Dl = 17T, ), < O woeme T u, yjat |

and there exists a function fe L™ such that J *u(x, t) = H,f. Hence
% € L2. This completes the proof of (ii).

We shall give an alternative definition of the Sobolev space L2 when
a> 0.

DEFINITION 6. Let @« >0, and let 1 < p < =, and k& be a positive
integer with © > a/2 + 1. Then we denote by £ the space of those
feL® such that”(sm | e-anSy f(x)l%‘%it)m
norm ’

< oo, equipped with the
p

17 W = 151 + (1o 2

4

LEMMA 18. Let a >0, =0, vy=1 and let 1<p=<qg=< . If
u@, ) = Hf@), fel’,1<r <o, such that S |t P, £)[7 < oo,

0
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then
© dt 1/q © dt 1/q
aCyp 7 < &+ B ekl
(), 1eua, o1r2)" < o[ e rute, o 2L
(We have the above inequality wunder wusual modification in the case
qg=c orp=co. We note that I*u 1s well-defined for all a > 0.)

Proor. We see that

S, 8) = ST U, 8) = —

re

rwﬂﬂmms+wm.
0

Hence

[Su(z, 8)| < CSjtT“llﬁ}“Tu(x, s+ t)|dt < CSjtf‘llsﬂ“u(x, t)|dt ,
so that

([rvets o2 )" < o[ [ o 22

A N dt \? ds \¢
= ap=e | gatTQRB+Y )
(| (1 st et pi-2h) 22 )
By Lemma 8, we get
(Smlsasﬁu(x, S)I‘Iﬁ)uq < C<§°°Ita+rsp+ru(x’ t)lp dt )Up .
0 s . —t

The corresponding inequality for ¢ = « or » =  also holds. This com-
pletes the proof of Lemma 18.

X will denote Banach spaces, and L*(M, dy; X) the space of X-valued

L*-functions on a measure space (M, dy), equipped with the norm
1/
(1,117 117di) " where [-[] is a norm in X. 1 I= (0, co), the space Li(,
M

X) means the space L?(I, t7'dt; X) and L%(I) means the space L*(I,
t7idt; R).

THEOREM 20. Let o > 0. Then

(i) Aa;p,pcBclla;p,2) A1<p=2)

(ii) A(a;p, 2)CRicA(o;p,p) 2 =D < o).
In particular,

Al p, B cl(a;p, ©) 1< p< o).

These inclusion mappings are all continuous.

PROOF. To prove (i), let 1 <p <2 and let f be any element in

A(a; p, p), and let k be an integer as in the definition of 2. Put u(x, t)=
H,f(x). From Theorem 13, we have tF+~*:Q*+y ¢ L2 (I; L?) = L*(G; La(I)).



BESOV SPACES AND SOBOLEV SPACES 425

By Lemma 18, t* **J*y ¢ L*(G; L:(I)). Therefore fe 22.

On the other hand, let f be any element in 82, that is, t* *“Juc
L*(G; L%(I)). Then, by use of Minkowski’s inequality, t* 3% € Li(I; L?).
Thus, by Theorem 18, fe A(a; p, 2).

Next we shall prove (ii). Suppose 2 < p < . Let fed(a;p, 2),
that is, t***X*u € L:(I; L*) (Theorem 13). Using Minkowski’s inequality,
we get t"*JY*y e L*(G; Li(I)). Hence fef. On the other hand, let
feg, that is, t* Yy € L?(G; L:(I)). Then by Lemma 18,

iy e LG Li(I)) = Li(I; LP) .
Thus fe A(a; p, p). Further, from Theorem 14, A(a; p, 1) A(a; p, ).

THEOREM 21. Let a« >0, and let 1 < p < o, then L2 = 8% and the
norm ||+||a, 18 equivalent to |||-|||a:p-

REMARK. This theorem implies that the definition of 22 is independ-
ent of the choice of an integer k > a/2 + 1.

