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1. Introduction. In this paper we show that the Godbillon-Vey
classes of codimension-one foliations with a certain qualitative property
are zero.

Since the Godbillon-Vey class was defined in Godbillon-Vey [1], many
authors have published studies on it. Thurston [14] proved that the
Godbillon-Vey class gives rise to a surjective homomorphism

gv: F 23— R

where 7 27, is the foliated cobordism group of transversely oriented
codimension-one foliations of closed oriented 3-manifolds. The problem
to determine its kernel is still open. (See Problem 4 in Lawson [4]). In
this point of view it is interesting to investigate what type of foli-
ations are contained in the kernel of gv. Herman [3] proved that a foli-
ation of the 3-torus whose leaves are diffeomorphic to R? is in the
kernel of gv.

On the other hand, the author has been studying the qualitative
theory in [8]-[11] and saw that codimension-one foliations with a certain
qualitative property admit nice decompositions. By making use of these
decompositions, we can compute the Godbillon-Vey classes.

The main result is the following.

THEOREM 1. Let & be a transversely orientable codimension-one
C*~ foliation of a closed orientable manifold M. Suppose that the depth
A(F) of F 1is finite and all holonomy groups of F are abelian. Then
we have

(1) If dim M = 3, then gv(¥ ) = 0.

(2) Let dim M > 3. If, for each leaf F of F# whose holonomy
group is mon-trivial, the cohomology group HEZ., (F: R) with compact
support is trivial, then gv(F ) = 0.

The author conjectures that the condition in (2) of Theorem 1 is not
essential.

The author was partially supported by the Sakkokai Foundation.
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With respect to the problem to investigate the kernel of gwv, the
following is interesting.

PROBLEM. Let &% be a transversely-orientable codimension-one foli-
ation of a closed orientable 3-manifold M. Suppose that d(F ) is finite
and all holonomy groups of F are abelian. Is F cobordant to zero?

In §2 we define SRH-decompositions and in §8 we give the proof
of an existence theorem. In §4 we state results on the relation between
SRH-decompositions and the Godbillon-Vey classes and we give the proof
in §5 for the case of dimension 3 and in §6 for the case of dimension

>3.

FixEp NOTATION. Throughout this paper, &% is a transversely-
orientable codimension-one foliation of a closed orientable C* manifold M.
We fix a vector field X, of M transverse to % and let p: M X R > M
be the flow defined by X,., We work in the C* category and omit the
term “C*”,

2. SRH-decompositions of codimension-one foliations. To clarify
the goal of §2 and §3 we state an existence theorem of SRH-decomposi-
tions before the definition of the terms used there. For the definition
of depth see Nishimori [10].

THEOREM 2. Let F# be a transversely-orientable C* foliation of
closed orientable manifold. If the depth d(F ) of F 1is finite and all
holonomy groups of # are abelian, then F# has an abelian SRH-de-
composition whose room-cycles and halls are ventilated.

Now we begin by introducing some notations as in Nishimori [10],
[11]. Let F be a compact manifold with or without boundary and N
a transversely-oriented codimension-one compact submanifold of F. Let
C(F, N) be the compact manifold obtained from F — N by attaching
two copies N, N, of N as boundary. The suffixes 1,2 depend on the
transverse orientation of N. For a diffeomorphism f: [0, 6,] — [0, 6,] with
0, >0, and f(0) =0, we denote by X(F, N, f) the quotient space of
C(F, N) x [0, 6,] by the equivalence relation ~ defined by

(@, 1) ~ (@, f(1))

for t€]0, 6,] and =, € N, x,€ N, such that x, = =, as elements of N. We
denote by & (F, N, f) the foliation of X(F, N, f) induced by that of
C(F, N) x [0, 6,] with leaves C(F, N) x {t}, t ][O0, d.].

DEFINITION 1. A subset S of M is called a staircase of & if there
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are a codimension-zero compact submanifold ¥ of a leaf of %, a codi-
mension-one transversely-oriented closed submanifold N of F with FF — N
connected, a contraction f: [0, 6,] — [0, §,] with 4, > 0, and f(0) = 0, and
an embedding h: X(F, N, f) — M satisfying the following conditions.

(S1) m(X(F, N, f)) = S.

(S2) h({x} x [0, d.]) c @({x} x R) for all x ¢ F.

(83) h(x, 0) =« for all xe F.

(S4) R(C(F, N) x {8, f(8)), f%6,), ---}) is contained in a leaf of & .

We call F(S) = F, C(S) = h(C(F, N) x {0,}), W(S) = h(N, X [d,, 6,]) and
D(S) = h(oF x [0, 6,]) the floor, the ceiling, the wall and the door of the
staircase S respectively, where N, is the copy of N with suffix 2. Note
that oS = F(S)UC(S)U W(S)U D(S) and that # is tangent to F(S)U C(S)
and transverse to W(S)U D(S). If w*s = (F, N, f), we call S
regular.

DEFINITION 2. A subset R of M is called a room of & if there are
a codimension-zero connected compact submanifold F of a leaf of % and
an embedding h: F' X [0, 1] » M such that

(R1) R = h(F x[0,1]),

(R2) h({x} x [0, 1)) ce({x} x R) and the curves h|{xz} x [0,1] and
o|{x} x R have the same direction for all x ¢ F,,

(R3) h(x, 0) = x for all xe F,

(R4) h(F x {1}) is contained in a leaf of & .

We call F(R) = F, C(R) = h(F' x {1}) and D(R) = h(0F x [0, 1]) the
floor, the ceiling and the door of the room R respectively. Note that
oR = F(R) U C(R) U D(R).

As usual the induced foliation h* % defines the “global” holonomy
homomorphism

: 7,(F, ) —— Diff([0, 1])

where Diff([0, 1]) is the group of the diffeomorphism of the interval
[0,1]. If the image of @ is trivial or abelian, we call R trivial or
abelian respectively.

DEFINITION 3. A subset H of M is called a hall of & if there are
a codimension-zero connected compact submanifold F' of a leaf of & and
a diffeomorphism f: D(f) — R(f), where D(f) and R(f) are compact con-
nected submanifolds of F', such that

(H1) F = D(f)UR(f),

(H2) for all xeD(f) there is ¢,>0 such that o(z,t,) = flx),
p({x} x (0, t. )N F = @ and



12 T. NISHIMORI

H={p, xeD(f),0 =t =t}.

We call D(H) = {p(z, t)|xeoD(f), 0 <t <t,} the door of H. Note
that 0H = D(H)U(D(f) — R(f)) UR(Sf) — D(f)).

