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Introduction. In this paper we shall study the theory of Besov
spaces (or Lipschitz spaces) and Sobolev spaces on a nilpotent Lie group.
To admit a wide variety of applications to more problems we consider
the class of "stratified groups" as a class of nilpotent Lie groups. On
such Lie groups there is a natural notion of homogeneity which enables
one to duplicate many of the standard constructions of Euclidean spaces.
But we can not yet duplicate most of results in the theory of Fourier
transforms and distributions. Hence fractional integral operators play
a fundamental role in our paper. These operators have been extensive-
ly studied by G. B. Folland [5], A. Yoshikawa [24] and H. Komatsu [10],
[11], [12], [13], ]14], [15] in a general setting. By employing the Bessel
potential as one of these fractional integral operators we develop the
theory of Besov spaces and Sobolev spaces on a stratified group. Our
paper is heavily influenced by Flett's paper [4].

The plan of our paper is as follows: In Section 1 we present nota-
tions used in later sections and recall the necessary background material
concerning homogeneous structures on nilpotent Lie groups. In Section
2, we consider the diffusion semigroup generated by the sub-Laplacian
g on a stratified group, and we use it to define the Bessel potentials
given as fractional powers of the operator (1 + S). Further, we dis-
cuss properties of the semigroup, its kernel function and the Bessel
potentials. In Section 3 we define an analogue of the classical Besov
space in terms of the Bessel potentials and extend several basic theorems
from the Euclidean case to our case. Further we investigate several
equivalent spaces to this Besov space. In Section 4 we shall see that
this Besov space coincides with that defined by use of the Poisson semi-
group for positive fractional powers. In Section 5 we define an analogue
of the classical Sobolev space in terms of the Bessel potentials. We see
that this space has an alternative representation in terms of "the Riesz
potentials" and we use it to prove the inclusion theorem in this section
and the interpolation theorem in the next section. Several basic theorems
for the interpolation space of Besov spaces and Sobolev spaces are dis-
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cussed in Section 6. In Section 7 we shall give several results concern-
ing the duals of Besov spaces and Sobolev spaces. T. M. Flett [4] has
given a long series of lemmas to prove results concerning the duals of
certain Besov spaces in w-dimensional Euclidean spaces. But some of
these lemmas are not applicable to our case. Hence we shall prove
them through a series of lemmas slightly different.

The author would like to thank Professor S. Igari for helpful con-
versations, and would also like to thank the referee for many helpful
suggestions. Work on this paper was partially supported by KAGAKU
KENKYUHI.

1. Preliminaries. In this section we will present notations and
terminology used in later sections.

If © is a nilpotent Lie algebra, a stratification of @ is a decomposi-
tion of © as a vector space sum, © = T Ί 0 φ F m such that [V19 F, ] =
Vj+1 for 1 ^ j < m and [Vl9 Vm] = {0}. If © is stratified, it admits a
family of dilations, given by

7r(X, + X2 + + XJ = rXx + r2X2 + + r™Xm (X, e V5) .

Let G be the corresponding simply connected Lie group. Since ©
is nilpotent, the dilations j r lift via the exponential map exp to give a
one-parameter group of automorphisms of G, say yr. We sometimes
denote jrx simply by rx. Let || || denote a Euclidean norm on © with
respect to which the F/s are mutually orthogonal. We define a homo-
geneous norm on the corresponding group G by

exp (±X£ ) I = ( g 11X, I Γ ή1/2ml (Xj e V5) .

A stratified group means a simply connected nilpotent Lie group G
together with a stratification © = φΓ Vά of its Lie algebra and the
dilations and the homogeneous norm defined above. We fix once and for
all a (bi-invariant) Haar measure dx on G which is the lift of Lebesgue
measure on © via exp. We shall denote the identity element of G by
e. Cb denotes the set of all bounded continuous real valued functions
on G. The set of all /'s in Cb which vanish at infinity is denoted by
Co. The set of all /'s in Cb whose support is compact is denoted by Cc.
C°° denotes the space of real valued indefinitely differentiable functions
in G. The set of functions in C°° of compact support is denoted by CΓ
Lp (1 <; p ^ oo) will denote the standard Lp-space with respect to the
Haar measure dx, with the Lp-norm || ||p. We denote by 1E a charac-
teristic function of a measurable set E of G. We identify the Lie
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algebra @ with the left-invariant vector fields on G. A measurable
function f on G will be called homogeneous of degree λ (λeC) if f°Ύr =
rλf for all r > 0. A differential operator D will be called homogeneous
of degree λ if D(/°7 r) = rλ(Df)ojr for all / e C M , r > 0 . In particular,
Xe® is homogeneous of degree j if and only if I e Vό. We choose
once and for all a basis Xl9 , Xn for VΊ and set Qf=—ΣΓ-X"J S is a
left-invariant second-order differential operator which is homogeneous
of degree 2. If α = (alf •••,#*) is an Z-tuple of nonnegative integers
α t ^ 0, we then put |α| = aλ + + ax and define Dα to be X^ X?/
(where Xly •• ,-3ΓΛ is the basis for Fx), which is a homogeneous differ-
ential operator of degree |α|.

We recall properties of the homogeneous norm on G (see G. B.
Folland [5], A. W. Knapp - E. M. Stein [9] and A. Koranyi - S. Vagi [16]).

(a) The homogeneous norm | | is a continuous function from G to
[0, co) which is of class C°° away from e and homogeneous of degree 1.

(b) \x\ = 0 if and only if x = e.
(c) \x\ = {x-'l for all xeG.
(d) {xeG: \X\ ^ 1} is c o m p a c t .
(e) T h e r e is a c o n s t a n t C > 0 such t h a t \xy\ ^ C(\x\ + \y\) for all

x9yeG.

(f) There exist C19 C2 > 0 such that C^XW ^\x\£ C2 | |X||1/m when-
ever \χ\ ^ 1, where x = exp X.

(g) d(yrx) = rpdx for each r > 0 where p is the homogeneous dimen-
sion defined by ΣΓi(dim Vό).

(h) If a e C and 0 < a < b < co, then there exists a constant C
such that

CcΓ\ba - aa) if α ^ 0

Clog(b/a) if α = 0 .

We use C to denote a positive constant different in each occasion.
It will depend on the parameter appearing in each problem. The same
notations C are not necessarily the same on any two occurrences.

2. The Gauss-Weierstrass integral and the Bessel potential. Hence-

forth we assume that G is a stratified group of homogeneous dimension

p > 2.
In this section we give some properties of the Gauss-Weierstrass

integral and the Bessel potential associated with the heat diffusion semi-
group on G. We can construct a semigroup {Ht}t^0 of linear operators
on L1 + L°° with the infinitesimal generator — $ according to a theorem
of G. A. Hunt [7]. These properties are summarized in the following
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theorem.

THEOREM 1 (G. B. Folland [5], G. A. Hunt [7]).

( i ) Htf{x) = ht*f(x) = \ ht(y-1x)f(y)dyf t > 0, where
JG

(a) ht(x) = h(x, t) is of class C°° on Gx(0, oo),
(b) ( ht(x)dx = 1 for all t > 0,

JG

(c) h(x, t) ^ 0 for all xeG and all t > 0,
(d) ht{x) = ht(x~ι) for all xeG and all t > 0,

(e) lim I ht(y)dy = 1 for any neighborhood U of e,
ί->0 JU

(f) ht*h8 = ht+s for all t, s > 0,
(g) h(rxf rH) = r~ph{x, t) for all xeG and all r,t>0.
( i i ) HlZtllp <£ 1 (1 <: p <: ©o) and if l<p<oof {Ht} can be ex-

tended to a holomorphic contraction semigroup
{Hz: I arg z | < (ττ/2)(l - 11 - (2/p)|)} o^ L p .

(iii) ίZ"t is self-adjoint, and / ^ 0 implies Htf ^ 0. Moreover,
Htl = 1.

(iv) IffeLp, 1 ^ p ^ oo, ^ ^ f̂ / i s 0 / cίαss C°° ow Gx(0, oo)
α^d (d/dt)(Htf)(x) + 3ffl"t/(a?) = 0.

(v) Extend h(x, t) to G x R by setting h(x, t) = 0 /or ί ^ 0. ΓΛe^
Λ is of class C°° on (G x R) — {(e, 0)}. Iw particular, for each x φ e,
h{x, t) vanishes rapidly as t decreases to zero.

(vi) Let (—3fp) 6e ίfee infinitesimal generator of {Ht} on Lp; then
(a) $5p is α closed operator on Lp whose domain is dense for p <^,

and whose range is dense for 1 < p < ©o.
(b) 3,/ = 3f/ /or αZZ /eC°°nLp, 1 ^ p ^ oo. AZso, if p<^y $p

is the smallest closed extension of the restriction ^\c^ on Lp.

In later sections we shall require the convergence theorem and the
representation theorem associated with the semigroup on G.

THEOREM 2 (K. Saka [19]). Let f be a measurable function on G.
Then lim^o Htf = f holds in the following senses:

( i ) in the Lp-norm if feLp,l<^p< oo,
(ii) in the weak star topology of L°° iffeL00,
(iii) uniformly on each compact subset of G if feCb,
(iv) uniformly if f is uniformly continuous on G, and so in partic-

ular, if feC0,

(v) almost everywhere iffeLp,l<p<*oo.

THEOREM 3 (K. Saka [19]). Suppose that u(x, t) is of class C°° on
G x (0, oo) such that s u p ί > 0 | |w( , t)\\p < &o (1 ̂  p <; oo).
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( i ) / / l < p ^ c o , then it satisfies the heat equation (du/dt) + $u — 0
on G x (0, oo) if and only if it is of the form u(x, t) = Htf(x) where
feL*.

(ii) If p = 1, then it satisfies the heat equation and \\u( , t) —
u('> *')lli—>0 as t, tr—>0, i/ ami 0^2/ if it is of the form u(x, t) — Htf(x)
where feL1.

Moreover, these representations are unique and \\f\\p

:=su.'pt>0\\u(', t)\\p.

THEOREM 4. Let ht(x) = h(xf t) be the kernel function of the semi-
group {Ht}. Then,

( i ) for all t > 0,

(C\x\~p if \x\2^t

Also, if a — (al9 , at) is an l-tuple of nonnegative integers at ^ 0
and k is a nonnegative integer, then

dk

C ί ~ ( / O + ' α | + 2 A : ) / 2, t)
\χ\

Further, for all t > 0,

dtk Daht
^ C r ( | α | + 2 A : + ^ 1 ~ 1 / ί ? ) ) / 2 where 1 ^ p ^

(ii) Let 1 <; p ^ oo, and put u(x, t) = Htf(x), feLp. Let a, k be
as in (i). Then for all t > 0,

dk

Aiso, i / l ^

-2>βu( , ί) ^
lip

^ oo and δ = p(ljp - 1/r),

3*

/or aίi ί > 0,

-Dau(',t)\\ ^

(iii) For each t > 0 ίfeβ functions x \-+ u(x, t) and x ι-> (dk/dtk)u(x, t)
are uniformly continuous on G. Moreover, the functions t\-^\\u(-,t)\\p

and t\^\\(dkldtk)u{ , t)\\p are decreasing on (0, °o) if 1 ^ p ^ oo
continuous on (0, oo) <£/ l <; p < oo.

PROOF. If £ <; \x\2, then we have

h(\x\ = *

, ί o ) | : |tf| = 1, 0 < ίo ^ 1}



388 K. SAKA

^C\x\~p by Theorem 1 (v) .

If \x\2 <* t, then we have

\h(x,t)\ = \h(t1/2 Γ1/2x,t)\

= rfi/2\h(t-1/2x9 1)| ^ r ^

by Theorem 1 (v) which proves the first part of (i).
Since

dtk
-Dah(ry, rH) =

dtk
Dah(y, t) ,

the second part of (i) follows in the same way.
To prove the last part of (i) we use the property (h) of the homo-

geneous norm. That is, for each t > 0,

dt
L-D«ht(v)

k

dy =

dtk
•D"ht(y)

dt"

dy ^

-Daht(y) dy

+ C [ t~p((l+lal+2k)/2dy =
JlnKt1 2

This completes the proof of (i).
To prove (ii), we note that

D"u(x, t) = UL-D*ht)*f{x) .

By Young's inequality and (i),

-D"u{-,t)\\ <L
dtk dtk

Daht H/ll, ^ α-"«' Λ +"

and, if 1/r = 1/p + 1/q - 1^0,

dt"
-D«u( ,t)

dk

dtk
Daht P ^

To prove (iii) we see that

(1 ^ p ^ ex))

and so, \\u( ,t)\\p is decreasing on (0, ©o). Since (dk/dtk)u(x, s + ί) =
ht*(dk/dtk)u(x, s), \\(dk/dtk)u( , t)\\p is also decreasing on (0, oo). F u r t h e r ,
T h e o r e m 2 i m p l i e s t h a t b o t h of | | u ( , t)\\p a n d | | (3 f c /3ί*M , ί ) | | p a r e con-
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tinuous on (0, <*>) if 1 <; p < oo.