To prove the above theorem we need the following lemma:

LEMMA 19. Let 1 < p < . If feL?, we define a g-function g.(f)
for an integer k=1 by

0@ = (| 1o B @r-2)".

Then C||fll, = 19O, = CIIf ]
ProoF. To see that C||fl], = |lg.(f)ll,, it suffices to show that E, =0

in Stein’s book [21: Chapter V, Section 6, Corollary 2]. Suppose f e E,(L?),
that is, H,f = f for all £t >0. By Theorem 4 (ii), ||f|l. = | H:f |l <
Ct=*M|fll, for ¢ > 0. Taking t—, we get ||f|l. = 0. Hence f =0, that
is, E,=0. From [21: Chapter V, Section 6, Corollary 1], ||g.(Nll, = ClIfll,.

By Lemma 18, ¢,(f) = 9.(f) on G. Therefore,

Clifll, = 19N, 2 l19:(Dlls = ClI F o

Now we return to Theorem 20. Let fe® and set u(x, t) = H,f(x).
Since w e DY) for all 8> 0, I**u belongs to L?. Hence we see from
Lemma 18 and Lemma 19 that

I3 u(z, 8)ll, = Cllg. 3" u(x, $))ll, = C H(S?l I H 3 u(x, 8) [ _dté‘)m »

=c|([ 1 ruta, s + pr-2)”

=c “(S:] 1§y (g, t)|2t—1dt)m

»

=c|({1t=gue, orear) |
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Hence, ||3**u(x, s)||, is uniformly bounded with respect to s > 0. By
Theorem 3, there exists a function g € L® such that J*u(x, s) = H,g9(x).
By Theorem 2, u(x, s) and H,g(x) converge to f and g, respectively in
the Lf-norm. Since J%* is a closed operator, J%*f =g, that is,
feD(%*) = Lt. Conversely, let fe DQ%*) = L:. Then J%*fe L and
So2H,f = H%*f. From Lemma 18 and Lemma 19, we have

(Sw‘tkﬂmskﬂzf(m)lz dit )1/2 <S [ gh-arsykarz F Sarz £ (q)[2 QY dt )1/2 p

4

=c|([ e m gy r@ )| <C[I2 S|, < -

Therefore, fe Q2.
COROLLARY. If a is 7real and 1 < p < oo, then
(1) ZA(a;p, p)C LicZA(a; p,2) 1< p=2)
(ii) ZTA(a; p, 2)CLECTA(a; 0, ») (2= p < o0).
In particular,
TAa; p, 1) cLECZA(a; p, ) (1< p< o).

These inclusion mappings are all continuous.

This corollary is immediate from Theorem 7, Proposition 4 (i) and
Theorem 20.

6. Interpolation theorems for Besov spaces and Sobolev spaces.
Now we shall discuss the interpolation space of Besov spaces and Sobolev
spaces. First we recall the definition of interpolation spaces of real and
complex methods (example, see [1]). Let (X, X,) be an interpolation
couple of Banach spaces and let & and & be real numbers with &¢, <0,
and let 1<p, < o, 1<p <. We denote by Wi(p, &, Xo; Dy, &, X))
the space of those functions w(t) such that tu(t) e L(I; X,), thu(t) €
L*\(I; X)), equipped with the norm

lltfou(t)HLi“U;Xo) + Htflu(t)”Lil(I:Xl) .

We denote by (X,, X)), the space of all forms a = Swu(t)t‘ldt taking

0
u € W(Dy, &y Xo; D1y &y X,) where 6 = Eo/(&o — &) and 1/p =1~ 0)/170 + 0/1’1;
equipped with the norm

@ it || (®) ey + 1890 laziry;
w e W(po; EO, XO; pl, Slr X]_) Such that a = Swu(t) —dt—t-—iv .
0