The induced foliation @*F [{(x, t)|xe D(f), 0 <t < t,} defines the
“global” holonomy homomorphism

?: z(D(f), x,) — Diff ([0, ¢,,])
for z,€ D(f). If the image of @ is abelian, we call H abelian.

DEFINITION 4. A room-cycle is the union of a finite sequence
R, ---, R, of rooms such that C(R)N F(R;.)#* @ fori=1,---,1—1
and C(R) N F(R,) + @.

REMARK 1. The structures of a room-cycle and a hall are almost
the same.

DEFINITION 5. A room-cycle p or a hall H is called wentilated if
the restricted foliation .# o or .# |H has a compact leaf whose holonomy
group is trivial, respectively. A room-cycle p or a hall H is called un-
locked if, for all zep or for all xze H, there are s < 0 and ¢ > 0 such
that o(x, s)¢ o and o(x,t)¢ o or such that o(x, s)¢ H and o(x,t)¢ H
respectively, and otherwise locked.

DEFINITION 6. A finite set 4 of subsets of M is called a quasi-SRH
decomposition of F if

(1) M= U,.:4, and Int A ’s are disjoint,

(2) 4=LUURUI) U #(4) where F(4) = {Aed|A is a regular
staircase), A (4) = {A€ 4|A is a room}, 57 (4) = {Ae 4| A is a hall},

(3) D(A)cUseo i W(S) for all Ae4.

Furthermore if A is abelian for all Ae FZU)USF(4) we call 4
abelian.

PROPOSITION 1. If # has an abelian quasi-SRH-decomposition, then
all holonomy groups of F are abelian.

PrROOF. For a leaf F intersecting no elements in ZZ(4) U S5#°(4) the
leaf F contains the floors of just two staircases S, S, with F(S)N
F(S,)# @ by the condition (8) of Definition 6. Since # |U{S — F(S)|Se
S (4)} is without holonomy, the holonomy group of F is isomorphic to
Zor ZD Z.

For a leaf F intersecting an element He 5#°(4), the intersection
FNH is connected and F — HcCJ{S — F(S)|Se & (4)}. Therefore the
holonomy group of F' is isomorphic to the holonomy group of the leaf
F N H of the restricted foliation .&# |H, which is abelian.
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For a leaf F' intersecting Int R for an element R € .22(4) the inter-
section FFNR is connected and FF — RcU{S — F(S)|Se.~”(4)}. Therefore
the holonomy group of F' is isomorphic to the holonomy group of the
leaf FFN R of % |R, which is abelian.

For a leaf F' intersecting F(R) (or C(R)) for an element R e .2(4),
the intersection F'N R is F(R) (or C(R)) and FN R is F(S) for an Se
A (4) or C(R') (or F(R')) for a different R’ e <#(4). Furthermore FF — R
is contained in U{S — F(S)|Se€.~”(4)}. Therefore in any case the holono-
my group of F' is abelian. This completes the proof of Proposition 1.

Let 4 = &7(4) U.2(4) U #(4) be a quasi-SRH-decomposition of & .
For A, Be 4 we write A<B if there is a finite sequence A4, A, ---,4,€4
such that

(1) A =4,4,=25,

(2) WA)NDA) += D fore=1,---, k—1
where W(A,) is considered to be empty if A, e.22(4)U 57 (4). Note that
A e 4 is maximal if and only if Ae.Z2(4) U 52(4).

DEFINITION 7. A finite set 4 of subsets of M is called an SRH-de-
composition if 4 is a quasi-SRH-decomposition and (4, <) is a partially
ordered set.

Now all terms in Theorem 2 are defined. We give two examples of
SRH-decompositions.

ExAMPLE 1. Let .&; be the Reeb foliation of S®. We can take two
staircases S, S, whose floors are the compact leaf of .5,. Then the
connected components H,, H, of CI(S® — (S, U S,)) are trivial locked halls
of .o#,. Let 4=1{S, S, H, H,). Then 4 is an SRH-decomposition.

ExaMPLE 2. Let ¥, be the closed orientable surface of genus 2. By
Theorem 4 in Nishimori [10] there is a codimension-one foliation .& of
Y, x [0, 1] transverse to the last factor [0, 1], with d(¥ ) = d, and with
all holonomy groups abelian. In the case d = 3 we give an SRH-decom-
position of & as in Figure 1.

Now we give some propositions on SRH-decompositions.

PROPOSITION 2. If the depth of Z 1is finite or if all leaves are proper,
then a quasi-SRH-decomposition of Z s an SRH-decomposition.*

ProoOF. Let M/ be the set of leaves of % and for F,, F,e M/
let F,< F, if F,cCl,(F,). By Proposition 1 in Nishimori [10], the as-

* K. Yano proved that if the depth of # is finite then all leaves of .~ are proper.
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sumption of Proposition 2 implies that (M/%, <) is a partially ordered
set. Now suppose that (4, <) is not a partially ordered set for a quasi-
SRH-decomposition 4 of % . Then there are two different staircases S,,
S, in .%”(4) such that S, < S, and S, < S,. This implies that F*(S)=<
F*(S,) and F*(S,) < F*(S,) where F*(S,) is the leaf of .# containing
the floor F(S;), 7 = 1, 2. Since

F*(8) — F(8) cU{S — F(S)|Se .« (4},

it follows that F'*(S,) # F*(S,). Therefore (M/ , <) is not a partially
ordered set, which is a contradiction.

PROPOSITION 3. Let 4 be an SRH-decomposition of &% . Let .o be
a subset of &7 (4) such that if Se€.” and S= S e.S7(4) then S'c..
Then for each leaf F of # , the set F' — U{S|Se .9} is connected.

ProOF. Let Fe M/ and p,qe F — U{S|Se.2”}. We number the
elements of .~ so that if S, < S, then 1 < j. It is sufficient to construct
curves ¢,: ([0,1],0, 1) > (F — U, S,, », ¢) by induction on n. Since F
is connected, there is a curve c¢.: ([0,1], 0, 1) — (F, », q). Now suppose
that ¢, is constructed. In the case ¢,([0,1]) N S,.. = @, let ¢, = c,.
Consider the case ¢,([0, 1) N S,:; # @. We can write
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C;l(Int S,”,-H) = ZLeJA(aX’ bl)

where (a, b;)’s are disjoint. Since S,;, is regular and c,|[a; b;] is a
curve on the same leaf of #|S,.,, we can show that the points ¢,(a;)
and ¢,(b,) are on the same leaf of .# |W(S,:,). Then we can take curves
¢;: ([ay, 0], @z, b)) — (W(S,+1), c.(a2), ¢,(b;)) so that the curve c;: [0, 1] - F
defined by

(1) cillas b:] = ¢

(2) ell0, 1] — Usilas, b)) = ¢,|[0, 1] — Ui(a,, by)
is continuous. It is easy to modify ¢, and to obtain the desired c,.,.
This completes the proof of Proposition 3.