S i n c e ht e Lp'(l/p + 1/p' = 1) f o r e a c h t>0 a n d u(x, t) = ht*f(x),
u(x, t) is uniformly continuous on G, and so is also (dk/dtk)u(x, t). This
completes the proof of the theorem.

THEOREM 5. Let 1 <. p <; oo, and let u be a temperature on
Gχ(0, oo), that is, a solution of the heat equation ^su{x, t) + (du/dt)(x, t) — 0
on G x (0, oo), such that the function t\-+\\u( , ί ) | | p is locally integrable
on (0, oo). T%e% / o r βαcfe s > 0 a m i a ί ί ( # , t)eG x (0, oo),

w(ίc, s + ί) = ht*u(x, s) = Htu(x, s) .

To prove this theorem we need two lemmas:

LEMMA 1. Suppose that u{x, t) is a continuous function on
G x [0, oo) with u(x, 0) = 0 such that u(x, t) is a temperature on
G x (0, oo) and the function £ι—»||w( , £)| |p is locally integrable on [0, oo).
Then u(x, t) is identically zero on G x [0, oo).

PROOF. Fix an arbitrary element (x, ί ) e G x (0, ^ ) and let B(r) =
{yeG: \y\ ̂  r} (r > 0). We choose a function φ(x)eC°° having the fol-
lowing properties:

f 1 if x e xB{r)

( r < O(a) φ(x)=
(0 if a; ί xB{rf)

(b) 0 ^ 9>(a?) S 1
(c) Σ?=i I Xffiβ) I + Σi=i I I J Φ ) I ^ C (a? 6 G),

where C is a constant independent of x.
Since φ(α?)u(ίc, Z) e Cb, we obtain by Theorem 2 that

( 1 ) u(x, t) = φ(x)u(x, t) = lim Ht(φ(y)u(y, t))(β)
ί-->0

h{y~λx, t)φ(y)u(y, t)dy

G

= liml xx, t — t)φ(y)u(y, t)dy .

Put v(j/, ί) = h(y~ιx, t — t)φ(y). Since u(α?, ί) is a temperature on
G x (0, oo),

uΣ*X)v + u^v u^X)v + i ^ v
ot όt

for 0 < ί <

Hence, using (1) and that %(&, 0) = 0,

( 2 ) Γ ( (u Σ -ϊ'v + u-^—v)dydt
Jo j(?\ at /
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= Π \ (uΣX)v - ΣXju v) +J-{uv)\dydt
JO JGf \ θt )

= V ί -!τ(uv)dydt = [ Γ Λ-{nv)dtdy
JO Jff 3 ί J6T JO dt

= \ (lim w(i/, t)v(y, t) - u(y, 0)v(y9 0))dy

= lim\ u(y, t)φ(y)h(y~% t — t)dy — u(x, t) .

If 0 < ί < t,

Σ X/v + -^-v = ΣX)φ{y)'h{y-% t - t)
at

+ Σ*X*h(χ-1y,t -t) φ(y)

+ 2 Σ X&(v) XMΰr% * - *)

- <P(y)~-h(y-% t - ί)
σί

Therefore, using Theorem 4 (i),

( 3 ) Σ*Λ,+ —

if y $ xB(r) for a large r. By the definition of φ,

(4) χj* + _|_,, = o
ot

if yexB(r).
Substituing (3) and (4) to (2) and using Holder's inequality, we get

\u(x, t)\ £ C[[ _ \u(y, t)\ ly-^Γ' dydt
JO JxB{r')\xB{r)

^cΓ||tt(.,ί)ll/iί (ί \y\-fptdv)
1"'

JO \jB(r')\B{r) /

if 1/p + 1/p' = 1.
Prom the property (h) of the homogeneous norm,
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f = \^~p{1'ί/pf) - ϊ - > w if p* > 1
{C(log(r7r))1/p/ if p ' = 1 .

In the case pr > 1, this integral converges to zero as r->oo. In the
case pf = 1, u(x, t) is bounded on G x [0, t]. As in the proof of [K.
Saka, 19: Corollary 8], we get u{x, t) = 0 on G x [0, t]. Hence u(x, t) is
identically zero on G x [0, oo).

LEMMA 2. Suppose that a function f(x) is continuous on G and
feLp,l<ίp<ί co. Let u(x, t) = Htf(x). Then u(x, t) converges to f(x)
uniformly on each compact subset of G as t —> 0.

PROOF. Obvious from Theorem 1.

PROOF OF THEOREM 5. Let s be a positive number for which

I | M ( Ί * ) l l p < c o . W e p u t v ( x , t) = \ h ( y ~ % t ) u ( y , s)dy, t>0 a n d v ( x , 0) =
JG

u(x, s). Since u(y, s) is continuous on G and u(-, s) eLp, v(x, t) is contin-
uous on G x [0, oo) by Lemma 2. Since \\v( , t)\\p ^ | |u( , s) | | p for all
ί >̂ 0, the function ίH->||v( , ί ) | | p is locally integrable on [0, oo). On the
other hand, it follows easily that the function t H* U(X, S + t) is contin-
uous on G x [0, oo) and the function £h-*||w( , s + t)\\p is locally integr-
able on [0, oo). By Lemma 1, we obtain

v(x, t) — u(x, s + t) , that is ,

u(x, 8 + t) = \ h(y~% t)u{y, s)dy .
JO

The theorem has been proved whenever ||w( , β)| | p < °°, i.e., for almost
all s > 0, and hence for all s > 0.

By this theorem, Theorem 4 (ii) (iii) implies the following corollary:

COROLLARY. Let 1 ̂  p ̂  oo and let u be a temperature on
G x (0, oo) such that the function t\-*\\u('f t)\\p is locally integrable on
(0, oo). Then

( i ) for all t,s>0,

at
; s + t) ^ Ct-^+^\\u(., 8)\\,

Also, ifl^p<r<*°° and δ = p(l/p — 1/r) then

II ° Ή<x*ιί . Q _J_ /λ <: /nf/-(|α|+2fc+ί)/2|U»/'. Q\ II\\-——UU\'fb-t-O) ^ Ot | | ί t^ , *>)\\p .

(ii) For each t > 0, ίfee functions x ι-> %(», ί) α^d ίc h-» (dk/dtk)u(x, t)
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are uniformly continuous on G. Moreover, the functions 11—> \\u( , t)\\p

and t\-*\\(dk/dtk)u(-, t)\\p are decreasing on (0, oo) if 1 <ς p <; oo, and are

continuous on (0, oo) if 1 <; p < oo.

We now define a Bessel potential for a class of certain temperatures.

DEFINITION 1. Let X denote the linear space of temperatures u on
G x (0, oo) with the property that if A; is a nonnegative integer, a —
(au , α,) an i-tuple of nonnegative integers and c > 0, then there
exists C > 0 such that

dk r ^ . ^
sup
xeG

< C f or all t > c

For any real number α and for any ueZwe define J"w to be the func-
tion defined on G x (0, oo) as follows:

(a) if a ^ 0,

J-M», s) = 1 Π f e-«/ 2-V(l + 3f)*u(α
Γ(& — α/2)Jo

where & is a nonnegative integer such that k > α/2,
(b) if a > 0,

, s) - [
Γ(α/2)Jo

Clearly Jau(x, s) is well-defined for all real numbers a.

PROPOSITION 1. ( i ) // a ^ 0, ί/ιe definition of J~a is independent
of the choice of integers k > a/2.

(ii) If k is a nonnegative integer, ίfcew J~2fc = (1 + $)fc. /w partic-
ular, J° = ί/tβ identity map.

(iii) .For eαcfc reαZ number a, Ja is a linear isomorphism of X onto
itself, with inverse J~a and for all real a, β, JaJβ = Ja+β.

The proof of this proposition is almost identical to that of Theorem
8 in Flett's paper [4] and we omit it.

PROPOSITION 2. (i) // feLp, 1 ^ p ^ oo and u(x, t) = Htf(x) then
ueX.

(ii) // u(x, t) is a temperature on G x (0, oo) and the function
t\-+\\u(-9t)\\p (1 ^ v ^ oo) ^ locally integrable on (0,

PROOF. This follows easily from Theorem 4 (ii) and Corollary (i) of
Theorem 5.

PROPOSITIONS, ( i ) Let 1 <̂  p ^ oo αwd Zeί / e L ^ απd u(xft) =
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HJ(x). Then for each t > 0

\\Jau( ,t)\\p £ | | / | | , if a>0,

||J-««( ,*)ll,£C(l + r«' i)||/||, if α ^ O .

( i i ) L e t u be a temperature on G x ( 0 , oo) such that ίι—>||w( , t)\\p

(1 ^ P ^ c o ) ^ locally integrable on (0, 00). T%ew /or αίZ s, £ > 0

\\Jau(',s + t)\\p£\\u( ,8)\\9 if α > 0 ,

II J-°u( , s + t ) | | p ̂  C(l + r ^ ) | | w ( . , 8)11, i/ α ^ 0 .

Hence for any real a \\ Jau( , t)\\p is locally integrable and decreasing on
(0, 00) if 1 <; p <; 00 αwd continuous on (0, 00) i/ 1 ^ p < 00. Moreover
for each real a

Jau{x, s + t) = HtJ
au(x, s) = JaHtu(x, s) .

We use Theorem 4 (i) and Theorem 5 to prove this proposition fol-
lowing the arguments of Flett [4: Theorem 10 and its corollary], and the
last part of (ii) follows easily from Fubini's theorem and the fact that
u is a temperature.

LEMMA 3. Let 1 <̂  p ^ 00 and let u be a temperature on G x ( 0 , 00).

( i ) If for β>0 and l ^ q < co9

Jo

then for t > 0

\\u( , ί)||, ̂  C(i + r ^ V - v i w , t)\\idt\1/q

and \\u( , t)\\p = o(t~β) as t^0. Also, ifq<r<^> then

(ii) Let 1 ^ g < co? α rβαi α-̂ cί α < β, and let u be a temperature

on G x (0, 00) such that [ ί 9 ' 9 / 2 " 1 e~ t | |u( , £)llί<W < 00 then ueX and
Jo

(iii) Let a real, a < β. If

and
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-β"V t | |J«tι( , ί ) U =S
t>0

Moreover, if in addition \\u( , t)\\p = o(t~β/2) as £->0 ίftew | | Λ ( , 011* =

o(ί"(*~α)/2) as ί -> 0.

Flett has proved this lemma in the case of ^-dimensional Euclidean
space by using the following two lemmas (see [4: Theorem 11, Theorem
12]. Note that β is not necessarily positive). The proof is applicable
to our case.

LEMMA 4. Let d > 0 and let φ be a decreasing nonnegative function

S oo

t'^e^φifidt < oo. Then
( i ) <P(t) ^ eδ(Γδ° + l)[°td-le-^(t)dt for all t > 0, and φ(t) = o(Γδ)

Jo

as t —> 0.
(ii) for all q ̂  1

LEMMA 5 (Hardy's inequality). // 1 <; q < oo, r < 1, α^cϊ h is mea-
surable and nonnegative on (0, oo) then

t V r | Γ Λ(ί)dtΓd8 ^ (g/(l - r))q \"t-r+qhq(t)dt .

The following lemma is used later.

LEMMA 6 (Flett [3], [4]). ( i ) Let Kp<r< oo9 p^q < co, 3 =
p(l/p - IIr) and let feLp and u(x, t) = Htf(x). Then

(ii) Letl<p<r<c*Dfl<:q^r, δ = p(l/p - 1/r) and a > 0, α > δ.
Suppose that u(x, t) is a temperature on G x (0, oo)

e S and

\\J"u( , s)\\r £

Hence there exists a function feLr such that Jau = Htf and

wf\ι £ c ̂ yw-ie-'M , t)\\idt y.

3. Besov spaces. We shall give a definition of the Besov spaces on
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G and its alternative representations equivalent to the original definition.
Most of these are listed in Plett [4] and Taibleson [22] in the case of
^-dimensional Euclidean spaces.

DEFINITION 2. We define the space %Λ{a\ p, q), where a is real,
1 ^ P ^ °° and 1 <; q < °o, to be the space of temperatures u e % for
which

equipped with the norm

We define also the space ZΛ(a; p, ©o), where a is real and l^p^^, to
be the space of temperatures u e Z for which supί>0 {<e~*|| J"α"2w( , ί)||P}< °°,
equipped with the norm

We denote by ϊλ(α; ί), oo), the subspace of those temperatures
ueXΛ(a;p, ©o) for which || J~α"2^( , ί ) | | p = o^"1) as ί->0. It is easily
verified that the subspace %X(a;p, <*>) is a closed subspace of the space
ZΛ(a; p, oo).