Then we have
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(Xoy X))o, ={aec X, + X;: forall t >0, a =ul) + o)
with ¢,u(t) e Li(I; X,), t4o(t) € Li(I; X))} .
We denote by $(X,, X,) the space of all functions f(£&), £ = s + it defined
in the strip 0 < s <1 of the &-plane, with values in X, + X, continuous
and bounded with respect to the norm of X, + X, in 0<s<1 and
analytic in 0 < s < 1, and such that f(it) € X, is X,-continuous and tends

to zero as [t|—o, f(1 + it)e X, is X,-continuous and tends to zero as
|t|—co, equipped with the norm

I1flls = max[sup £ @b)llx, , sup £ + it)lx,]

Given 0 < 6 < 1, the interpolation space [X,, X,], is defined by
[Xo, Xi]y = {2 @ = f(0); feFX, XD}
equipped with the norm
ll2llo = inf{|| flls: F0) = =} .

We defined the space L%°(I; X) by L*(I, t7*'dt; X) (1 < p < =) where
X is a Banach space. To prove interpolation theorems we need the fol-
lowing lemmas:

LEMMA 20. (i) Let 0,7 be real numbers with o+t and let
0<0<1 Putp=Q0Q-—00+0t. Then
(Ly°; X), L (I; X))o, < LyH(I; X)) (Ly*(1; X), Ly (I; X))g,q

with continwous inclusion mappings.
(ii) Assume that X, X, and X, are Banach spaces and that o, «
real numbers, 1 < p, < o, 1 £ p, < ,0< 0 <1. Then

[L7(G; Xo), L*(G; X))o = L*(G; [X,, Xi]6) »

(LI, X)), Lp=(I; X))s,, = LY X)
and

(L=, X), Lip(I; X))o = Ly*(I; X)
where 1/p = (L — 0)/p, + 0/p, and a = (1 — O)a, + fa,.

Part (i) is Lemma 7.4 of Muramatsu’s paper [18], and for (ii), ex-
ample see J. Bergh and J. Lofstrom [1] or Calderén [2].

LEMMA 21. (i) Let k be a positive integer and 0 <6 <1, 1 <q < oo,
1< p<oo. Then (L, L*)s,, = A20k; p, Q).
(ii) If o and t are positive numbersand 1 < &N <o, 1 < p < oo,
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then [A(o; p, &), A(z; p, D)o = A(tt; », ) where 1/ = (1 — 0)/& + 6/p and
r=>0— 00 + 7.

Proor. Komatsu [11: Theorem 3.1] implies (i) and Grisvard [6:
Theorem 4.1] implies (ii).

LEMMA 22. Let k be a positive number and 0 <0 <1, 1 <q < oo,
1<p<co. Then
(i) The mapping

2k — 1)! _
o0 [(<T—_1>)W NSO, + Q) F
18 linear and continuous from A(2ko; v, q) onto W(q, —k6, L%; q, k(L — 0),
L?) and f = rv(x)(dx/k).
(i) The mapping
— 1 ® _
wi f = _.___[(36’“_ 1?'] V90 + ) uyar
18 limear and continuous from L%L™(I; Ly) + L%~ **~9(I; L?) onto A(2k8;
v, Q).
PROOF. This follows from Grisvard [6: Proposition 3.1 and Proposi-
tion 3.2] using Lemma 21 (i).

PROPOSITION 5. Let 0,7 be real with o0+7 and 1=p < oo,
15&7< o and 0<O<1. Putp=1—00+0c and 1/ =1 — 0)/&
+0/n. Then

(i) (%4(o; p, &), TA(T; D, ))a,c © ZA(; D, O),

(ii) [ZA(o; p, &), TA(z; , ]y < TA(; P, ©).

ProOF. By Theorem 10 (ii) the mapping T: f+ (0%/ot*)H,f is linear
and continuous from A(a; p, q) into Li* **(I; L*) for an integer k > a/2.
By Theorem 7, we may assume o, 7 > 0. By interpolation, for a fixed
integer & > max(c/2, 7/2),

Tf e (L&**(I; L*), Ly**(I; L))o,
for all fe(4A(o; p, &), A(z; D, N))o,.- By Lemma 20 (ii), Tfe Ly #*(I; L7).
This implies that fe A(y; », {), that is,

(A(o; p, &), A(T; D, Mo AW D, C)
Similarly, [4(c; p, &), A(z; p, D] C A D, §).
If 1 < p <o, we have a result stronger than the above proposition.