PROPOSITION 4. For a room R in an SRH-decomposition 4 of .,
the floor F(R) and the ceiling C(R) are contained in mutually diffeo-
morphic leaves of Z and the saturation R* of R, that is, the union of
all leaves of F intersecting R, is diffeomorphic to F*(R) X [0, 1] where
F*(R) is the leaf of F containing F(R).

ProOF. We use the notation in Definition 2. We number the stair-
cases in .&“(4) so that if S, < S, then ¢ < j. Let F}*(R) be the leaf of
Z |(U,2:S,) UR containing F(R) and R the union of all leaves of
Z |(U.2: S,)) UR intersecting R. Then F}*(R) = F*(R) and R} = R*. We
construct a diffeomorphism h,: F¥(R) x [0, 1] — R} such that

(1) n)F(R)x[0,1]=nh

(2) hF.(R) X [0, 1] = hisy
by downward induction on 7. Suppose that k.., is defined. If F*(R)N
Int S, = @ then F¥(R) = F},,(R) and R} = R},. In this caselet h, =h;..
Otherwise S, N R}, = W(S,) N R, by the condition (8) of Definition 6.
The intersection W(S;)N R}, consists of a countable number of connect-
ed components diffeomorphic to W(S;). Since .# |S; — F(S,) is without
holonomy it is easy to extend h,..|W(S,)N R}, to h,|S; N Rf. Thus we
have h;, which completes the proof of Proposition 4.

PROPOSITION 5. For a hall H in an SRH-decomposition 4 of & ,
the saturation of H is a fiber bundle over S' with fiber F* where F*
is the leaf of F containing F in the notation of Definition 3.

PrOOF. We use the notation of Definition 8. By using downward
induction as in the proof of Proposition 4, we can extend f: D(f)— R(f)
to a diffeomorphism f*: F* - F* and find ¢, >0 for all x€ F* such
that

(1) o({a} x 0, tNNF* =@, o=, t,) = f*(®),

(2) H*={px t)|lzeF* 0=t =1}
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where H* is the saturation of H. Therefore H* has the structure of
a fiber bundle over S' with the characteristic diffeomorphism f*.

Now we introduce the term “thinning” of an SRH-decomposition
which will be useful in the computation of the Godbillon-Vey classes.

DEFINITION 8. Let S be a staircase of % and » a non-negative
integer. We use the notation of Definition 1. Then S = h(X(F, N, f)).
The n-thinning S™ of S is the subset A(C(F, N) x [0, f*(8)]/~).

PROPOSITION 6. Let 4 be an SRH-decomposition and « a mon-
negative integer valued function on (4). Then there are a uniquely
defined SRH-decomposition 4 and a bijection j“: 4— 4 such that

(1) J9F W) = L), jN(RBA) = B4 and (% (4)=
(4,

(2) 79S)NS is the a(S)-thinning of S for all Se &7 (4),

(8) JA)D A for all Ae 2 (4) U 57 (4).

ProOF. We construct j(A) for Ae 4 by induction on the partial
order <. A minimal element A of 4 is a staircase or a room. In the
case Ae.S”(4), let 7“(A) be the «a(S)-thinning of A. In the case Ae
B(d), let j9(A) = A.

Consider Se.97(4) and suppose that 7(S") is defined for all S’ < S.
Let 7(S) be the union of leaves of

FICUUIS'|S =z §'e L ()} — U39S S > S'e & (4)})
intersecting the a(S)-thinning of S. Since & |U{(S’ — F(S)|S > S’ ¢ & (4)}
is without holonomy, it is easy to see that j*(S) is a staircase of .7 .

Consider A€ . Z(4)U 577°(4) and suppose that j(S) is defined for all
S < A. Let 7(A) be the union of leaves of

FAUCKU{S|A > Se ()} — UlT“(S)|A> Se ()

intersecting A. Then j“(A) is a room or a hall if Ae.Z(4) or Ae
7 (4) respectively.

Let 4 = {j®(A)|A e 4}. Then 4 is an SRH-decomposition with the
desired property. We can check the uniqueness by induction and omit
the proof.

DEFINITION 9. The SRH-decomposition 4‘“ in Proposition 4 is called

the a-thinning of 4. In the case where a is a constant function with
value n, we call it the n-thinning of 4.

ProPOSITION 7. (1) The a-thinning of the B-thinning of 4 is the
(a + B)-thinning of 4. (2) Let 4 be an SRH-decomposition and & a
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subset of S (4). If a compact subset K of M does mot intersect the leaf
F*(S) of & containing F(S) for each Se.5”, then there is a mnon-
negative integer valued function a of &7 (4) such that KN (Use» 5(S)) =
and a(S) = 0 for all Se ¥ 4) — 5.

Proor. (1) is clear. (2) We number the elements in & so that
if S;<8S; then ¢ <j. Let a(S)=0 for Se.4) —.&”. We define
a(S,)) by induction on ¢. Since FF’*(S)NK = ¢, there is a positive integer
a(S)) such that the a(S))-thinning of S, does not intersect K. Now sup-
pose that «a(S), - -, a(S,) are defined. Let B, be a function of .&7(4)
defined by

(@) Bu(S)=a(Sy), i=1,---, n,

(b) Bn(S) = 0 for Sey(d) - {Slv ) S'n}

Consider the S3,-thinning of 4. Since F*(S,.,)N K = @&, there is a posi-
tive integer «a(S,+;) such that the «(S,.,)-thinning of j*»'(S,.,) does not
intersect K.

Note that j¥»(S,) = j%+2(S,) fori < n. Letl = #(%°). Then a=25,

is the desired function of &7(4).

3. The proof of Theorem 2. By Proposition 2, it is sufficient to
construct an abelian quasi-SRH-decomposition whose room-cycles and halls
are ventilated. Let d = d(&*). We may suppose that M is connected.

FirsT sTEP. By induction we construct non-empty finite sets
A, -, .S, of staircases and finite sets &, ---, &, of rooms such
that

(Al) the interiors of all elements in AU---U.5_ U AU--- UFH,_,
are disjoint,

(A2) the door of each element in .&% U .22, is contained in the wall
of a staircase in LU ---U.9_,,

(A3) the floor of each element in .54 U .2 is contained in a leaf, of
., of depth 1,

(A4) each leaf, of &, of depth 7 is contained in

Uldlde AU---UFKLURU---UR),

(A5) #,U---UZ,_, has no room-cycle.