THEOREM 6. Let a and β be real with β>a9lSp^°°* Then
(i) ifl£q< oo,

Moreover, the norm |HL*,« is equivalent to

(ii)
Moreover, the norm || IU:p,oo is equivalent to

(iii) Sλ(α;p, oo) = {ueZΛ(a; p, oo): | |J-%( , ί)ll, = o(r {^α ) / 2) as ί-^0}.

This theorem follows directly from Lemma 3 (cf. Flett [4: Lemma
12]).

THEOREM 7. Let a, β be real and let l ^ p ^ ^ l ^ t f ^ 0 0 . Then
Jβ is a linear homeomorphism of XΛ(a; p, q) onto XΛ(a + β; p, q) and of
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£X(a; p, oo) onto Zx(a + β; p, oo).

This theorem is immediate from Definition 3 (cf. Flett [4: Theorem

18]).

LEMMA 7. If ue ZΛ(a; p, q), where a is real, 1 ^ p ^ oo and

1 ^ q ^ oo, then
( i ) for each t > 0,

(ii) if β is real and c > 0, £/ιew /o?* αϊi ί ^ c,

\\Jβu(.,t)\\p£C\\u\\a;p,q.

Hence \\Jβu(-,t)\\p is locally integrable and decreasing on (0, oo) if
1 ^ p <i co and continuous on (0, oo) if 1 ^ p < oo.

This is verified easily from Proposition 3 (ii) and Lemma 3 (i) (cf.
Flett [4: Lemma 10 and Lemma 11]).

THEOREM 8. ( i ) Let a be real and β > a, and let 1 ^ p ^ oo. Then
if 1 ^ q < oo,

Moreover the norm |HLp, g is equivalent to

supι i t t ( . f t)\\,

/ n ίfee case q — <^f

, t)\\p + sup

Moreover the norm || |!«;?)(OO is equivalent to

sup | |u( , ί)ll, + sup {^-«)/2||

(ii) Let a be real and let k be a nonnegative integer with k> a/2
and 1 <: p ^ co. Then if 1 ^ q < oo,

;p,q) = {ueZ:*vv\\u( ,t)\\p

1/ί

Moreover the norm \\'\\a ,P,q is equivalent to
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In the case q = co>

BESOV SPACES AND SOBOLEV SPACES

dk ,
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dtk

) 1/9
ιdt\ .

XΛ(a;p, co) = j % e £ : sup | |u( , ί ) |L + s u p ] ί
^ til/2 0<tSl I

Moreover ίfte norm \\ \\a.VtCO is equivalent to

k—a/2

dtk
•u(-,t)

sup \\u( , t)\\p + sup Uk-a/2
•u(.,t)

and

•*>(-, t)

; p , c>o)

= γu e %Λ(a; p,

Part (i) follows from Proposition 3 (ii), Theorem 6 and Lemma 7
(cf. Flett [4: Lemma 13]). For the proof of part (ii), see Flett [4:
Lemma 14].

DEFINITION 3. Let a be a positive number and 1 <̂  p <; c o ^ i ^ g ^ o o .
We define the space A(a; p, q) by

Λ(a; p, q) =

if 1 <; g < co f and

<

equipped with the norms

\\f\\a;p,q =

and

respectively.
We also define the subspace λ(α; py co) of A(a; p, oo) by

(α;p, oo): as

REMARK. The referee showed me that the space A(a; co? co) coin-
cides with the Lipschitz space Γa defined in Folland [5, p. 193].

THEOREM 9. Let a be a positive number and letlt^P^^ilύqtί00-
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Then the map f\-*Htf is an isometric isomorphism of A(a; p, q) onto
%Λ{a\ p, q).

PROOF. Although this proof is similar to the one of Flett [4:
Theorem 19], we exhibit it in order to show a corollary below.

If feΛ(a;p,q) and u(x,t) = Htf(x), then by Proposition 2 (i) we
have ueX and IM|α;p,g = |l/ILp,<r Conversely, suppose that ue%A(a;p,q).
Put v = J-«~2u, then

u{x, s) - J-+M*, s) = ̂ ^ — L _ J > V φ , s + t)dt .

Hence, using Lemma 7 (i),

v x i + (s + ί n d ί iiMii.,,., = cιittiu,. f.
Jo

From Theorem 3 there exists feLp such that u(x, t) = Htf(x) and
CH^Hα p,, = C||/HβϊJMr if 1 < p. To apply Theorem 3 for p = 1 we have
to check that ||u( , ί) - u( , OIL—>0 as t, t'->0. For this, see Flett [4].

COROLLARY. Lei a be a positive number and β > a, and let
^ p ^ c o ^ l ^ g ^ o o . // feΛ(a; p, q) then

THEOREM 10. Let a > 0 αwώ ίeί /5 > a, 1 ^ p <: oo.

( i ) ifl^q< oo,

;P, β) = {/eZΛ J^ί^^llJ-^/H^e-'r^t <

Moreover the norm || ||α;P>ί is equivalent to

If Q= °°,

Λ(a;p, oo) = {/eL f

ί>0

Moreover the norm || ||β;Plff is equivalent to

and

λ(α;p, oo) = {/ei p : \\J-*Htf\\p = o(r (^α ) / 2) as t -> 0}
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(ii) Let k be a positive integer with k > α/2. // 1 <̂  q < oo,

A(a;p,q) =

Moreover the norm || ||α;j,,g is equivalent to

-9 t) J t^dt < oo J.

Λ(a;p, oo) = \feL*: sup )«*"«•
( ί>0 I

Moreover the norm || ||«;i,,oo is equivalent to

I,

and

X(a;p, o o ) = •tt( , t ) = o(Γ(*-«/2)) as ί -> θl .

PROOF. The part (i) follows from Lemma 3.

To prove the part (ii) let 1 ^ p < oo and/eL". Put w(x, ί) = Htf(x).

We suppose that Γtίl*-"/!)-1||(3*/at*)it( , ί)||;dt < oo where k > a/2 is an
JO

integer. Then
if1

Uo

By Theorem 8,

-α/2)- l

- α / 2 ) - l

at"

9

P

« ( •

Λ 1/9

ί

,t)

<oo .

dt
1/9

On the other hand, we suppose feA(a;p,q) and u(x, t) = Htf(x).
By Corollary (i) of Theorem 5, we get

^- ( t» sup

Hence, using Theorem 8,

dtk dίj
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1/g

sup
ίδl/2

and

( 2 ) IE- As—βf/2)—1

Combining (1) and (2), we get

2k

\ϊ fc-α/2)-l

q ) 1/9
ί

P

so that by Corollary of Theorem 9,

dk

 Λ.ll/ll, + {[
dtk

This completes the proof for 1 ^ p < oo. For p = c=o 9 the proof is simi-
lar to the above.

LEMMA 8 (Muramatsu [17]). Let (Mlf μύ, (M2, μ2) be two σ-finite
measure spaces, and let K(x, y) be a (μλ x μ^measurable function such
that

\ \K(x, y)\rdμ1(x) ^ C[ for almost all yeM2,
Jjfi

\ \K(x, y)\rdμ2(y) ^ C\ for almost all xeM1 9
Jjf2

(1 ^ T ^ oo).

Then the integralo perator T: /h-> I K(x, y)f(y)dμ2(y) is a bounded linear

operator from LP(M2, μ2) into Lq(Mlf μ,) with \\T\\ ^ CΓr/qCr

2

/q, where

1/r + 1/p — 1/q = 1. In particular if

IK(x, y)\ ^C for almost all (x, y)eM1x M2,

S | K(x, y)\dμx(x) <; C for almost all y eM2,

and

S | iί(α;, y)\dμ2(y) ^ C /or almost all x 6 Λfj. ,

f̂eβw ίfee integral operator T with the kernel K(x, y) is bounded from
LP(M2, μ2) into Lq(Mu μ^, where 1 ^ p ^ q <; oo.

THEOREM 11. // 0 < a < 2 and 1 ^ p ^ oo, ίfee^ /or 1 ^ ^ < oo,
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Λ(a;p, q) =

Moreover the norm || |LP,? is equivalent to

11/II, + (JV" / 2 I I #*/(*) - f(x)\\py

For q = co,

ί > 0
- f(x)\\p)

Moreover the norm || |Up,oβ is equivalent to

11/11, + sup(r
ί > 0

PROOF (cf. Taibleson [22: Theorem 4]). If feLp and u(x,t) =
Htf(x), then from Theorem 2

( 1 )
dt

(x, s) ds, 1 ^ p ^ oo .

Let l^p <oo and let / be any element in Λ(a; p, q) (0 < a < 2). Then
substituting (1) to the below,

*, t )

du
dt

(x,s)

Jo II dt Up

ds Y dt )1 / ?

1~J '

Taking ίΓ(ί, s) = rα/2sα/2Z(0,e], d ^ = Γ'dt and d/<2 = s-'ds in Lemma 8 we
obtain

, t) -f(χ)\\Py

Conversely, suppose that

(V^Htt^ί)-^)!!,)*
Jo ί

Since \\(du/dt)(x, t)\\p->-0 as

du

by Theorem 4(ii),

( 2 )
dt

(x,t) = lim

By Theorem 4 (i), we observe that
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dt

j.l-a/2

i

(x, t)--?£- (x, 2Nt)

= ?-«* Σ —(a;, 2"-H)*(f(x) - u(x, 2k~H

Jl-ίr/2

* = 1

Λ"

• (a, 2*"1* \\f{x)-u{x,2*-H)\\f

= C Σ (2α/2-1)fe-1(2fc-1ί)-α/2||/(x) - u(x, 2k~H

From the fact that

l/Q

for all k = 1, 2, , it follows that

(£•(•"" , 0 - JίUx, 2'ί)

1/9

Hence by Fatou's lemma and (2),

du

dt
(χ,t)

< o o

so that /eΛ(α; p, g) (0 < a < 2). Moreover the norm | |/ | |α ; j>, g is equiv-

alent to ||/Up + (T(r" / 2 | | u (£, ί) - / ( ^ I D ^ r ^ y 7 ' . The proof for p = oo

is similar to the above.

LEMMA 9 (R. Johnson [8]). Let h(t) be a nonnegative, decreasing
function on (0, <*>),"« real, and 0 < p <^ q < oo. T%ew
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For q = co
 f

h(t) ^ dt
t

LEMMA 10. Let 1 ̂  p ̂  oo, if feLpΠ C°° such that XJeL*, j =

1, , n then

\\f{χy) -f^W^ClvltwXjfW,.

PROOF (cf. G. B. Folland [5: Proposition (5, 4)]). Suppose y = exp Y

with YeVlf then f(xy) - f(x) = Ϋ Yf(xexptY)dt, so that \\f(xy)-

f(x)\\P ^ \\Yf\\P ^ \y\Σ\\XJ\\P Next, given any yeG, write i / = Πfί/i
with yt G exp ^ and | yt \ ̂  C | y |, i = 1, , N. Then

/(&!/) ~ /(») = (f(xVi ' ' ' VN) ~ ΛxVi ' ' VN-I))

+ + (/(»2/il/2) - ΛxVi)) + (/(^i) - /(»))

so that

\\f(χy) - f(χ)\\P ^ C Σ \V

THEOREM 12. Lei 1 <: p ^ co.

( i ) .For 0 < a < 1,

\ - f(χ)\\P)
q\y\-pdy <

^/ιe?t 1 ̂  q <

-/(a?) | | } p < co} when q = oo .

«;P,oo are equivalent to

XJ\\P) £ C\y\ Σ \\X, f\\P.

yl(α;p, oo) = {feLp: sup
| y | o

Moreover the norms | H | α ;

and

respectively, and

λ(α;p, oo) = {/6

(ii) For 0 < α < 2,

Λ(a;p,q) =

sup
I 2/1 > 0

as

1) - 2f(x)\\PY\y\^dy
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when 1 ^ q < °° and

Λ(a;p, co) = {feLp: sup {\y\~a\\f(xy) + f(xy~ι) -
l l > o

when q =

Moreover the norms || |Up,ff o,nd || |U5Pioo are equivalent to

β(\yn\f(.χy) + Λxy-1) - 2f(χ)\\py\y\-»dy)

and

11/11, + sup {\y\-'\\f(xy) + Λxy'1) - 2f(x)\\,}
\V\>0

respectively, and

X(a;p, oo) = {feL>: \\f(xy) ') - 2f(x)\\p - o(\y\«) as \y\->0} .

PROOF (cf. E.M. Stein [20: Chapter V §4, §5]). Let feLp and put

u(x, t) = Htf(x). To prove the part (i) we assume 0 < a < 1. Note

that ( (βht/3t)(x)dx = 0. Thus
Jo

Hence

( 1 )

du
dt

du

dt
(x,t)

dht

dt
(y) \\f(χy)-f(χ)\\Pdy.