THEOREM 22. Let o and 7 be real numbers with o + v and let
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0<0<1, 12§70, qg=so0, 1<p< . Set p=1A— 800+ 0t; then
( i ) (zA(O.; py S)’ EE/I(Z', p, 77))0,«1 = SEA(#, p’ q):
(ii) [ZA(o; p, &), TA(T; p, D] = TAY; p, §) where 1/ = (1 —0)/& + 0/7).

PrROOF. Let 0< 0,7 <1 with ¢ 7, and let &k be a positive integer
19, 1<p<eoand0<0<1. If fe(42ko; p, =), A2kT; D, 0));,,C
A@ko; p, )+ A(2kt; p, =), then by Lemma 22 (i), there exists a mapping
T, from A(2ko; p, ) onto W(eo; —ko, Ly; -, k(1 — o), L*) and also from
AQ@kz; p, ) onto W(eo, —kt, L}; o, k(1 — 7), L?) such that f=
S wWNIN with T,f = u(\). Put W, = W(eo, —ko, Li; o, k(1 — o), L?)

0
and W, = W(e, —kr, LE; -, k(1 — 7), L?). By interpolation, we have
u(\) € (W, W,),,,- Hence,
w(\) € (Lg*(I; L), L (I; Li))s,
and
u(N) € (L ~*=(I; LP), Ly~ ="(I; L*))g,q -
From Lemma 20 (i),
u(\) € Ly*(I; Ly) and  wu(h) e Ly 7*79(I; L7) ,

so that u(\) e W(g, —kp, Lt ¢, k(L — 1), L?). Since f = ru(x)wdx, we
0
get, using Lemma 21 (i), fe (L&, L?).,, = AQ@Qpk; p, ). Hence
(A@ko; p, o), AQkT; D, )4,  A2pk; D, q)

for a positive integer k¥ and 0 < 0,7 <1, 6 #7. On the other hand, if
fed@uk, p, @) = (L&, L),,,, then we write f = v,(\) + »,(\) where v,(\) €
L*(I; Lg) and v,(\) € Ly ~**"»(I; L*). From Lemma 20 (i),

vo(N) € (Ly*(I; L), L™ (I; Lie))o.q

and
vi(\) € (Ly*4=(I; L), Ly™*72(I; L7)g,q -
We put
L, = Ly*(I; L) + L™ L)
and

L, = Ly*(I; L) + Ly ™0(T; L) |

Hence, f = v,(\) + v,(0) = u(\) € (Ly, Ly)o,,- By Lemma 22 (ii), there is a
mapping T, from L, onto A(2ko; p, 1) and from L, onto A(2kr;p,1). By
interpolation,

T € (A@2ka; p, 1), AQ2kz; D, 1))s,,
and, using Lemma 22 (i),
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T = 2= DL wgu, 4 )

T =11
— (2k — 1)! b k—10Rk —2k —
————((k_l)!)zsox v+ Q) Hfdh = f

so that fe (4(2ko; p, 1), A(2kz; p, 1))s,,. Hence, 4(2ky; p, ) C(4(2ko; p, 1),
AQkz; p, 1))s,,. Moreover, from Theorem 14,

AQ2ky; p, @) C(A(2ko; p, 1), A(2kT; p, 1))s,, (A(2k0; D, &), AQkT; D, 7))o,
C(A@ko; p, o), A2kT; P, ))s,, ARkt D, @) ,

so that A(2ky; p, @) = (A(2ko; p, &), A2kT; p, 1))s,, When 0< o, 7,0 <1,
0#7, 1<q< >~ and 1< p< . By Theorem 7, it follows that

(ZA(o; D, &), TA(T; D, 7))e,e = TAY; D, @)

for any real numbers g, 7. From Theorem 7 and Lemma 21 (ii) it follows
that

[TA(o; p, &), TA(z; p, D]y = TA(: , §)

for any real o, v, where 1/{ = (1 — 6)/¢ + 6/n. This completes the proof
of the theorem.