Let &= @ and &2, = @. Let 0 <k <d — 1 and suppose that &7
and <Z, are already constructed for all i <k. Let M,= U{4|4¢
FHU-USAUGZU-- U

LEmMMA 3.1. M — M, #* @.

ProOF. If k= 0 it is clear. Let k¥ = 1. The condition (A2) implies
that the wall of each staircase in &4 has no neighborhood, with respect
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to the topology of M, in M,. Since .4 +# @, it follows that M — M, #+ @.

LEMMA 3.2. For a leaf F of the restricted foliation F |M — Int M,
we denote by d.(F) the depth of F with respect to & |M — Int M,. Let
F* be the leaf of F# containing F. Then d(F*) = d (F) + k.

PrOOF. The condition (A4) implies that d(G*) >k for each leaf G
of F|M — Int M,. Therefore d,(F') + k < d(F'*).

The condition (A2) implies that CI(F*) N M, c U{S|Se.4U--- US4}
Let d’ = d(F'*). Then there are leaves F', ---, F;, of . such that

(1) F, = F*,

(2) F,cCl(F;y,)— F,y, for i =1, ---,d" — 1.
If a leaf of # is contained in U{S|Se.S4U - U.%} then it is the floor
of a staircase in .4 U---U .. Therefore F, ..., F, are the floors of
staircases in .&4U--- U.%4 and F,,,, ---, F; are not contained in J{S|Se
SFLU--- US4 It follows that d' — k < d,(F'). Therefore d’ — k = d (F).
This completes the proof of Lemma 3.2.

Since a connected component of M — Int M, contains the wall of a
staircase in .%4, the set M — Int M, has a finite number of connected
components. Let K be one of them. By Lemma 3.1 and Lemma 3.2,
there are leaves F), F, of # |K such that F, is compact and CI(F,)DF\.
Since the holonomy group of F, is abelian, there is a staircase S, with
F(S,) = F, and with C(S,) C F, by Theorem 1 in Nishimori [9]. By the
proof of Lemma 9 in [10], for each e K there is a neighborhood U(x)
of # in K satisfying one of the following.

(I) U(x) intersects no compact leaf of & |K.

(II) U(x) intersects just one compact leaf of &% | K.

(ITII) There is an abelian room R(x) such that D(R(x)) C oM,,

R(x)NInt S, = @ and R(x) contains all compact leaves of & | K inter-
secting U(x).
Since K — Int S, is compact, there are x, ---, 2,€ K — Int S, such that
Ux)U---UU@,) DM — Int S,. By renumbering z,’s if necessary, we can
suppose that U(x,), ---, U(x,) are of type (III). Let {L;|N€ 4} be the set
of connected components of

L = URe) — U FRE) — U ORE)) .

Then for each L; the closure CI(L;) is an abelian room and U;.,Cl(L,;)=
Cl(L) = U}-, R(w,). Let &}, = {CI(L;))|ne 4} and ., the union of the

#+.’s for all connected components K of M — Int M,. Then (Al) and
(A2) are clearly satisfied. The floor of the room CI(L;) is a compact
leaf of # | K and then it is contained in a leaf of .# of depth 1+ &
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by Lemma 38.2. Thus (A3) is satisfied.

LEMMA 3.3. &2, has no room-cycle.

PROOF. Suppose that .ZZ,,, has a room-cycle p. Then &2/, has a
room-cycle for a connected component K of M — Int M,. Since each
connected component of dp is without boundary and is contained in
oM,, it is a connected component of dM,. Therefore dp oK and p is a
closed open subset of K, which implies that o = K. On the other hand
since R(x,)NS, = @ for all 7, it follows that pNS, = @. This is a con-
tradiction.

By Lemma 3.3 the condition (A5) is satisfied.

Now we construct .%4,,. The restricted foliation .&# |K — Int (J’-,
R(z,)) has a finite number of compact leaves. Since all holonomy groups
of the compact leaves are abelian, by Theorem 1 in [9] for each compact
leaf F of & |K — Int(U!-, R(x,)) we can take a staircase whose floor is
F and whose door is contained in oM, if F is in the boundary of
UL, R(x,) and otherwise two staircases. We denote by .54, the set of
such staircases and by .94,, the union of .%4.,’s for all connected com-
ponents K of M — Int M,. Clearly .54, satisfies the conditions (Al), (A2)
and (A8). By Proposition 3 and Lemma 3.2 for each leaf F'* of & of
depth k& + 1 the intersection F'* N (M — Int M,) is empty or a compact
leaf of # |M — Int M,. Therefore the sets &4, -+, Sy, By, =+, Prna
satisfy the condition (A4).

SECOND STEP. By Lemma 3.2 all leaves of the restricted foliation
Z |M — Int M,_, have trivial holonomy groups and then the leaves are
all compact. As in the First step the set M — Int M, , has a finite
number of connected components. Let K be one of them. Let F,, ---, I}
be the leaves of .# | K intersecting the ceiling C(S) for a staircases in
FAU---US%.,. BEach connected component K, of K — (F,U---UF)) is
diffeomorphic to F x (0,1) for a submanifold F of one of F,’s and
% | K, is a product foliation. If K — (F,U---UF)) is connected then
l=1and K is a trivial hall. Let 2% be the set of such halls. If
K — (F,U---UF)) is not connected then the closure of K, is a trivial
room and K is a ventilated room-cycle. Let .22, be the set of such
rooms where K varies.

Now let 4 =AU -- U UFBU---UFZUZ. Clearly the set 4
satisfies the conditions (1)-(8) of Definition 6 and 4 is a quasi-SRH-de-
composition. By the construction of .2, each room-cycle p in 4 consists
of rooms in .2, hence p is ventilated. Each hall in 4 is trivial, hence
ventilated. This completes the proof of Theorem 2.
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4. The relation between SRH-decompositions and the Godbillon-Vey
classes. In this section we state the results of computation of the God-
billon-Vey classes by using SRH-decompositions.

THEOREM 3. Let dimM = 3. If . has an abelian SRH-decomposi-
tton whose room-cycles and halls are wventilated or umnlocked, then the
Godbillon-Vey class gv(F ) of F 1s zero.

THEOREM 4. Let dim M > 3. If & has a ventilated SRH-decom-
position and, for each leaf F of & whose holonomy group 1is non-
trivial, the cohomology group HZ.,(F:R) with compact support is
trivial, then gv(F ) = 0.