Put (oP(y) = \\f(xy)-f(x)\\v and suppose that \g(\y\-"\\f(xy)-

f(x)Όq\y\~pdy < °°. We see from Theorem 4 (i) and (1) that

fί-a/2 I
τ

\y\ ΊίLt

dht

+
dht

dt

dt

(y)

(y) \\f(xy)-f(x)\\Pdy

\\f{χy) -

\y\-ί(l+i)a)P(y)dy

ωp(y)dy .
\y\2<t

Hence

i/q
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By Lemma 8,

Jo\ dt Up/ t

By Theorem 10 (ii) we obtain

ιι/ιu,9 ^ c(ιι/n,
(This inequality includes the corresponding inequality to q = ©o.) There-
fore feΛ(a; p, q).

Conversely, let feA(a;p,q) and u(x,t) = Htf(x). By Theorem 2,
for each t > 0

= linn — \ — — (xy, s)ds + \ ——(&, s)<Zs + (̂ (OJT/, t) — w(#, £)) [
e-»0 I Jε 3 ί J* dt )

in the Lp-norm (1 ^ p < oo) or for almost all xeG (p = oo). Hence

(2) I \f{xy) - f(x) | | f ^ 2 Γ - ^ (s, β) 'Λ + ||w(a?, ί) - u{xy, t) | |, ,
Jo dί p

(1 ^ ) .
From Theorem 4 (i) and Theorem 5 it follows that

( 3 )

Since

^ x , ί)
U

II aί '
, i = 1, - . , Λ .

Hence (3) gives that

as ί->©o, j = 1, . . . , ^ by Theorem 4 (ii), we get

-Xβu(x, s) ds S CO

I dt
, β/2)
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EJ—1/2

dt
-u(x, s)

From Lemma 10,

ds, j = l, •••, n .

r ii\\ < Γ I 4/ I i Q ~ 1 / 2

ίjU lip = ^ I i/ I \ s

ht dt
(X, S) ds ,

so that (2) implies that

(4) \\f(χy)-f(χ)\\P

< 2
oil 3ί '

Taking t = \y\2 we get

(!2/riι/θH/)-/(*)im2/Γ'%

ds + C
J 2 ί

,-1/2 (a;, s) ds

(\

* C(L(S
\y\2

3M.

3ί

-αf-1/2

(X,t)

du (x, t)
l / ί

(M)

II 3%

dί \«

w (x, ί) d t \y\-"dy

1/q

By Lemma 8 we obtain

(\v\-\\f(χv) -( \ β

du
dt

(x,t) dt
t

(This inequality includes the corresponding inequality to q = oo.) This
proves the first parts of (i). To prove the last part of (i) we have to
see t h a t ωp(y) = o(\y\a) a s \y\-*0 if a n d o n l y if \\(du/dt)(x, t)\\p = o ( r 1 + α / 2 )
as £->0. First suppose that ωp(y) = o(\y\a) as |i/|->0, that is, given ε > 0
there is a positive number tQ such that ωp(y) < e \y \a if \y\2<t0. (1)
.gives that

3ί 3ί
a>p(y)dy

\y\2<t

3fe,
3ί

(y) ωp(y)dy
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dht

407

t^\y\2<t0 dt
(V) ωp(y)dy

tQ^\y\2

dht

dt
(y)

= I, + I2 + /3 (if t <t0) .

We will estimate integrals /j, I2 and /3 using Theorem 4 (i):

/^Cε^-^ί t-^2)/2\y\ady = Cε ,
J\y\2<t

I2 ^ C ε ί 1 - " 7 2 1 I y
Jtύ\y\2

and

-{p+ 2)\y\ady = C ε

/3 =

Since ε is arbitrary,

17/1
2

> 0

(as t -> 0) .

, ί ) | | p = o(r 1 + α / 2 ) as ί->0.

Conversely, suppose t h a t \\(du/dt)(x, t)\\p = o(t~1+a/2) as ί->0, t h a t is,

given ε > 0 t h e r e is a positive number t0 such t h a t tι~a/2 \\(du/dt)(x, t)\\p<e

for all 0 < t < t0. By Theorem 4 (i), (4) gives t h a t

S ly ι2 /

J 2 l ! / I 2

-3/2/ fl-a/2 du

dt
(x, dt

jflt/2-3/2/ Λl-α/2

3ί

^ ε + ε + I T / I ^ C 2 - 1 7 2 if

Hence cop(y) = o(\y\a) as |τ/|—>0. This completes the proof of (i).

Next we shall prove part (ii). Let 0 < a < 2 and let fe Lp, 1 ̂  p ^

and %(», ί) = Put ωf{y) = \\f(xy) + 1) - 2f(x) We omit
the proof of the case q = ̂  since the resulting inequality includes the
corresponding inequality for q = °o. First, suppose that

( ^2/ < 00. Note that ( (d2/df)ht(y)dy = 0. Therefore,

(x, ί) = (1/2) ( <?h*-(y)(f(xy)
Jo df +

so that

(x, ί) (1/2)(
3 %

3ΐ2
a>ip)(y)dy
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From Theorem 4 (i),

t*-«/i|| Λ* ( t

II 9 r

+

Hence, using Lemma 8,

K. SAKA

ll/I2<ί

Next, we shall prove the converse inequality. Since

u(x, e) = — l s - ^ - (&, s)ds + t - ^ (x, t) + u(xf t) - ε -

for 0 < ε < t, we have

/, ε) — 2u(x, ε) + u(xy"\ ε)

\ fit/ ^7y

ί5/> Γ t rp'fii nl/
UtΛ/ / Q\/IQ O-f (η/ f\

Hence,

(5) \\u(xy, e) - p, e) + u(xy \ ε)\\p

ds + 4ε
dt

-{x, ε)

t) - 2u{x, t) + u(xy-\ t)\\,

(x, e)

' ε )
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Now, let feA(a;p, q). Then by Theorem 10

t

A p p l y i n g L e m m a 9 w i t h h(t) = \\(du/dt)(x, t)\\pf w e g e t

du

dt
(x,ε) as

Hence (5) implies that

(6) \\f(xy)-2f(x)+f(xy-ί)\\p
d2ut I

S
0 dt2 (x, s)v II dt

•<w,t)--^-(χ,t)
dt

+ \\u(xy, t) - 2u(x, t) + u{xy~\ t)\\, .

From Theorem 4 (i),

a 2

( 7 )

and so

( 8 )

dt2 up

<s cί- i / 2 H—

«*.-=-

df -H)l

3ί
, t)

Jt

32

3ί2

Since by Theorem 4 (i),
have

a;, ί) =

, s)ds , s)ds ,

( 9 )

, n, so that (7) gives that

μdc, s)

C[ \ s
J2<

.1/2 3%
9ί2

(x,s)

ds

ί\ s"

!Γ , s)

409

, j = 1, . . . f n

Xjuix, s)

ju(xf ί)||oo—^0 as ί->0, i = 1, , ̂ , we

» Q1/7Q I •§• jΓ nt (n -f\

d2u
dt2

(x, s)
) •

ds

= l , ••-,%

By Lemma 10, (9) gives that
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(10) \\u(xy, t) - 2u(x, t) + u(xy-\ t)\\,

£ \\u(xy, t) - u(x, t)\\, + \\u(x, t) - u(xy-\ t)\

£C\y\ (£\\Xju\\,
\ 3

Q l/2

dt2
(x, s) ds + t\ s~1/2

(x, s) ds) .

Further, using (8), Lemma 10 gives that

(11)
du
^ (*v,t)--^HM)
9ί dt

\P

d2n

Σ
3

j dt
(x,t)

dt2
(x, s) ds .

Combining (10) and (11) with t = \y\\ (6) implies that

(x,s)
I 2 / I 2

dt2
IP

d2u

ds) \y\"pdy

c(\ (\vΓa\°° s^2

\)G\ J 2 l 2 / ! 2

dt2

d2u f

(x, s) ds) \y\-pdy

dt2

\9 \l/9

ds) \y\~pdy

d2u

dt2
(x,

+ C ~a)/2X { 2 l 2 / ί 2 < s
d2n
dt2

d2u

dt2

(x, s)

(x, s)

\y\-"dy
i/9

p/ S

1/9

p/ S

Q \l/9

\y\~"dy)

By Lemma 8 we obtain the inequality required:

(\o(\y\-"\\f(xy)

dt
Pf t

The proof of the remaining part is similar to the corresponding proof

of (i).

THEOREM 13. Let a > 0 and β > a, and let 1 < p < ^. Then

A(a; p, q) =
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and

Λ(a;p, co) = { / e p : sup {t^a)/i\\I^Htf\\9} < <*>} .
t>0

Moreover the norm IHU;*,* and || |Lp,oo are equivalent to

ll/ll, + ) jV-1 / ϊ | |/-'fl t/||,) r1dί}1/g αwd 11/11, + sup(>o{t"-"'/1||I-'flt/H,} re-

spectively, where

1 S-^-^''Ht+sf(x)ds, k = [0/2] + 1 .
Γφ - β/2)

PROOF. The space Ba

q%(%$p), β > a > 0, defined by Komatsu[ll: Def-

inition 5.1] coincides w i t h t h e space <feLp: \ (t{β~a)/2\\I~βHtf\\p)
qt~1dt<co\

I Jo )
in t h e case discussed in our paper . Komatsu [11: Proposit ion 2.5] has
proved t h a t Bf;β/2(^p) = Ba

q%{l + 3JP). The fact t h a t - ( 1 + 3 ) g e n e r a t e s
a semigroup e~*Ht implies t h a t

From Lemma 4 and Theorem 10 (i), we get

B*q!U$p) = Λ(a\ p,q) if 1 < p < - .

THEOREM 14. Let 1 ^ p <^ co.

( i ) If 1 ̂  g! ̂  g2 < co α-̂ cί β ^ a then

ZΛ(a; p, 1) c ϊ/ί(α; p, q1)a%A{a] p, q2)

dZX(a; p, co) c ZΛ(a; p, - ) c ZΛ(β; p, 1) .

(ii) // l ^ p < r ^ c o , 8 = /o(l/p — 1/r) αwcί 1 ̂  g ^ °°
S^(α; j?, g) c XΛ(a — δ; r, q) and Zx(a; p, co) c Sλ(α — δ; r, co).

In each case the inclusion mapping is continuous.

PROOF. The part (i) follows from Lemma 3 (i) and Lemma 7 (i) and
the part (ii) follows from Theorem 4 (iii), Theorem 5 and Proposition 3
(ii) (cf. T.M. Flett [4: Theorem 20]).

THEOREM 15. Let a be real and let 1 ̂  p, q ̂  co. Then the space

ZΛ(a; p, q) is a Banach space with respect to the norm |H|β ; P fg.

Flett [4: Appendix II] has proved this theorem in the case of n
dimensional Euclidean space by using the following series of lemmas
and the same results also hold in our case.

LEMMA 11. Let a be real, and let l ^ p ^ c o ^ ^ g ^ c o .

( i ) Let u(x, t) be a temperature on G X (0, co) such that \\u(-9t)\\p
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is locally integrable on (0, oo) and let u8{x, t) be the function given by
u8(x, t) = u{x, s + ί), where s > 0. Then u8 e ZΛ(a; p, q) Π ZX(a; p, oo),
and for each c > 0, ||wβ||α;3,,g ^ C for all s ^ c. The same results hold
also for the function uy>8(x, t) given by uVt8(x, t) = u(yx, s + t) where y eG
and s > 0.

(ii) Let u 6 %Λ(a; p, q). Then for each s > 0, u8 6 %Λ(a; p, q) and

| |w f | |«; M ^ INIUn g Further,
(iii) if 1 ^ q < °°, ίfee^ w8—>w i^ 2^ί(α; p, g) as β—>0, aτιώ
(iv) if q — °°, ίfee^ u s - > ^ iw S-4(a; p, oo) as s-^0 i/ and only if

ue%X(a;p, oo).

LEMMA 12. Lei a δe real, and let l ^ p ^ ^ ^ l ^ q ^ 0 0 and let

ueZ such that \\u8\\a.Ptq = 0(1) as s—>0. ΓAe^ ueXΛ(a; p, q) and

\\u\\a,p,q = lim8_>0 INIU.g

LEMMA 13. Let a be real and let l^p^°°,f^Lp and
Htf(x). Then for each s > 0,

(a > 0)

(α = 0)

[C\\f\\P ( α < 0 ) .

LEMMA 14. Let a real, l ^ p ^ ^ ^ ^ q ^ 0 0 , and let {fn} be a
sequence of functions converging in Lp to a function f. Let un(x, t) =
Htfn{x) and u{x, t) = Htf(x). Then for each s > 0,u8

n converges to u8 in
%Λ(a; p, q) as n^>°o.