PROPOSITION 6. Let 0,7 and a be real numbers and let 0 < 6 < 1,
1<p,g<co. Putl/r=Q0—0)p+0lqgand t=1A— 0o + 6r. Then
(i) [Li, L, Ly
(ii) Li=[L3 L],
(i) Lg = [LE, Lilo-
The above inclusion mappings are all continuous.

PrROOF. From Proposition 4, we may assume that ¢ and ¢ are posi-
tive numbers. Let k be a positive integer with & > max(a/2 + 1, /2 + 1).
By Theorem 21, the operator J* is a linear bounded operator from L?
into L*(G; L%*°? and from L? into L*(G; L%*/*). By interpolation, the
operator {* is a linear and continuous mapping from [L2, L{], into
[L*(G; L%, LY(G; L%**)],. Since by Lemma 20 (ii), [L*(G; Ly*7),
L(G; Ly, = L"(G; Ly***) and [L?, LYl,c[L?, L*], = L, we have [L2,
Li,cL,. In order to prove that Lic[LZ, L*],, it is enough from Prop-
osition 4 to show that L?,c[L? L*], when 0 >0, 0<6<1l. Let
u € L%, that is, u(x, t) = J°H, f(x) with fe L*. We put g(z) = A(z)J**H,f,
where A(z) = I'1 + zo). By the fundamental property (f) of fractional
powers 2, the mapping z+ g(2) is analytic for 0 < Rez <1 and contin-
uous for 0 < Rez < 1. We see that for a real s,
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llg(is) ||, = [AGs)| ||J*"H f ||, = |A@s)| [|(1 + I)~***H, fll,
< |I'( + is0)| |r(1 + i%)'”lnfnﬁo as 8| — oo .

Hence, g(is) € L* and ||g(4s)||,—0 as |s|—co. On the other hand,
g1 + i8) = A(L + is)J*""H,f = A1 + is)J° H(J**f) e L?
and

gL + i8)l,., = [AQ + is)| || T £,
SITA+ 0 +i09)l|T (1+-Z2) | Ifl, 0 as |5 =

Hence g(0) = A@)J°H,f = A@)u(x, t) e [L2, L*],. This implies that L?,C
[LZ, L*],. Therefore (ii) follows from (i). (iii) is verified easily. The
proof of the proposition is complete.

REMARK. Part (ii) is essentially due to Folland [5: Theorem (4.7)]
when ¢ =0 and 7 = 0.

THEOREM 23. Let a and B be real mumbers and let 0 <0 <1,
l1<p<ewoand 1<qg= . Put =01 —0a+ 06. Then

(L2, Lps,e = TA(5 9, Q) -
ProoF. From Corollary of Theorem 21 and Theorem 22 we obtain
LA », @) = (Td(a;p, 1), TA(B; v, 1))s,e © (L&, L)o,q
C(XA(a; p, ), TAB; D, =)o, = TA(L D, @) -
Thus, TA(; p, @) = (L&, LE)o,q-
7. The duals of the Sobolev spaces and Besov spaces. If B is a
Banach space, then we denote by B’ the dual space of B. The follow-

ing theorem is verified easily from the duality theory of interpolation
spaces. (Example; see J. Bergh and J. Lofstrom [1] and Taibleson [23].)

THEOREM 24. (i) Let a bereal and letl < p < o and 1/p+1/p =1.
Then,

(L) = L7, .

(ii) Let @ be real and let 1<p< o, 1<qg<c. Putl/p+1/p' =1
and 1/g +1/¢" =1. Then

IA(a; p, @) = TA(—a; 9, q) .