THEOREM 5. Let dim M >3. If % has an SRH-decomposition and,
for each leaf F' of F# whose holonomy group s mon-trivial, the coho-
mology group HS.,(F: R) with compact support are trivial for i = 2,3,
then gv(& ) = 0.

Now Theorem 1 follows from Theorems 2, 3 and 4.
We recall the Herman’s theorem and strengthen it, whose proof
suggests the proof of Theorem 3.

THEOREM 6 (Herman [3]). Let % be a codimension-one foliation of
the 3-torus S*x S'xS* transverse to the last factor. Then gv(F ) = 0.

THEOREM 7. Let 3, be a closed orientable surface of genus g. Let
Z be a codimension-one foliation of X, xS transverse to the last factor
S'.  The foliation F defines the “global”’ holonomy homomorphism
o: 7, (3,) — Dift(S*). If the image of @ is abelian, then gv(F ) = 0.

PROOF OF THEOREM 7. Let p: ¥, X S*— 2, be the projection. We
choose circles ay, ---, a,, By, -+, B, in 3, such that a; and B, intersect
at one point for 1 =1, ---, g and any other pair of the circles do not
intersect. Let T(a)), ---, T(a,), T(By), - -+, T(B,) be small closed tubular
neighborhoods of ay, ---, a,, By, +-+, B,- Since the image of @ is abelian,
the restricted foliation & |3, x S§* — p ' (U(a;URB,)) is isomorphic to a
product foliation of (¥, — U, (a; U B;) X S'. We can construct a non-
singular 1-form @ of X, X S* such that

(1) T ={weTM|w) = 0},

(2) Supp(dw)c Ui, Int(T(a,) U T(B.))
where Supp(dw) is the support of dw. Then there is a 1-form 7 of
3, % S! such that do = 9 A @ and Supp ncU¢-, Int(T(;) U T(B;)). There-
fore the Godbillon-Vey number

ngxsly] /\ dy]
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of 7 equals to >}, § nAdY.

T(a) UT(8;)

In order to computes A dy, we attach a quadrangle Q@ to
T (o) UT(B;)

T(a,)UT(B,) so that we obtain the 2-torus S*' x S*. Since the foliation
Z o (T(a,)UT(B;) — a;UB,;) is isomorphic to a product foliation, we can
extend it to a foliation .&#, on the 3-torus S'x S'x S' and construct a
non-singular 1-form ®, of S* X S* X S! such that T, = {ve T(S* x S* x SY)|
@,(v) = 0} and w,|p ™ (T(a,)U T(By) = w|p7(T(a,)U T(B;)). Let 7; be the
1-form defined by

(1) 78 x 8 xS — p(T(a) U T(By)) = 0,

(2) 7|T(axy) U TR, = 77! T(a;) U T(B,).
Then do; =5, \ o, andS 1 N, N\ dy; = S N A dn. By Theorem

Sixslx st T(az) UT(B5)
6 the Godbillon-Vey number S n: N\ dn, of Z, is zero. Therefore

SixSstx st

g, x 81=|_ padp=0
and then gv(%# ) = 0, which completes the proof of Theorem 7.

5. The proof of Theorem 3. Let & be a transversely-orientable
codimension-one foliation of a closed orientable 3-manifold M and 4 an
abelian SRH-decomposition of # whose room-cycles and halls are venti-
lated or unlocked. Recall that X, is a vector field of M transverse to
& and @ is the flow defined by X,.

FIRST STEP. We can suppose that for each staircase S in 4 the
ceiling C(S) has trivial holonomy, by taking 1-thinning of 4 if neces-
sary. Let .2 be the set of connected components of M — Int({J|{S|S e
LHD).

LEMMA 5.1. Let Ke.2~. Then K is one of the following;

(I) a hall,

(II) a room-cycle,

(III) the wumion of a sequence of rooms sandwiched by two stair-
cases.

PrROOF. Suppose that K contains a hall H in 4. By the definition
of SRH-decompositions the boundary 0H of H is contained in J{oS|Se
S (4)}. This implies that 0HC 0K and then that H is a closed open
subset of K. Therefore H = K and the case (I) occurs.

Suppose that K contains no hall in 4. Let R be a room in 4 con-
tained in K. By Proposition 4 the union R* of all leaves of # inter-
secting R is diffeomorphic to F'*(R) x [0, 1]. Note that R* — R Int
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(U{S|Se.&”(4)}). This implies that, for rooms R, R, in 4 contained in
K, if CR)NC(R, + @ then R, =R, and if F(R)N F(R,) + @ then
R, = R,. Suppose that K is not a room-cycle in 4. Then we can num-
ber the rooms in 4 contained in K so that

C(R)NF(R,y,) + @ for 1= 1L, -, 1—-1

where R, ---, B, are the numbered rooms. It is easy to see that
F(R) N F(S)# @ and C(R,)) N F(S") + @ for some S, S"e.”(4). This is
the case (III), which completes the proof of Lemma 5.1.

Let K* be the saturation of K with respect to # . In the cases
(I) and (II) the set K* is a fiber bundle over circle and in the case (III)
a fiber bundle over an interval.

From now we are going to find a subset s of K* (or the union of
K* and the sandwiching staircases S,, S, in the case (III)) such that
F |K* — s (or Z |(K*US,US, — s respectively) is without holonomy.
We call such s a holonomy-killing slit.

DEFINITION 10. For a compact orientable surface 3, of genus g with
or without boundary, a set I' of 2g circles ay, ---, a,, in ¥, is called a
basic system of circles in ¥, if, for ¢ < j, the intersection a; N «; is one
point in the case 7 + 1= j =2k for some kec{l, ---, g} and otherwise
a; N a; is empty.

Now consider the case (I). Let H be a hall. By the assumption H
is ventilated or unlocked. We use notations in Definition 8. Then

H={p, t)|xeD(f), 0=t =t}.