4. Besov spaces in terms of the Poisson semigroup.

DEFINITION 3. For any a > 0 and feLp, 1 <; p ^ oo, w e define Jaf

by

J«f(χ) =

This integral exists for almost all xeG, and | | J α / | | p ^ | | / | | p , 1 Sp S ^ .
It follows easily that JaJβ = Ja+β for all a, β > 0. If % = J3,/, Jau in
this definition coincides with that of Definition 1. Moreover it follows
that JΉtf = HtJ

af. For each a > 0 we define Ga(x) by

This integral has following properties:
(a) For each a > 0, Gα e L\
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(b) For a > 0, β > 0, Ga*Gβ = Ga+β.
(c) For each a > 0 and an Z-tuple 7 = (γlf , 7ι) of nonnegative

integers,

for all x Φ e.
(d) For each a > 0 and feLp, 1 ̂  p ^ oo, Jα/(a:) = Ga*f(x).

We define the operator P t by

P t =
V π Jo

Then for each t > 0 we have P*/ = p t */ if feLp, 1 <; p ̂  oo, where

ht2UX(x)d\\
π Jo

(say p^a?) = p(x, ί)).
The operator P t and its kernel p4 satisfy most of properties in Theorem
1, Theorem 2 and Theorem 3 except the following properties:

(a) If feLp, 1 <ί p ̂  ^ P f / satisfies the Laplace equation, that is,

3 2

(b) p(rsf rt) = r~pp(x, t) for all r > 0.
Further important properties for Pt and pt are listed below:

(c) For t > 0 and s > 0, pt*h8 = h8*pt.
(d) If / e L p , 1 ̂  p ̂  oo and α > 0, P«Jβ/(α0 = JβP«/(α0 and pt*Ga =

Ga*Pt for each t > 0. These properties imply a following lemma analo-
gous to Theorem 4.

LEMMA 15. Let pt(x) — p(x, t) be the kernel function of the semi-
group {PJ^o Then

( i ) for all t> 0

If a — (alf , (Xι) is an l-tuple of nonnegative integers and k is a non-
negative integer then

SrDaP(x, t)

, for all t > 0,
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dt"
D°pt

<; ct~{la[+k+pa-1/p)) (1 ^ p ^

(ii) let u(x,t) = Ptf(x),feLp (1 ^ p ^ °°). Then for all t > 0,

< = p(l/p — 1/r), then for all t > 0,

dί*

Aiso, i / l ^

-D"u{ ,t) Ct -(\a\+h + δ)ll/ll,.

(iii) i^or eαcfe ί > 0 ίfeβ functions x\^u(x, t) and x\^(dkldtk)u(x, t) are
uniformly continuous on G, and the functions t\-^\\u(-,t)\\9 and t\-+
\\(dk/dtk)u( , t)\\p are decreasing on (0, oo) if 1 ^ p ^ CXD α^d are contin-
uous on (0, oo) i/ 1 ^ p < oo.

LEMMA 16. Lei 1 <̂  p <̂  oo, ami ieί u{x, t) be a harmonic function
on G X (0, oo), that is, u(x, t) is a solution of the Laplace equation
d2u/df = %$u on G X (0, oo), such that for each t0 > 0, u(x, t) is bounded
for t ^t0 and \\u(-, t)\\p exists for each t > 0.

( i ) Let β > 0 and 1 ^ q ^ oo. // Γί^" 1 ! !^-, Oll^ί < oo,
Jo

for t > 0,

Moreover, if q ^ r ^ «,

(ii) Lβί k be a nonnegative integer and let β be real. If

dt"

(iii) Lei a be a positive number and let k be a nonnegative integer.

if

4-a+k

dtk l ip/

\g dt
\P/ t

then
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t

Further, \\(dk/dtk)u(-9 t)\\p = o(r ( β + * } ) as t-»0 i / a n d onίy i / \\u( , t ) | | , =
o(ί"a) as ί —> 0. (iw £/&e case q = oo we consider these inequalities under
usual modification using sup notation instead of integral notation.)

PROOF. Part (i) follows from Lemma 9 and part (ii) follows from
Lemma 15 (ii). To prove (iii), we note that

-(x, s)ds ,

so that

For 1 ^ q < oo, using Lemma 5, we get

ds .

( ,s) ds] dt

By induction, part (iii) follows if 1 ^ q < oo. For q = oo it is easy to
prove. The last part of (iii) is also easy to prove.

DEFINITION 4. Let a > 0. We define the space Λ(a; p, q), where k
is a positive integer with k> a, and li^ptk^i^ίkqίk00 to be the
space of feLp for which

or

sup j ίfe~α

ί>0 I dtk -Ptf\
l

( 9 = < * > ) ,

equipped wi th t h e norm

llβ p.g = ll/llf
a* Pf

*

γ_dt_y/q

./ t i

or

ιιι/ιιι.,,.- = ii/ii,
«>o

We denote by λ(α; p, oo) the subspace of those feΛ(a;p, oo) for which
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= o(r ( f c"α )) as t->0 .
dtk

p

Lemma 16 implies that the definition of the space A(a\ p, q) and Λ(a;
p, oo) is independent of the choice of the integer k.

We obtain the following theorem similar to Theorem 12.

THEOREM 16. Let 1 <; p

( i ) For 0 < α < 1,

- f(x)\\P)
q\y\~pdy

κ; P , o°) = {.

Moreover ίfee n o r m | |H| | β ; i > , f f a n d | | | ||UP,oo <wβ equivalent to

\\f\\p + (\ Qv\-a\\ffrv)-ffr)\\p)9\v\-pdy)1/q

and \\f\\p + supιyl>o{|ί/Γa||/(a?i/) -/(»)||p} respectively, and

λ(a; P, oo) = {/eL?: ||/(x]/) -/(x)!!, = o(|]/|a) as |y|->0} .

(ii) jPor 0 < a < 2,

and

J(a;p, oo) = {feLp: sup { | ί/Π|/(^) + f(xy~ι) - 2/(a)||,} < oo} .
|2/|>0

Moreover the norm | | | |||«;P,« and | | | |||β;P,oo are equivalent to

ll/llp + (J^dwΓ

a^ώ ll/ll, + supι¥l>0 {|a/ΓaH/(»») +f(%y~1) ~ 2f(x)\\p} respectively, and

THEOREM 17. Let β > 0, a > 0 and

J^ is a linear homeomorphism of Λ(a; p, g) onίo J(a + β; p, q) of
λ(a; p, oo) onίo λ(a + β; p, oo).

To prove this theorem we need the following lemma:

LEMMA 17. Suppose that u(x, t) is harmonic on G x (0, oo), which
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for each c > 0, u(x9 t) is bounded in t^c and \\u( , t)\\p exists for each

t > 0. Given D > 0, a > 0, ί0 > 0 and an integer k> a such that

*<••<>
Uq

(1 ^ ϊ < oo)

or

sup it"-"

there exists a function feΛ(a;, t) | | p ^ i) /or αiί t ^ t0.
p, q) such that

(a) u(x, t) = P4/(a?),
(b) (du/dt)( , t)p = oίr1) as ί->0
(c) III/IIU. 2£CIλ
This follows from Lemma 15 and Lemma 16 (cf. M. H. Taibleson

[22: Lemma 5]).

We return to the proof of Theorem 17 (cf. M. H. Taibleson [22:
Theorem 5]). First we shall show GβeA(β;l, oo) for all β > 0. Sup-
pose 0 < β < 1. For x Φ e we see that using Theorem 4 (i),

( 1 ) \Gβ(x)\ = C [ ° m ι ι h { d c Γ "

and

(2)

| * | 2

\x\2
, n

We write

Ύ I Gβ(xy) - Gβ{x) \dx = ί | Gβ(xy) - Gβ(x) \dx

+ \ |Gf̂ (a?i/) — Gβ(x)\dx .
J l « l > 2 l y l

The first integral can be estimated by using (1). Then

\Gβ(xy) - Gβ(x)\dx <S ̂ , ^ ( 1 ^ ( ^ ) 1 + 1^0*01)**

\Gβ(x)\dx£c[ . . .\x\-'+>dx£C\y\>
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Next to estimate the second integral we use (2) and Lemma 10. Then

( IGβ(xy) - Gβ(x)\dx£C\v\Σ\ IX&fa)\dx
Jl» l<2lyl s J l l l l

Therefore, \\Gβ(xy) - (̂ (aOIL ^ C\y\\ so that by Theorem 15, GβeΛ(β;
1, oo), that is, IKd/dO-PAlL ^ Cί""1. To pass to the general case β > 0,
let & be a positive integer with k = [β] + 1. We write β = βt-\ \-βk,
0 < βf < 1. We observe that

Pβ, = Pt(Gh *Gh* - * GPk) = (pt/k * Gh) * (pt/k * Gh) *•••* (pt/k * Gβl) .

Consequently,

PtGt

dt dt dt
-Pt/kGβk

so that Gβ e Λ{β; 1, oo) for all β > 0.
Since it follows easily from Proposition 1 (iii) that Jβ is one-to-one,

we shall show that the image of Λ(a; p, q) under Jβ lies in Λ(a + β; p,
q). To prove this it is enough to see that if kι and k2 are positive in-
tegers with &! > a, λ;2 > β, then

dtu1+u2 *

for fe Λ(a; p, q). Since \\{dhψtki)PtllGβ\l ^ Ct^"*, we get

V* -n n . a*1

dtdt y

dt">-
i W

Hence,

(\ dt \1/s

so that JβΛ(a; p, q)aΛ(a + β; p, q). The corresponding inequality also
holds for ^ = o o . To see that Jβ is onto, let feΛ(a + β: p, q) and
u(x, t) = Ptf(x), and let 0 < β < 2. Then for (x, t)eG x (0, oo),
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( l + -jjr)u<β, 0 = J2 ((l + , 0

α, t)dβ = w(x, t) .

Put £r(£», ί) = J 2-"(l + d2ld?)u(x, t). Then using Lemma 15 (ii),

(4) IMS?, Oil, ^ | | ( i + -£-)

,,., i f ί Ξ > l .

Now, let klt k2 be two positive integers with kλ > a, k2 > β. Since
G2_βeΛ(2- β l, oo),

u(x, t/2)

Hence,

, t)
1/ί

The first integral is divided into the integrals over (0, 1) and (1, oo),
say Ji and 72 respectively. Then

Since

from Lemma 15 (ii),

= c
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On the other hand, by Lemma 15 (ii),

( 6 ) \\g(x, Ptf\

(4), (5) and (6) imply the hypothesis of Lemma 17 are valid, and so there
exists a function g e A(a; p, q) (1 ̂  q < oo) such that #(#, ί) = Ptg(x). (3)
gives

- * φ , ί) = J^(α, ί) = J^flr(α?) = PtJ
βg(x) ,

so that /(as) = Jβg(x), that is, J^ is onto if 0 < /3 < 2 and 1 ̂  g < oo.
To pass the general case β > 0, let fc = [/3/2] + 1 and put gk(x, t) =
jn-βQ + dηdtf)ku(x, t). Then

, t) = J2k(

and

E, ί) = U(X, t)

if

We write β = β,+ +βk where 0 < β, < 2. Then

1 +
32

3ί 2 ) J "Pt/(fc+l)/

^ C(i + (! •«(»,«/(* + !))

I 3ί*i+*a

Hence

V«

From Lemma 17, there exists a function #e2(α; p9 q) (1 <^ q < oo) such
that gk(x, t) = Ptg{x)y so that Jβg(x) =/(»). In the case # = oo the cor-
responding result also follows. Moreover the result for λ(α; p, oo) is
verified easily from the above paragraph.

THEOREM 18. Let a > 0, and let 1 <: p ^ °°,1 ^ 9 ^ °°.
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A(a; p, q) = A(a; p, q) and λ(α; p, °°) = λ(α; p, °°).

PROOF. This theorem is an immediate consequence of Theorem 7,
Theorem 12, Theorem 16 and Theorem 17.