Flett [4] has shown that the duals of TA(a;p, 1) and Tr(a; p, )
are $A(—a; p’, ) and TA(—a; p’, 1) respectively after a long series of



432 K. SAKA

lemmas in a »-dimensional Euclidean space. But some of these lemmas
are not applicable to our case. Thus we shall prove the above duality
theorem under appropriate modifications in our case.

LEMMA 23. Let 1<p < and 1/p + 1/p’' =1, and let u, v be tem-
peratures on G X (0, ) such that ||u(-,?)|], and ||v(-, )|, are locally
integrable. Then for all positive numbers s,, s, t,, t, such that s, + s,=
t, + t, we have

S u(x, s)v(x, s,)dx = § u(x, t)v(x, t,)dx .
G G
ProoF (cf. Flett [4: Lemma 15]). Obvious from Fubini’s theorem.

LEMMA 24. Let 0<a<2, 1=p<c,l/p+1/p"=1. For all
U €TA(—a; p, ) and all veITA(a; p, 1) let

{u, v) = S:SGe“u (y, %)J“"’v(y,—é—)d*ydt .

Then, (1) [Ku, v)| = Cllwl|-aipr,el| Vllap,

(if) <, v) = lim,.o| w@, Do)y, where v, t) = Ko@), ge L* (cf.
Theorem 9).

(iii) If weZA(—a; p’, ) and {u, v) = 0 for all veITA(a;p, 1) then
u = 0.

(iv) If velZd(a;p, 1) and {u, v) = 0 for all u€IN(—a; p’, =) then
v=0.

V) If welSA(—a; v, ), veZTA(a; p, 1) and s > 0 then {(u’, v) = {u,
v*y, where u* is as in Lemma 11.

i) If ueZIA(—a;p’, ) and v is a temperature on G X (0, o)
such that t— ||v(-, t)||, 18 decreasing on (0, =) then for all positive s, t,

Cw, v+ = Sau(y, s)v(y, t)dy .

PrOOF (cf. Flett [4: Lemma 27]). By Holder’s inequality, part (i)
is verified easily. Part (ii) follows immediately from Lemma 11 (iii),
Lemma 23 and part (i). Parts (iii), (iv), (v) and (vi) follow easily from
Lemma 23.

LEMMA 25. Let abe real,and let 1 < p < o, 1Zq= . Suppose
that F is a continuwous limear functional on either TA(a;p, q) or
In(a; p, =) and let h**(x,t) = h(y™x, s +t) and u(y, 8) = F(h*°) where
(¥, 8) €G X (0, ). Then u(y, s) is uniformly continuous with respect to
Yy for each s >0 and is bounded on s = c¢ where ¢ > 0.

PRrOOF (cf. Flett [4: Lemma 25]). First, note that r** e TA(a; p, ¢) N
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In(a; p, ) by Lemma 11 (i). Put
(1) hi(@) = h(z™'y, s) .
Then we have, for v, ¥,€G and s > 0,
|F(h**) — F(h*>*)| = |F(h** — B*2)| S (|F|| |[h"* — B*2*||asy,q -

Hence it suffices to prove that A** is uniformly continuous for each s >0
and is bounded on s=c¢ >0 with respect to the norm ||:||s,.,. By
Theorem 14, we may assume q¢ = . Using Theorem 8 (ii) and Theorem
4 (),

A — ' |lasp,e
< C[sup | ho(a, £)— ko> (@, B)|],+sup {tk-w
t=21/2 0<t=1

= [ supl| (ks — ), + sup {#+-"
21/2

0<ts1

(b = )|}
O (e, Hy-tma, 0)| ]
k
(it )] ]
= C{llk;, — hyll, + (s/2)7|h3F — BytllL} s
where & is a nonnegative integer with &k > «/2 and s > 0, ¥, ¥,€G.