(I-1). Suppose that H is ventilated. There is a compact leaf G
of # |H with trivial holonomy group. There is 0 < s, <t, for each
x € D(f) such that G = {p(x, s,)|x € D(f)}. Since % |H* — H is without
holonomy where H* is the saturation of H with respect to # , there
is 7, <0 for each xzeD(f) such that oz} X (r,, ) NG* = @ and
o(x, r,) € G* where G* is the leaf of .# containing G, and there is u, > 0
for each xe R(f) such that o({x} x (0, »,)) NG* = @» and @(x, u,) € G*.
Let H = HU{p(, t)lx e D(f) — R(f), 7. = t = 0}U{P(x, t)|x € R(f) — D(f),
0<t<u,) and D(f) = G U {p(x, s,)|xc D(f) — R(f)}. Then H is a hall.
Note that Hc j®(H)ed4®. Now D(f) is a compact 2-manifold with
boundary. Choose a basic system I" of circles in D(f) and, for a eI, let

ak) = {px, t)zea, e <t <s,—r,—¢}.
Let s(H, ¢) = U{@(e)]ae'}). Since the hall A is also abelian and the
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holonomy group of D(f) is trivial, the foliation % |H — s(H, ¢) is with-
out holonomy for all sufficiently small ¢ > 0. Therefore s(H,¢) is a
holonomy-killing slit.
(I-2). Suppose that H is unlocked. Then there is a positive integer
n such that FFc U, f{(D(f) — R(f)). We take a basic system I, of
circles in Cl(D(f) — R(f)). Furthermore we take a set I, of circles in
(D(f) — R(f) US(D(f) — B(f)) such that I' =T U, U{f(a)|lael}} is a
_basic system of circles in (D(f) — R(f))U f(CI(D(f) — R(f))). For each
x € D(f) there is s, > 0 such that o(z, s,) = f*(x). For ael",UT, let

ale) ={px, t) |rea,e <t <s,—¢}.
Let s(H, ¢) = U{a(e)jael',U I'}}. Then the foliation &# |H* — s(H, ¢) is
without holonomy for all sufficiently small ¢ > 0. Therofore s(H, ¢) is a

holonomy-killing slit.
Now consider the case (II) in Lemma 5.1. Let p= R,U---UR, be

a room-cycle in 4. We may suppose that

CR)NFR;,)#*@ for ¢=1,---,1—1,

CR)NFR)+ D .
By Proposition 4 the saturation R} of R, with respect to & is diffeo-
morphic to F*(R,) X [0, 1]. Therefore |J.-, R¥ is a fiber bundle over S
For each z € F*(R,) there is ¢, > 0 such that @({x} x (0, t,))NF*R,) = @
and @(x, t,) € FF*(R,). Let

D= {w e F*(R,) | p({x} x [0, tx])ﬂ(u Ri) * @} ’

and
H={p(, t)lxeD, 0=t <t,}.

By Proposition 7 there is a positive integer n such that H intersects no
staircase in the n-thinning of 4. Note that H is a hall. Then we can
apply the arguments in the case (I) and we have a holonomy-killing slit

s(0, &) in Ul R
Consider the case (III). Let K= R, U---U R, where
CRYNFQR;)*@ for +=1,---,1—1
FS)NFR)+ @, FIS)NCR)+ 2
Rly ) Rl € ‘@(A) ’ Sl) SZ € y(d) .
Let R} be the saturation of R, with respect to &# as before and let S}
be the saturation of S; with respect to the foliation

FIUSes)|S= S} .
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Then by Proposition 4 the subset K = Int(S*UR¥U ---URF U Sy) is dif-
feomorphic to F'*(R,) x (0,1). For each x¢ F'*(R,) there are s, < 0 and
t, > 0 such that

(1) o({w} X (s, 1) C K,

(2) o, s,) e F(S), o, t.) e F(S,). 5
It is easy to see that there is a compact submanifold F' of F'*(R,) such
that K = {p(z, t)|xc F, s, < t < t,} contains K. We take a basic system
I of circles in F. For acl let

ale) = {plx, t)|zeca,s, —e <t <t,+ ¢ .

Let s(K, ¢) = Ufa(e)|ael'}). Since # |S, — F(S,) and # |S, — F(S,) are
without holonomy and all R,’s are abelian, the foliation # |K — s(K, )
is without holonomy for all sufficiently small ¢ > 0.

By Proposition 7 for a sufficiently large integer » the =n-thinning
A™ of A4 satisfies that each Se .%”(4"™) intersects no circles in the basic
systems taken in the above argument in the cases (I) and (II). By a
similar argument as the proof of Proposition 7 we may suppose that
each F in the above argument in the case (III) is contained in some
Se . F(4™).

Let S, S,e &7 (4") satisfy F(S) N F(S,) # @. We call such a pair
an adjacent pair of staircases and denote by & the set of adjacent pairs.
Note that G = F(S,) U F(S,) is connected and that F*(S,)—G and F*(S,)—G
have no holonomy. Take a basic system I" of cireles in G. For each
x €@ there are s, < 0 and ¢, > 0 such that

(1) o({} X (8 t.)CInt(S, U Sy)

(2) o, s.), P, t,) € C(S) U C(S,).

For el let

ae) = {p(x, t)|rea, s, + e <t <t, — ¢}

and s({S, S,}, e&) = U{a(e)la eI'}. Then # |(S,US,) — s({S,, S;}, ¢) is with-
out holonomy for all sufficiently small ¢ > 0.

Let X(¢) be the set of all holonomy-killing slits constructed above
and let

M) = M — Uis|seX(E)}.

Then & |M(¢) is without holonomy for all sufficiently small ¢ > 0. We
fix such ¢ from now.

SECOND STEP. We are going to construct a vector field X on M(e)
such that
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the local l-parameter group generated by X preserves & and
the orbits of X are the orbits of X,|M(e) .

We construct X|ANM(e) for Ae 4™ by induction on the partial order <.

Let H= j"(H'")e 2~ (4™). Then H is maximal with respect to the
partial order <. Let H* be the saturation of H with respect to &
and let s(H’, ) be the holonomy-killing slit constructed in the First
step. Note that s(H’, e)c H. The foliation &% |H* — s(H’, ¢) is without
holonomy. Take a C* mapc: R — H* — s(H’, ¢) such that

(1) ¢ is transverse to &,

(2) et + 1) =c(t) for all teR,

(8) ec(t) and c(t,) are on the same leaf of &% |H* — s(H’, ¢) if and
only if ¢, — t,e Z.

Now let xe H* — s(H’,¢). Choose a neighborhood U of =z in
H* — s(H', €) and a number ¢ > 0 such that @(U x [—4d, 6]) does not in-
tersect some leaf of & |H* — s(H',¢). Let (y,t)e U x [—0, 6] and let
u € R satisfy that c¢(u) and y are on the same leaf of & |H* — s(H', ¢).
Then there is unique e (—1, 1) such that z¢ = 0 and ¢(u + 7) and @(y, t)
are on the same leaf of 7 |H* — s(H',¢). Let 7 = f(y,t). Then we
have a C® map f: U X [—9, 6]— (—1,1). Let

(x,0)> | Xo<x> ’

It is easy to see that X(x) gives rise to the desired vector field X on
H — s(H', ¢) satisfying the condition corresponding to ().