5. Sobolev spaces. We summarize the fundamental properties of
the operator 3£ derived from the general theory of fractional powers of
operators. We shall refer to the comprehensive treatment of this sub-
ject in the papers of Folland [5] and Komatsu [10], [11]. Suppose that
1 < p < o o , R e α > 0 and k = [Re a] + 1. The operator $£ is defined by

ft; f = lim
Γ{k - a)

on the domain D($£) of all feLp such that the limit exists in the Lp-
dnorm. The operator $~a is defined by

on the domain D(£$~a) of all feLp such that the limit exists in the Lp-
norm. If Re a > 0 and k = [Re a] + 1, we define (1 + 3P)

a by

on the domain D((l + ϊ$p)a) oί all feLp such that the limit exists in the
ZΛnorm. Also, we define (1 + ^ ) ~ α by

Γ(a)

on ZΛ The function (1 + ϊ$P)~af of this definition coincides with the
function J2af of Definition 3 for /eZΛ To consider the case Reα = 0,

S oo

XdE(X) be the spectral resolution of the operator $2. Then
0

for Re a Φ 0,

3f = Γ X«dE(X), (1 + &)* = Γ ( l + X)adE(X) .
Jo Jo

These make sense even if Re a = 0 and can be extended to other values
of p. The fractional powers $; (α 6 C) of ϊ$p (1 < p < <*>) defineda bove
coincide with the fractional powers in the sense of Komatsu. We shall
list the fundamental properties of fractional powers 3? (αeC) of $ p

( 1 < p < oo):

(a) & is a closed operator on ZΛ
(b) If fe is a positive integer, JD(3fJ) is defined inductively to be the
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set of all feD^'1) such that SΓVe^ίS,). and 3*/ =
(c) li feD(^ζ) ΠD(X+η then XfeDQt)^d^^f ^ ^ γ . More-

over, 3£+/J is the smallest closed extension of ί^ffiί- In particular

(d) $J is the dual operator of 35'» where 1/p + 1/p' = 1.
(e) If / G D Q ί l L 9 then /Gflffi) if and only if 3"/eL 9 , in which

case 3 ; / = 3;/ .

(f) If Reα<Re/3 and /e.D(3;)n<D(3ί), then /6D(3ϊ) whenever
Reα ^ Re7 ^ Re/3, and ||3ί/ll, ^ C|l3;/llίll3ί/lliΓ' where θ = Re(τ-α)/
Re(/3 — a). Moreover, 3 ί / is a n analytic Lp valued function of y on the
strip Re a < Re 7 < Re β and is continuous on Re α ^ Re 7 ̂  Re β.

(g) If Rea = 0,1135/H, ^ C|Γ(1 - α ) Π | / | | , for/eZA
The same results from (a) to (g) also hold for the operator (1 + ί$p)

a

(αeC).
(h) If Re a > 0, then Dβffl = D((l + $*)*) - Λ((l + 3*>)~α) where

Λ((l + ̂ P)"α) is the range of the operator (1 + 3P)~a.
( i ) For any / 6 L p and R e α > 0 , HtfeD($ΐ) and e"'Jffί/6D((l +

3P)α). Moreover, H$ϊf = $a

PHtf for fe I>(3;). Henceforth we use some-
times the properties (a)~(i) in the proofs below without mention. Now
we shall give a definition of Sobolev spaces Ll.

DEFINITION 5. Let a be a real and let 1 ̂  p <; ©o. We define the
space L£ to be the space of all forms J"u where u(x, t) = Htf(x), feLp,
equipped with the norm || J"u\\a.p = | | / | | p . This space Ll is obviously a
Banach space. If a > 0, then we shall identify Ll with the space
{J"f f£Lv} under the canonical isomorphism. Folland [5] has defined
the Sobolev space Si as Si = DQaJ2) where α ^ 0 a n d l < ; p < ° o . This
definition coincides with our definition when a ̂  0 and 1 < p < °° from
the property (h) of 3? mentioned previously.

PROPOSITION 4. ( i ) Let 1 ̂  p ̂  oo α^d Zeί α, /3 reαί. Γfeβ^ Jβ is
an ίsometrίcal isomorphism of Ll onto Ll+β.

(ii) If a <; β, and 1 <* P ί^ °° then Lp

βdLl and the inclusion map-
ping is continuous.

(iii) Ifl<p<q<oo and β = a - p(l/p - 1/q), then Ll c Lq

β and
the inclusion mapping is continuous.

(iv) If k is a positive integer and 1 < p < oo, then Ll = {/eLp:
DafeLp for \a\ ̂ k} and the norm in Ll is equivalent to Σiαi^ \\Daf\\p

where Daf is a derivative of f in the sense of distributions.

PROOF. Parts (i) and (ii) are obvious. To prove (iii), let u(x9t) =
Htf(%), fe Lp. From Lemma 6 (i) taking r = (p + q)/2 and δ = p(l/p - 1/g),
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{ [ > 2 - v - < ι w , t)\\idt p ^ c\\f\\p < oo.

Hence
(C°° I1/?
Jl tα(«-^(l/r-l/ff))/2β-*||w(βί t ) | |y d ί I .

From Lemma 6 (ii), there exists a function geLq such that Ja~βu(x, t) —
Htg(x) and ||flr||ff ^ C| |/ | | p, so that Jau = Jβ{Ja~βu) = JβHtg, that is, Ucz
LQ

β and the inclusion mapping is continuous. Part (iv) is that of Corol-
lary (4.13) in Folland's paper [5],

THEOREM 19. ( i ) Assume that l<p<^q<*cofl<p<r<°o and
δ = p(l/p - 1/r). Then Ll c ZΛ(a - δ; r, q).

(ii) Assume that 1 < p < r < ^ , 1 < g ^ r, δ = p(l/p — 1/r). Then
%Λ{a + δ; p, q)<^Lr

a. Further, these inclusion mappings are continuous.

PROOF. Let ueLZ, then there exists a function feLp such that
J~au(x, t) = Htf(x). Let β > a — δ. Then from Lemma 3 and Lemma 6,

- « > / 2 - l e - Ί | J - ( ^ ) H j Ί ^

so that u 6 %Λ(a — 3; r, q). (For q = oo, the corresponding inequality also
follows similarly.) This completes the proof of (i).

Let u 6 %Λ(a + 3; p, q) and let β > a + 3. Then, using Lemma 6,

11 U U\', S) I \r —— 11 e/ \eJ U\ * f Sjj I | r ^

and there exists a function feLr such that J~au(x,t) = Htf. Hence
ueL%. This completes the proof of (ii).

We shall give an alternative definition of the Sobolev space Lp

a when
a > 0.

DEFINITION 6. Let a > 0, and let 1 < p < oo, and k be a positive
integer with k > a/2 + 1. Then we denote by 2P the space of those
feLp such thatl ( T |ί*-β/23ί*fll/(aj)|2t-1dtY/2|| < oo, equipped with the

I \Jo / Up

norm

III/HUHI/IU

LEMMA 18. Let a > 0, /3 ̂  0, 7 ^ 1 αw<Z ίeί 1 <; ̂  ̂  g ^ oo. //

, t) = Htf(x), feLr, 1 < r <oo, 8MCfc that Γ|ίβ +^+%(a?, ί)|»r1dί<oo,
Jo
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then

above inequality under usual modification in the case
q — oo or p = oo. We note that $au is well-defined for all a > 0.)

PROOF. We see that

1W»r<9/ (n* o\ — w> ΐQ^βΛΎηi //y» o | ——

Γ(T) Jo

Hence

so that

By Lemma 8, we get

The corresponding inequality for g = oo or p = co also holds. This com-
pletes the proof of Lemma 18.

X will denote Banach spaces, and LP(M, dμ; X) the space of X-valued
Lp-ίunctions on a measure space (ikf, dμ), equipped with the norm

G \l/ί>

\\f\\pdμ) where || || is a norm in X. If / = (0, oo), the space L%{I,

X) means the space LP(I, t^dt; X) and L%(I) means the space LP(I,
r'dt R).

THEOREM 20. Let a > 0. Tftew
( i ) Λ(a;pfp)(z2pdΛ(a;p92) (1< p ^ 2)
(ii) Λ(α; p, 2)cS2c^ί(α; p, p) (2 ^ p < oo).

In particular,

Λ(a;p9l)(z2p

aczΛ(a;pf oo) (1< p < «>) .

These inclusion mappings are all continuous.

PROOF. TO prove (i), let 1 < p ^ 2 and let / be any element in
Λ(a; p, p), and let k be an integer as in the definition of 8j. Put u(x, t) =
-ff,/(flB). From Theorem 13, we have ί*+1-β/2gf*+1u e L%(I; Lp) = LP(G; LS(/)).
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By Lemma 18, tk-«/2SkueLp(G; L%(I)). Therefore
On the other hand, let / be any element in 82, that is, tk~a/2$ku e

LP(G; L%(I)). Then, by use of Minkowski's inequality, tk~a/2^ku e L%(I; Lp).
Thus, by Theorem 13, feΛ(a; p, 2).

Next we shall prove (ii). Suppose 2 ^ 2 > < ° ° Let feΛ(a; p, 2),
that is, tk~a/2Sku e L%(I; Lp) (Theorem 13). Using Minkowski's inequality,
we get tk-"/2SkueLp(G;L%(I)). Hence /e82. On the other hand, let
/6 8S, that is, tk-a/2$kueLp(G; L%(I)). Then by Lemma 18,

tk-1-a/2$k~1u e Lp(G; Ll(I)) = L'M; Lp) .

Thus feA(a; p, p). Further, from Theorem 14, Λ(a; p, l)cz2pdΛ(a; p, ©o).

THEOREM 21. Let a > 0, and let 1 < p < <*>, then Ll = 8S and the
norm || |LP is equivalent to ||| |||α;3,.

REMARK. This theorem implies that the definition of 82 is independ-
ent of the choice of an integer k > a/2 + 1.

To prove the above theorem we need the following lemma:

LEMMA 19. Let 1 < p < °°. If feLp, we define a g-function gk(f)
for an integer k ̂  1 by

9k(f)(x) =

ThenC\\f\\p^\\gk(f)\\p^C\\f\\p.

PROOF. TO see that C| |/ | | p ^ ||0i(/)IU it suffices to show that Eo = 0
in Stein's book [21: Chapter V, Section 6, Corollary 2]. Suppose/6EO(LZ),
that is, Htf=f for all t > 0. By Theorem 4 (ii), | | / |U = | | i ϊ t / | L ^
C^l l/ lk for t > 0. Taking ί->oo, we get | |/|U = 0. Hence / = 0, that
is, Eo = 0. From [21: Chapter V, Section 6, Corollary 1], \\gk(f)\\p^ C||/||F.
By Lemma 18, gk(f) ̂  g,(f) on G. Therefore,

Now we return to Theorem 20. Let /e82 and set u(x, t) = Htf(x).
Since u e D($β

p) for all β > 0, $a/2u belongs to Lp. Hence we see from
Lemma 18 and Lemma 19 that

s))\\P =

vl/2

1/2
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Hence, \\^a/2u(x9 s)\\p is uniformly bounded with respect to s > 0. By
Theorem 3, there exists a function geLp such that $a/2u(x, s) = H8g(x).
By Theorem 2, u{x, s) and H8g(x) converge to / and g, respectively in
the ZΛnorm. Since $£/2 is a closed operator, $£ / 2 / = g, that is,

T) =L*. Conversely, let f e D($α

p

/2) = Lp

α. Then STfeL* and
= Htχ

/2f. From Lemma 18 and Lemma 19, we have
I /foo JΛ. \l/2 /COO J± \ 1/2 I

\(\ \tk""^"Htf(xW-^-) = (\ \tk-^k~/2H^r(W^)
I VJo t ' p \Jo t

\Jo

Therefore,

COROLLARY. 1/ α is reαϊ α^d 1 < p <
(i) %Λ(α;p,p)c:Uc:XΛ(α;p,2) (1< p ^ 2)
(ii) 2:^ί(α; p, 2)cLScSyl(α; p, p) (2 ̂  p< oo).

/-̂  particular,

XΛ(a; p, 1) c LS c £4(α; p, oo) (1 < p < CXD) .

Γfeese inclusion mappings are all continuous.

This corollary is immediate from Theorem 7, Proposition 4 (i) and
Theorem 20.

6. Interpolation theorems for Besov spaces and Sobolev spaces.
Now we shall discuss the interpolation space of Besov spaces and Sobolev
spaces. First we recall the definition of interpolation spaces of real and
complex methods (example, see [1]). Let (Xo, XJ be an interpolation
couple of Banach spaces and let £0 and ξλ be real numbers with <fofi < 0,
and let 1 ^ p 0 ^ °°, 1 ^ Pi ̂  °° We denote by W(p0, ζ0, Xo; Pu fi, %i)
the space of those functions u{t) such that t^u(t) eZ4°(jΓ; Xo), thu{t) e

; X±), equipped with the norm

S 00

u(t)t γάt taking
n e W(p0, ξ0, Xo; Pu t» -Σi) where θ = ζo/(ξo - ξJ and 1/p = (1 - θ)/p0 + θ/p19

equipped with the norm

u e W(pQ, ξQ, XQ; pu ξu Xd such that a =

Then we have
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(Xo, Xde.p = { α e l o + Xx: for all t > 0, a = u(t) +

with Vw(«) e L5f(J; Xo),

We denote by §(X0, XJ the space of all functions /(£), £ = s + it defined
in the strip 0 <̂  s ^ 1 of the f-plane, with values in Xo + Xx continuous
and bounded with respect to the norm of Xo + Xx in 0 <; s <: 1 and
analytic in 0 < s < 1, and such that f(ίt) e Xo is X0-continuous and tends
to zero as |ί|—>oo, f(l + it)eXί is XΓcontinuous and tends to zero as
|ί|->°°, equipped with the norm

11/11, = max[sup | |/(i ί) | | X o , sup ||/(1 + it)\\Xί] .