The function ¥ k% is uniformly continuous with respect to the norm
l|-1|, when 1 < p < « by Corollary (ii) of Theorem 5. Thus, for each
s > 0 the function y s h** is uniformly continuous with respect to the
norm ||+||ap..- Further, by Theorem 4 (i),

" lipe S CAUBLIL + (812711 B5],) S O™ o (gf2) om0y
This implies that [|A**||s:p... IS bounded on s =¢ > 0. This completes the
proof of the lemma.

LEMMA 26. Let o be real and let 1 < p < o0, 1 £ q < . Suppose
that F 1is a continuous limear functional on either TA(a;p,q) or
In(a; p, ) and let u(y, s) = F(h**). Then for each gecC, and for each
§>0,

|, 4w, 99wy = Fo,

where v(x, t) = H,g(x) and v* is as in Lemma 11.

PrOOF (cf. Flett [4: Lemma 26]). Let E be the compact support of
g, and for each positive integer K let {E;} = {EX} be a finite covering of
E such that E, = B(1/K)y, where B1/K) = {y €G: |y|<1/K}. Let {f} be
a partition of unity, subordinate to the covering {E;}). We put

Se(e, ) = Sy, 5 + | fwewdy = S s, s + 0| f@)ewdy .
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Then Sy is a finite linear combination of the functions A*~* and therefore
belongs to both TA(a; p, ) and ITn(a; p, ) by Lemma 11 (i). To prove
that Sy — v* in TA(a; p, ¢) as K — o, we put

gFK(:I;) t) = SK<x’ t) - ’U'(x, t) = SK(x’ t) - ?)(w, s+ t)
= Shwis s+ 0 | fwewdy — | S @@ e, s + eway

= 5| fwtwin s+ 0 - by e, s + Olg@)dy .
Then
e, 01, = S| Ihwie, s + 0 = b, 5+ Olllgwdy -

Since || h(yi'w, s + t) — h(y~'x, s + ¢)||, < || b}, — h} ||, and the function y — &
is uniformly continuous when 1 < p < -, where h: is given by (1) in
the proof of Lemma 25, we obtain that || ¥x(x, t)||, tends to zero as K —
uniformly in ¢ > 0. Since

0* 0" _ o*

S0, ) =S\ L) ki, s 1) -
the same argument above shows that || (8*/0t")¥ «(x, t)||, tends to zero as
K — o uniformly in ¢ >0, and so by Theorem 8 (ii), ¥, —0 in TA(a; p, q)
as K— oo, that is, Sy —v* in TA(a; p, q) as K— . It now follows that

W™, s + Do)y ,

F) = lim F(Sy) = lim 3 F(*)| £iw)o)dy
= lim Sl u(w, 9) | Aoy .
Moreover, using Lemma 25,
2% (Y S)SEi fiw)9()dy — SGu(y, 8)9(y)dy

= 5| @, ) - uw, De@dy —0 as K-
1

This completes the proof.

COROLLARY. Under the hypothesis of Lemma 26,

(i) the function t— ||u(-,t)||,, is bounded on t = ¢ for each ¢ >0,
where 1/p + 1/p’ =1,

(ii) for amy gelL?, Sau(y, 8)9(y)dy = F(v*), where v(z,t) = Hyg(),
and

(iii) for each s > 0, u(z, s + t) = Hu(x, s). Hence, in particular w
belongs to the space .
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Proor. To prove (i), we see from Theorem 14 and Lemma 13 that

(1) luc, Bl = sup {|{_ @, voway|: gec, llgll, = 1}

= sup{|F(v)|: g€C,, |lgll,=1}=ZI||F||sup{||v*|laip..: 9€C., ll9]l,=1}
< Cl|F |l sup{||v*|la;p:: 9€C, llgll, =1} = C||F]] if s=¢>0.

Part (ii) follows immediately from Lemma 14. To prove (iii), taking
9(y) = hi(y), weG, t>0 in (i), we get

Hu(x, s) = Sgh(y‘lx, tuly, s)dy = F(h>*+") = u(x, s + t) .