Let R = j™(R')e <#(4™). Then R is maximal. Consider the case
where R’ is contained in a room-cycle p. By the argument looking for
the holonomy-killing slit s(po, €), we can work in the same way as in the
case of a hall and we have an adequate vector field on p* — s(p, €). We
take its restriction to R — s(po, ¢) as the desired vector field X there.
We make the construction for all rooms contained in o at the same
time.

Consider the case R’ is contained in Ke.2% of the case (III) in
Lemma 5.1. We describe K as in the argument looking for the holono-
my-killing slit s(K, ¢) in the First step:

(1) K= R,U---UR; where R, € #(4),

(2) CRINF(R;4)+ @ fori=1,.---,1—1,

(8) F(R) = F(S), C(R,) = F(S,) for some S, S,e .&”(4).

Let K+ = 7"(S) U j™”R)U---UJ™(R) U IJ"™(S,). By the assumption of
the induction

X() = (.gfti
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X|U (G (S) U WGE(S)

is already defined. We are going to construct X for K+ — s(K, ¢).
Choose a line segment L in K+ — s(K, ¢) such that L is transverse

to # and oLcC Ui, C(H™(S,)). We see that each leaf of & |[K+ — s(K, ¢)

intersecting W(5(S)) U W(3"(S,)) intersects L at a finite number of

points. Let

The leaf of &% |K+ — s(K, ¢) passing z

intersects W(5j'(S,)) .

1=1,2. Let W,=o{w;} x [0, z;]) be an orbit of X,|W(j™(S,)) and let
W, = e({w.} x (=6, 7)) and W, = ¢({w,} x (0, 7, + 8)) for a sufficiently
small 6 > 0. For each x e L, the leaf of &% |[K+ — s(K, ¢) passing x inter-
sects W,- at one point, say &(x). For a sufficiently small neighborhood
U, of  in L, there is a C*map,: U, — W, such that

(1) 7.(2) = &),
(2) for each ye L, the points ¥ and %,(y) is on the same leaf of

L, = {xeL

.
We denote by + the local l-parameter group defined by X W, U W,.
Then there is a C”map 7,: U, — R such that 7, (x) =0 and 7.(y)=
(&), 7,(¥)). It is easy to construct a C* map e: L — R such that
e(y) — e(x) = 7.(¥)

for each x ¢ L and each ye U,.

Let ze K+ — s(K, ¢). For a sufficiently small neighborhood V, of
z and a number 4§, >0 the set o(V, x[—4d,,0,]) is contained in
K+ — s(K,e). There is a C*mapg:V, x [—4,, §,] - R such that w and
g(w) are on the same leaf of & |K* — s(K, ¢) for each we V,. We de-
fine a C* map f: V, x [0, 0,] > R by the equation

Sw, t) = e(g(p(w, 1)) — e(g(w))
where we V., te[—d.,.]. Let
P

X(z) = of
@ = (<4
Then X(z) gives rise to an adequate vector field on K+ — s(K, ¢).

Now consider an adjacent pair (S, S,)e.2°. We can construct an
adequate vector field on (S,U S, — s({S, S.}, ¢) in the similar way as
above. Thus we have a vector field X on M(e) satisfying the condition (x).

)- X,(2) .

(z,0)

THIRD STEP. The goal of this step is to decompose the Godbillon-
Vey number of # to a sum of integrals over neighborhoods of the



CODIMENSION-ONE FOLIATIONS 27

holonomy-killing slits s e 2 (e).

We take disjoint compact regular neighborhoods N(s) of the slits
se (). Let M) =M — U{IntN(s)|se (). There is a non-singular
vector field Y on M such that

(1) Y is transverse to &,

(2) Y = X on a neighborhood of M(e).

We denote by w the C* 1-form on M defined by

(1) T ={veTM|w) = 0},

(2) w(Y) is the constant function with value 1.

We use w for computing the Godbillon-Vey number of .&# .

LEMMA 5.2. d® = 0 on a meighborhood of M().

Proor. Let Z,, Z, be vector fields on a neighborhood of M(s) tan-
gent to # . Then in the formula

2d(l)( Y, Zl) =S Yw(Z1) - Zl(l)( Y) - Cl)([ Y} Zl]) ’

w(Z) =0 and w(Y) is constant. Furthermore [Y, Z,] = 0 by the con-
struction of Y. Therefore dw(Y, Z) = 0. In the formula

2dw(Z,, Z,) = Z:w(Z,) — Z,0(Z,) — w([Z,, Z)) ,

o(Z) =0 and w(Z,) = 0. Furthermore [Z, Z,] is tangent to % by the
Frobenius theorem and so w([Z,, Z,]) = 0. Therefore dw(Z,, Z,) = 0. This
completes the proof of Lemma 5.2,

By using Lemma 5.2 we can construct a C” l-form 7 such that
do =n A ® on M and » = 0 on a neighborhood of M(¢). Then

seX(e)

oMl = nran= 3| Ay,

THE LAST STEP. Now we compute gv[s] = S W7 A dm.

Consider the case s = s(K, ¢) where K e.,?fN is a hall or a room-
cycle. Let P=S'xS"'—IntD?* and I=1[0,1]. For each connected
component C of N(s) we have a diffeomorphism #: P x I —C. Further-
more for a neighborhood V of the boundary o(P X I) of P x I we may
suppose that the leaves of (h|V)*& are

Px{Hhnv

where tel. By attaching the foliation on D? x I whose leaves are
D* x {t} where teI we have a foliation .#; on S*' X S§* X I. Furthermore
by identifying S' x S* x {0} and S*' x S' x {1} we have a foliation .&#, on
Stx Stx St. It is easy to construct a non-singular 1-form ®, on S'Xx
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St x I such that
(1) T7 ={vel(D*xI)|w) = 0},
(2) w,|PXxI=h*o,
(3) dw,|D*xI=0.
Furthermore it is easy to construct a 1-form », on S' x S' x I such that
(1) do,=nANw, on §*x S XTI
(2) 7| PxI=h™y,
(3) n|D*xI=0.
We may suppose that @, and 7, define consistently 1-forms w, and 7, on
St x S* x S* respectively. Then

fonnan={, wonarn={
- Ss‘xs‘xsﬁﬂ A d7, = gu( 73St x S x S .