Given 0 < θ < 1, the interpolation space [Xo, XJ^ is defined by

[Xo, XJ# = {̂ : x = f(θ); /6g(X0, X,)}

equipped with the norm

We defined the space Ll>σ(I; X) by LP(I, Γ^dt; X) (1 ^ p ^ oo) where
X is a Banach space. To prove interpolation theorems we need the fol-
lowing lemmas:

LEMMA 20. ( i ) Let σ, τ be real numbers with σ Φ τ and let
0 < θ < 1. Put μ = (1 - θ)σ + θτ. Then]

(Lϊ' (I; X), L7V; X))e,qcLr(I; X)c(L1r(/; X), Uf(I\ X))θ,q

with continuous inclusion mappings.
(ii) Assume that X, Xo and Xx are Banach spaces and that a09 ax

real numbers, 1 ^ p0 < °S 1 ίS Pi < °°f 0 < 0 < 1. T êw

[L"(G; Xo), LP1(G; XJ], = L'(G; [Xo, XJ#) ,

(L^'ao(/, X), L*j*{I\ X))θfP = Lfβ(I; X) ,

[L?'^/, X), L^'ai(/; X)]Θ = Lϊ*(I; X)

where 1/p = (1 - 0)/po + 0/?>i an(2 a = (1 — 0)ao + θax.

Part (i) is Lemma 7.4 of Muramatsu's paper [18], and for (ii), ex-
ample see J. Bergh and J. Lbfstrbm [1] or Calderόn [2].

LEMMA 21. ( i ) Let kbe a positive integer and O < 0 < 1 , l ^ ^ ^

p< oo. Then (L&, Lp)θ>q = Λ(2θk; p, q).

( i i ) If σ and τ are positive numbers and l ^ f , η ^™,1< p <
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then [Λ(σ; p, ξ), Λ(τ; p, η)]φ = Λ(μ\ p, ζ) where 1/ζ = (1 - θ)jξ + θ/η and
μ = (1 - θ)σ + 0r.

PROOF. Komatsu [11: Theorem 3.1] implies (i) and Grisvard [6:
Theorem 4.1] implies (ii).

LEMMA 22. Let k be a positive number and 0 < # < 1, 1 ^ # ^ ° ° ,

1 < P < w . Then

( i ) The mapping

is linear and continuous from Λ(2kθ; p, q) onto W(q, —kθ, L\k\ q, k(l — θ),

Lp)and f= Γv(λ)(dλ/λ).
Jo

(ii) The mapping

+[(k — I ) ! ] 2 Jo

is linear and continuous from L%k\I\ Lp

2k) + Lvi~k{1"θ)(I; Lp) onto Λ(2kθ;
P,Q)

PROOF. This follows from Grisvard [6: Proposition 3.1 and Proposi-
tion 3.2] using Lemma 21 (i).

P R O P O S I T I O N S . L e t σ , τ be r e a l w i t h σ Φ τ a n d l ^ p ^ ° ° ,
1 ^ ξ, V < °° a n d 0 < 0 < 1. Put μ = (1 - θ)σ + θτ and 1/ζ = (1 - 0)/f
+ θlη. Then

( i ) (ZΛ(σ; p, ξ), XΛ(τ; p, η))θ,ζ c ZA(μ; p, ζ),
(ii) [ZΛ(σ; p, ξ), XΛ(τ; p, η)]φ c 3^0"; p, ζ).

PROOF. By Theorem 10 (ii) the mapping T: f\r-*(dk/dtk)HJ is linear
and continuous from Λ(a;p, q) into L%k'a/\I; Lp) for an integer k > a/2.
By Theorem 7, we may assume σ, τ > 0. By interpolation, for a fixed
integer k > max(σ/2, τ/2),

T / e (L%k-°/2(I; Lp), Llh"T/2(I; Lp))θfζ

for all /6(4(σ;p,f),il(τ;p,i7)),>c. By Lemma 20 (ii), TfeLz^/2(I;Lp).
This implies that feΛ(μ; p, ζ), that is,

(Λ(σ; p, ξ), Λ(τ; p, y))θ,ζc:Λ(μ; p, Q .

Similarly, [Λ(σ; p, ξ), Λ(τ; p, η)]θ c Λ(μ; p, ζ).

If 1 < p < oo, we have a result stronger than the above proposition.

THEOREM 22. Let σ and τ be real numbers with a Φ τ and let
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0 < θ < 1, 1 ^ £, η, q ^ <*>, 1 < p < oo. Set μ = (1 - θ)σ + θτ; then
( i ) (ZΛ(σ; p, ξ), ZΛ(τ; p, V))β,q = 2Λ(μ; p, q),
(ii) [£Λ(<7; p, f), £Λ(τ; p, 97)], = XΛ(μ; p, ζ) wΛere 1/ζ = (1 - 0)/£ + 0/?.

PROOF. Let 0 < σ, τ < 1 with σ Φτ, and let & be a positive integer

1 ^ 2 ^ oo, l < p < o o a n d θ < 0 < l . If fe (Λ(2kσ; p, oo), Λ(2fcτ; p, ^))^, 9 c

^(2&α ; p, oo) + ̂ ί(2Λτ; p, oo), then by Lemma 22 (i), there exists a mapping

Tx from Λ(2kσ; p, oo) onto T7(oo; — &σ, L?fc; oo, fc(i — σ), Lp) and also from

Λ(2kτ; p, oo) onto W O , -fcτ, L i ; oo, jfc(i - r), Lp) such that / =

ΓttOOλ-^λ with T J = u(X). Put WΊ = TΓ(oo, -kσ, Llk\ oo fc(i - σ), Lp)
Jo

and T72 = TF(oo, — kτ, Lξk; °°, ifc(l — 0 , Lp). By interpolation, we have
u(X)e(Wlf W2)θ,q. Hence,

u(X) e {L7k°{I\ Lh), L?kr(I; L*k))θ,q

and

u(X) G (Lϊ'- fc(1"σ)(/; L*), L%>~k^\I; L»))θ,q .

From Lemma 20 (i),

u(X) 6 Lqihμ{I\ Lh) and w(λ) 6 L%'k{1-^(I; Lp) ,

so that u(X) 6 W(g, -fcjM, L2

p

fc; q, k(l - μ\ Lv). Since / = ( u{X)X~1dX, we
Jo

get, using Lemma 21 (i), fe (Lffc, Lp)^,g = Λ(2μk; p, q). Hence

(Λ(2&σ; p, oo), ^(2fcr; p, oo))tffff c Λ(2μk; p, q)

for a positive integer & and 0 < σ, τ < 1, σ Φ τ. On the other hand, if
fe Λ(2μk, p, q) = (Ljfc> I/p)Λ,g, then we write / = vo(λ) + ^(λ) where vQ(X) e
Lq4kμ(I; Lh) and v1(\)eLq* -ka-μ\I;L'). From Lemma 20 (i),

vo(\) e (L¥°(I; L*Λ), L^(I; Lh))9tq

and

Vl(x) e {Lrk[1-°\i\ Lη, Lrkil-τ)(i; Lη)θ>q.

We put

Lx = Liί* (/; L&) + Lrka-σ)(I; L*)

and

L2 - Lϊfa(/; Li) + Lrk{1-τ)(I; L») .

Hence, / = vo(X) + v^X) = w(λ) 6 (Lx, L2) t f f ί. By Lemma 22 (ii), there is a
mapping T2 from Lx onto Λ(2kσ; p, 1) and from L2 onto Λ(2kτ; p, 1). By
interpolation,

T2u e (Λ(2kσ; p, 1), Λ(2kτ; p, l))θ,q

and, using Lemma 22 (i),
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so that fe (Λ(2kσ; p, 1), Λ(2kτ; p, ϊ))θ,q- Hence, Λ(2kμ; p, q)a(Λ(2kσ; p, I7,
Λ(2kτ; p, l))θ,q- Moreover, from Theorem 14,

Λ(2kμ; p, q)a(Λ(2kσ; p, 1), Λ(2kτ; p, l))θ,q(Z(Λ(2kσ; p, ξ), Λ(2kτ; p, η))βtq

d(Λ(2kσ; p} 00), Λ(2kτ; p, °°))θ>qc:Λ(2kμ; p, q) ,

so that Λ(2kμ; p, q) = (Λ(2kσ; p, ξ), Λ(2kτ; p, η))θtq when 0 < σ, τ, θ < 1,
σ φτ, l ^ ^ ^ o o and 1 < p < 00. By Theorem 7, it follows that

(XΛ(σ; p, f), ZΛ(τ; p, η))9,q = ZΛ(μ; p, q)

for any real numbers σ, τ. From Theorem 7 and Lemma 21 (ii) it follows
that

[ZΛ(σ; p, f), ZΛ(τ; p, η)]θ = %Λ(μ: p, ζ)

for any real σ, τ, where 1/ζ = (1 — θ)/ξ + θjiη. This completes the proof
of the theorem.

PROPOSITION 6. Let σ, τ and a be real numbers and let 0 < θ < 1,
1 < V, Q < °° Put 1/r = (1 - θ)jp + θ/q and μ = (1 - θ)σ + βr

( i ) [ I * , ! , ; ] , C L ;
( i i ) L>μ = [L*,L*]β

(iii) L ; = [Ls, L;],.

αδoi e inclusion mappings are all continuous.

PROOF. From Proposition 4, we may assume that σ and τ are posi-
tive numbers. Let k be a positive integer with k > max(σ/2 + 1, τ/2 + 1).
By Theorem 21, the operator $fc is a linear bounded operator from LJ
into LP(G; L2£k-σ/2) and from L? into L9(G; L%k~T/2). By interpolation, the
operator $fc is a linear and continuous mapping from [Lζ, Lq

τ]θ into
[L*(G; Lr~o/2), L<(G; LS*-"%. Since by Lemma 20 (ii), [LP(G; Lϊ fc-/2),
L (ff; LS*-r/l)L - L'(G; L%k~^) and [i;, L?],c[Lp, L<]β = L', we have [L>,
Lq

τ]θc:Lr

μ. In order to prove that Lp

μa[Lξ, Lξ]θ, it is enough from Prop-
osition 4 to show that Lp

σθ c [Lξ, Lp]θ when σ > 0, 0 < θ < 1. Let
u e Z&, that is, u(x, t) = JσθHtf(x) with / e Lp. We put 0(3) = A(z)JσzHtf,
where A(z) = Γ(l + ^α1). By the fundamental property (f) of fractional
powers $;, the mapping z \-+ g(z) is analytic for 0 < Re z < 1 and contin-
uous for 0 <; Re 3 <£ 1. We see that for a real s,
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= \A(is)\ \\JiaΉtf\\p = \A{is)\

<Z\Γ(l + isσ)\ r(l + i-?±

431

as \s\

Hence, g(is)eLp and ||flr(ΐs)||,,—>0 as |β|->o°. On the other hand,

g(l + is) = A(l + is)J°+i°*Htf = A(l + is)JΉt(J^f) e Lζ,

and

iσs)\ ^ 0 as 181

Hence g(β) = Aψ)JσθHJ = A(θ)u(x, t) e [Lp

σ, L
p]θ. This implies that L;,c

[L?, L9]^. Therefore (ii) follows from (i). (iii) is verified easily. The
proof of the proposition is complete.

REMARK. Part (ii) is essentially due to Folland [5: Theorem (4.7)]
when σ ^ 0 and τ >̂ 0.

THEOREM 23. Lei α α^d β be real numbers and let 0 < θ < 1,
1 < p < oo and l^q ^ oo. P^ί μ = (1 - g)« + θβ. Then

(LS, Lϊ),iff = Sil(j«; p, g) .

PROOF. From Corollary of Theorem 21 and Theorem 22 we obtain

£Λ(j«; JP, 9) = &Λ(a;p, 1), ϊil(/3; p, l))^ f fc(Lj, Lj),,g

C ( ^ ( α ; p, oo), S^(^; p, oo)),fff = S^(^; p, q) .

Thus, ϊilOM; p, q) - (LJ, Lj),fί.

7. The duals of the Sobolev spaces and Besov spaces. If B is a
Banach space, then we denote by Bf the dual space of B. The follow-
ing theorem is verified easily from the duality theory of interpolation
spaces. (Example; see J. Bergh and J. Lofstrom [1] and Taibleson [23].)

THEOREM 24. ( i ) Let a be real and let 1 < p < oo and l/p + l/p' = l.
Then,

(LI)' = L*la .