THEOREM 25. Let « be real and let 1 < p <. Then TA(a;p, 1) =
TA(—a; ', ). More precisely, if ueIA(—a;p’, ) and F, is given by
F,(v) = {u, v), then the mapping u+— F, is a linear homeomorphism of
TA(—a; ', ) onto TA(a; p, 1)'.

ProOF (cf. Flett [4: Theorem 28]). By Theorem 7, we may assume
0 <a < 2. The mapping u+— F, is a one-to-one and continuous linear
mapping of TA(—a; p’, ) to TA(a; p, 1) by Lemma 24 (i), (iii). To prove
that this mapping is onto, let F e TA(a; p, 1)’ and u(y, s) = F(h**). Then
from (1) in the proof of Corollary (i) of Lemma 26,

Hu(, S)”p’ = CHFH(]_ + 7o)
Hence, using Theorem 8 (ii),

(1) l[%ll-aipr,e0 = Clsup {1 (-, Oy} + sup [lul:, Ylly] < CIF|] < e

so that by Corollary (iii) of Lemma 26, u € TA(—a; ', ). For any ve
TA(e; p, 1), by Lemma 11 (iii), »*—>» in $4(a; », 1) as s— 0, and by Theorem
9, we can find a function g € L? such that v(x, t) = H,g(x). From Corol-
lary (ii) of Lemma 26 and Lemma 24 (ii), we get

F(o) = lim F() = lim | u(y, )0@)dy = Cu, v) .

This implies that the mapping %+ F, is onto. From (1) and Lemma
24 (i), this mapping is a homeomorphism.

COROLLARY. Let a be real and let 1 < p < o. For veZTA(a; p, 1),
G, is defined by G,(u) = {u, v). Then, the mapping v— G, is a linear
homeomorphism of TA(a; p, 1) into TA(a; p’, <)'. Moreover, if H, is the
restriction of G, to IN(—a; p', ), then ||H,|| = ||G,]]-

ProoF. See Flett [4: Lemma 29 and Lemma 31].
THEOREM 26. Let a be real, and let 1 < p < . Then,
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(i) SA(a;p,1) = IN(—a; p', ). More precisely, if veId(a;p,1)
and H, is given by H,(u) = {u, v), then the mapping v+ H, is a linear
homeomorphism of TA(a; p, 1) onto In(—a; p', <) .

(ii) (—a; 9, )’ = TA(—a; p', =), that 1is, there exists a linear
homeomorphism of TA(—a; p', =) onto IN(—a; p’, ). Moreover, the re-
striction of this homeomorphism to IN(—a; p’, o) is the camonical iso-
metry of IN(—a; p’, ) into IN(—a; P, o).

Proor (cf. Flett [4: Lemma 33]). By Theorem 7, we may assume
0 <a<2. By Corollary of Theorem 25, the mapping v+ H, is a linear
homeomorphism of TA(a; p, 1) into In(—a; p’, )’. To prove that this
mapping is onto, let HeIn(—a; 9, =) and v(y, s) = H(h**). For any
u € In(—a; P, ), we have from Corollary (ii) of Lemma 26 that

Sav(y, syu(y, t)dy = Hw'*").
By Lemma 24 (vi),

ng(y, siu(y, t)dy = {w, v"*') .

Since s and ¢t are arbitrary positive numbers, we have Hw’) = {u, v*).
By Lemma 11 (iv), u* —u in IA(—a; 9, =) as s —0. Therefore,

lim [Cu, v)| = lim |[H@w)| = [Hw)| < o .

By the principle of uniform boundedness, ||H,|| = O(1) as s—0. By
Corollary of Theorem 25, [[v*||s,, = O@1) as s —0. By Lemma 12, ve
ZA(a; p, 1). Hence, using Lemma 11(ii), v»* > v in TA(a;p,1) as s — 0.
Thus, by Lemma 24 (i),

H(u) = lim {u, v*) = {u, v) .
8—0
This completes the proof of (i). See [4: Lemma 30] for the proof of (ii).
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