(ii) Let a be real and let 1< p < oo, l < # < o o . put 1/p + 1/p' = 1
and 1/q + 1/q' = 1.

Flett [4] has shown that the duals of £Λ(a;p,ϊ) and %X(a;p, oo)
are %A(—a)p\ oo) and %Λ{—a\p\ 1) respectively after a long series of



432 K. SAKA

lemmas in a ^-dimensional Euclidean space. But some of these lemmas
are not applicable to our case. Thus we shall prove the above duality
theorem under appropriate modifications in our case.

LEMMA 23. Let 1 ^ p <; ©o and 1/p + 1/p' = 1, and let u, v be tem-

peratures on G x (0, oo) such that \\u(-,t)\\p and \\v( , ί)| |p# are locally

integrable. Then for all positive numbers su s2, tlf t2 such that sλ + s2 —

tx + t2 we have

S u(x, s1)v(x9 s2)dx = \ w(#, t^)v(x, t2)dx .

PROOF (cf. Flett [4: Lemma 15]). Obvious from Fubini's theorem.

LEMMA 24. Let 0 < a < 2, 1 ^ p < co, y p + l/^' = l. For αίi

—a p', oo) α^d αZΪ v e ϊ 4 ( α ; p , 1) let

(ii) (u, Vs) = lims_0\ u(yf s)g(y)dy, where v(x, t) = Htg(x), geLp (cf.
J G

Theorem 9).
(iii) If ue %A(—a; p\ oo) and (u, v) = 0 for all v e ZA(a; p, 1) then

u = Q.

(iv) If ve %Λ{a\ p, 1) and (u, v) = 0 /or αίί w e £λ(—α; p', oo) ίfee^
v = 0.

(v) If UG %A(—a; p\ oo), ^ e ί£yl(α; p, 1) αweZ s > 0 ίfee^ <V*, v) = <t6,
v8>, where u8 is as in Lemma 11.

(vi) If ue£A(—a;p\ oo) and v is a temperature on G x (0, oo)
such that 11-> ||ι;( , t)\\p is decreasing on (0, oo) then for all positive s, t,

(u, v8+t) = I w(y, s)v(yf t)dy .

PROOF (cf. Flett [4: Lemma 27]). By Holder's inequality, part (i)
is verified easily. Part (ii) follows immediately from Lemma 11 (iii),
Lemma 23 and part (i). Parts (iii), (iv), (v) and (vi) follow easily from
Lemma 23.

LEMMA 25. Let a be real, and let 1 <̂  p < oo, l ^ g ^ o o . Suppose
that F is a continuous linear functional on either %A(a; p, q) or
%X(a; p, oo) and let hv>8(x, t) — h{y~ιxy s + t) and u(y, s) = F(hy'8) where
(y, s) e G x (0, oo). Then u{y, s) is uniformly continuous with respect to
y for each s > 0 and is bounded on s^c where c > 0.

PROOF (cf. Flett [4: Lemma 25]). First, note that hy>8 e %A(a\ p, q)Π
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%X(a; p, oo) by Lemma 11 (i). Put

( 1 ) K(x) = h(x~% s) .

Then we have, for yl9 y2eG and s > 0,

\F(h^'s) - F(hy*8)\ = IFCfc'i - h"»')\ ^ | | F | | | | /^ ' s - h"»'\\a.9t9 .

Hence it suffices to prove that hy>8 is uniformly continuous for each s > 0

and is bounded on s ^ c > 0 with respect to the norm || ||α;3,,g. By

Theorem 14, we may assume q = oo. Using Theorem 8 (ii) and Theorem

4 (i),

cΓsup ||/^'s(α;, t)-hy»8{x, ί ) | | p +sup j*fe-«/2 - ^ ( ^ - ( α ? , t)-h»**(x, t))^ cΓsup |

^ cΓsupH*«.(*;, - fc^ll, + sup {t*-«/»||-^-Λt+.Λ (fc;« - λ 'Λ I 11
Lί^l/2 0<ίgl ( II 3ί Λ \ V | p ) J

where & is a nonnegative integer with k > a/2 and s > 0, yu y2eG.
The function # M> fe* is uniformly continuous with respect to the norm

|| UP when 1 <; p < oo by Corollary (ii) of Theorem 5. Thus, for each
s > 0 the function yh^hVtS is uniformly continuous with respect to the
norm |H| a ; p > o o . Further, by Theorem 4 (i),

Hfc'lUp.oo ^ CdlA ll, + (sl2)-a/2\\h8j%) ^ C(s-^ { 1-W / 2 + (s/2)-{a+^-1/p))/2) .

This implies that Hfc*'!!*;,,*, is bounded on s ^ c > 0. This completes the
proof of the lemma.

LEMMA 26. Let a be real and let 1 <L p <. oo9 l <: q <ς oo. Suppose
that F is a continuous linear functional on either %A(a; p, q) or
%X(a; p, oo) and let u(y, s) = F(hy'8). Then for each geCc and for each
s > 0,

1 u(y, s)g{y)dy = F(vs) ,
JG

where v(x, t) = Htg(x) and v8 is as in Lemma 11.

PROOF (cf. Flett [4: Lemma 26]). Let E be the compact support of
g, and for each positive integer K let {JS'J = {Ef} be a finite covering of
E such that ^ = B(llK)yt where 5(l/ίQ = {y eG: \y\< 1/K}. Let {/J be
a partition of unity, subordinate to the covering {J57J. We put

SΛx, t) = Σ *(»-% β + ί)l fi(v)g(y)dy = Σ Λ^Γ1*, β + ί) ί A(v)g(y)dy .
i JEi i jEi
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Then Sκ is a finite linear combination of the functions hVi'8 and therefore
belongs to both ZΛ(a; p, q) and £λ(α; p, <*>) by Lemma 11 (i). To prove
that Sκ —> vs in %A(a\ p, q) as K—> <χ>9 we put

Ψκ(P, t) = Sκ(x, t) - v°(x, t) = Sκ(x, t) - v(x, s + ί)

= Σ h(yr% s + t)\ fi(y)g(y)dy - \ ΊLUvMV% s + t)g(y)dy

= Σ Ϊ fi(y){h(yτ% β + ί) - ΛCy-̂ , s

Then

II^(* , ί ) | | , ^ Σ ( \\h(yτ% β + ί) -

Since || ftd/Γ1^, s + t) - h(y~% s + t)\\p ̂  || fe8

y. - fej ||p and the function y t-> h8

y

is uniformly continuous when 1 ^ p < °o, where fey is given by (1) in
the proof of Lemma 25, we obtain that || Ψκ(x, t)\\p tends to zero as K-> oo
uniformly in t > 0. Since

-53-*"*(«, *) = Σ ί fi{v)\-£rh(yτ% 8 + t)- S-h{y~% s + t)\g(y)dy ,

the same argument above shows that \\{dkjdtk)Ψκ(x, t)\\p tends to zero as
K-> oo uniformly in £ > 0, and so by Theorem 8 (ii), Ψκ-+0 in ZΛ(a; p, q)
as K-^oof that is, Sκ->vs in !&4(a; p, g) as UL->OO. It IΪOW follows that

F(V) = lim F(S^) - lim Σ

= lim Σ u(ytf s) \ ft{y)g{y)dy .

Moreover, using Lemma 25,

Σ^(2/o β)\ fi(yMv)dy - \ u(y, s)g(y)dy
i JEi JG

= Σ ( fi(y)HVif 8) - u(y, s)}g{y)dy -> 0 as K-> oo .

This completes the proof.

COROLLARY. Under the hypothesis of Lemma 26,
( i ) the function t\-+ \\u( , t)\\p> is bounded on t ^ c for each c > 0,

where 1/p + 1/p' = 1,

(ii) for any geLp,\ u(y, s)g{y)dy = ί7^8), where v(x, t) = Htg(x),
JG

and
(iii) /or eαcfe s > 0, w(#, s + ί) = Htu(xt s). Hence, in particular u

belongs to the space %.
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PROOF. TO prove (i), we see from Theorem 14 and Lemma 13 that

: geCc, \\g\\, =(1) ||w( , ί ) | | ^

= sup{|fW|: geCc, ||flr||F = l}^| |F| |sup{| |^ | | β 5 M : geCc,

^C\\F\\snv{\\vs\\a,p>1: geCc,\\g\\p = l}^C\\F\\ i f s ^ O O .

Part (ii) follows immediately from Lemma 14. To prove (iii), taking
g(y) = te(y), xeG, t > 0 in (ii), we get

Htu(x, s) = \ h(y~% t)u(y, s)dy = F(hx's+t) = u(x, s + t) .
}G

THEOREM 25. Let a be real and let 1 <; p <oo. Then ZΛ(a; p, 1)' =
%Λ{—a p', oo). More precisely, if u e XΛ(—a; p1', °°) and Fu is given by
Fu(v) = <u, v), ίfee^ £/&e mapping u\-> Fu is a linear homeomorphism of
ZΛ(-a; p\ oo) o^ίo 2:̂ ί(α; p, 1)'.

PROOF (cf. Flett [4: Theorem 28]). By Theorem 7, we may assume
0 < a < 2. The mapping nv^Fu is a one-to-one and continuous linear
mapping of %A{—a; p\ oo) to £Λ(α; p, 1)' by Lemma 24 (i), (iii). To prove
that this mapping is onto, let Fe%A(a; p, 1)' and u(y, s) = F(hy'8). Then
from (1) in the proof of Corollary (i) of Lemma 26,

| | t t ( , β ) | | p > ^ C |

Hence, using Theorem 8 (ii),

(1) ||t*|U;,.lCO

so that by Corollary (iii) of Lemma 26, ueZΛ(—a; p\ ©o). For any i e
^ ( α ; p, 1), by Lemma 11 (iii), vs-^v in Ϊi4(α; p, 1) as β—>0, and by Theorem
9, we can find a function geLp such that v(α, t) = Htg(x). From Corol-
lary (ii) of Lemma 26 and Lemma 24 (ii), we get

Fiv) = lim 2^ s ) = lim \ (̂?/, s)g{y)dy = <%, v> .
s-»0 s->0 JG

This implies that the mapping nv^Fu is onto. From (1) and Lemma
24 (i), this mapping is a homeomorphism.

COROLLARY. Let a be real and let 1 <* P < °°. For ve%Λ(a\ p, 1),
Gv is defined by Gv(u) = (u, v). Then, the mapping v\->Gv is a linear
homeomorphism of XΛ(a; p, 1) into %Λ(a; pr, oo)'. Moreover, if Hυ is the
restriction of Gυ to %X(—a;p', oo), then \\HΌ\\ = \\Gυ\\.

PROOF. See Flett [4: Lemma 29 and Lemma 31].

THEOREM 26. Let a be real, and let 1 < p < oo. Then,
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( i ) ZΛ(a; p, 1) = £ λ ( - α ; p', ©o)'.. More precisely, if ve %Λ(a; p, 1)
and Hv is given by Hv{u) = (u, v), then the mapping vv-*Hv is a linear
homeomorphism of %Λ(a\ p, 1) onto £λ(—a; pf, oo)'.

(ii) 3X(—a p', ©o)" = 2L4(—α; p', oo), ίfcαί is, ίftere exists a linear
homeomorphism of XΛ(-a\ p', oo) onto S λ ( - α ; p', ©©)". Moreover, the re-
striction of this homeomorphism to %X{—a\pr, oo) is the canonical iso-
metry of %X(—a;p', ©©) into %X(—a;p', oo)".

PROOF (cf. Flett [4: Lemma 33]). By Theorem 7, we may assume
0 < a < 2. By Corollary of Theorem 25, the mapping v\^Hυ is a linear
homeomorphism of %Λ(a;p,ΐ) into £λ(—α; p', oo)'. To prove that this
mapping is onto, let He%X(—a; p', oo)' and v(y, s) = H(hy'8). For any

(—α; p' f oo), we have from Corollary (ii) of Lemma 26 that

v(y, 8)u(y, t)dy = H(u'+') .

By Lemma 24 (vi),

v(y, s)u(y, t)dy = <u, vs+t) .

Since s and t are arbitrary positive numbers, we have H(u8) = (u, vs).
By Lemma 11 (iv), us->u in X\(—a p', oo) as s—>0. Therefore,

lim |<w, vs>| - lim |£Γ(^S)I = \H(u)\ < ™ .

By the principle of uniform boundedness, | | i ϊ^ll = 0(1) as s->0. By
Corollary of Theorem 25, \\v8\\a,PΛ = 0(1) as s->0. By Lemma 12, ve
%Λ(a;p,l). Hence, using Lemma ll(ii), vs->v in %Λ(a;p,l) as s->0.
Thus, by Lemma 24 (i),

H(u) = lim (u, v8} = <w, v> .

This completes the proof of (i). See [4: Lemma 30] for the proof of (ii).
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