7oA dn,
I

By Herman’s theorem we see gv(%,) = 0. Therefore gv[s] = 0.
Consider the case s = s({S,, S,}, ¢) where (S, S,)€.Z°. We represent
S, as

BOK(E, N, £9: 10, 51— [0, 5])
as in Definition 1. Extend f to a diffeomorphism
F9:10, 385 — [0, 36("]

such that f[[20{°, 80{"] is the identity map. By using f% instead of
f% we construct a manifold S, diffeomorphic to F x [0, 36{"]. We may
consider S, as a subset of S,. We extend the slit s naturally to
5§ S, US, such that % |S, — S, — 5 is without holonomy. Furthermore
we extend N(s) to a compact regular neighborhood N(5) of 5. See
Figure 2.

25(1)
307

51
200

—§ Sl

0

(2)

o | _
s 2 T

7(2)
28

2)
307

FIGURE 2
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Then the vector field Y|S, constructed in the Third step extends to a
vector field Y|S; on S; which, on a neighborhood of S; — N(5), preserves
the foliation . on S, defined by f*. Furthermore w|S; extends to a
non-singular 1-form @ on S, such that

(1) T % = {we TS, w0 = 0},

(2) dw® = 0 on a neighborhood of S, — N(3),
and 7|S; extends to a 1-form % on S, such that

(1) do® =79 A @ on S,

(2) 7 =0 on a neighborhood of S, — N(3).
Let 7 be the 1-form on S, US, such that 7|S; = »®. Then

gv(ﬁ‘mujm)[glugﬂ = S_ . 77/\(177: SN(_)ﬁ/\ dﬁ: 0

51U Sy
since the argument in the case of a hall or a room-cyecle is valid also
for N(3). Therefore
S 77/\d7;+g_ 7)‘“/\d77‘”+§ 7P ANdp® =0.
N (s) 9—So

§1-8 s

Now we compute S . N9 A dnp®. Let Q, be the quotient space of
Sg—
R x [0, 36{"] by the equivaflence relation ~ defined by

(r, &) ~ (r + 4, fO))
for all re R and all te€[0, 30{’]. Let &“ be the foliation on @, induced
from one on R X [0, 30{"] whose leaves are R X {t} where te[0, 86{"]. It
is easy to see that there is a non-singular 1-form w{® on @, such that
(1) TZ"® = {veTQ|w(v) = 0},
(2) dwf” = 0 on a neighborhood of

Z; =13, —11 %10, 30] U [-1, 1] x {3} U [ 1, 0] x (3"} U
{0} X [f(i)(élti))’ ‘Sf“]U[O, 1] % {f(i)(al(i))} )

Furthermore there is a 1-form 7{¥ on @, such that

(1) dol =79 A o on @,

(2) 7 =0 on a neighborhood of Z,.
Then for a neighborhood B; of N x [0, 36(’] in S, there is a C* map
«: B, — @, such that

(1) F B, =a*c",

(2) a(W(S)) = {0} x [45", 0/"].
Since Z# |S; — S; — N x [8{", 806"] is without holonomy, there is a non-
singular 1-form ®{ on S, — S; such that

(1) of =a*®i” on BN S: — Sy,

(2) TF% ={weTS,|w®@w) =0} on S, — 8,,
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(3) do® =0 on 3, — S, — B,

Let 7§ be the 1-form on S, — S, such that
(1) 775)2) = a*%i) on Bi n (gi - Si)y
(2) ¥ =0o0nS,— S, — B,

Then dw{ = 7$ A ®§ on S; — S..

LEMMA 5.3. For i =1, 2,
(4) (8 — (i) (%
Sg{_si 7 A dy Sgi_sin* A dng .

PROOF. Since T.% @ |§, — 8, = {ve TS, — S) |0 (v)=0} ={ve TS, —
S) | @P(v) = 0}, there is a positive function g of S; — S; with w{ = go™.
Since

d(osz) — dg /\ a)(i) + gdw(i) - dg /\ w(i) + gy)(i) /\ a)(i)
= (dlog g +7“) A g0 ,
we have 7¥ = 9" 4 dlog g + hw” for some function . Then

Ne A A9 = % + dlog g + ho®) A (A9 + dh A @9 + Wy A @)
— 7](13) /\ dv(‘l) + 77(i) /\ dh /\ w(i) + dlogg /\ dv(i)
+dlogg A dh A ®? + dlogg A hnp® A @
+ hw(i) /\ dv(i)
=7 A dp® — d(hdw'”) + d(log g dn'?)
+ d(log g A(h@®)) + ho™ A dp® .
Since 0 = ddw® = dH™ A @?) =dp® A @ — 9 Anp® A ®?, we have
A N ©? = 0. Therefore
NENAYE = 0D A dp? + d(—hdw® + log g dp? + log g d(h@™)) .
Since 7 = ™ = 0 on a neighborhood V of the boundary of S, — IntS,,
we have dlogg + how® =0 on V. Then d(h@w?)=—ddlogg =0 on V.
Therefore —hdw' + log g dn® + log g d(h®w”) =0 on V. This implies
that [7¥ A dp@] = [p® A dp®] in H,,,(Int(S;, — S,); R). Hence the in-
tegrals coincide.
Since Q; is a 2-manifold, we see that the 3-form 7{ A d»{” vanishes.
Therefore 7% A d7¥ = 0. So we see
gv[s]::s 7]/\d77:’“22|§_ 7](z')/\d7](i) =0.
Nis) i=1 J §;—58;

Now we consider the case s = s(K, ¢) where K is the union of a
sequence of rooms sandwiched by two staircases. In this case the
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argument for adjacent pairs of staircases is vaild and we see gv[s] = 0.
Therefore gv(F )[M] = Deze 9v[s] =0 and so gv(# ) =0, which
completes the proof of Theorem 3.

6. The proof of Theorem 4 and Theorem 5. Let M be a closed
orientable C* manifold of dimension > 3. Let # be a foliation of M
and 4 an SRH-decomposition satisfying the condition of Theorem 4 or
Theorem 5.

Let .%  be the set of connected components of M — U{IntS|Se
S (4)} and Z? the set of adjacent pairs of the staircases in 4. Let

% = {Ke.9%|K in the cases (I), (I) of Lemma 5.1} U{K,|Ke %"
in the case (III) of Lemma 5.1}

where K, be the union of K and the sandwiching staircases and let
q)N = {S1 U Sz](Sh Sy) Gg} .

We can number the elements of the union % of .% U Z so that

(1) %:{Kly"'9Kk}’

(2) if A;e 4 is contained in K,; for j=1,2, and A, < A, then
i) < i(2).

We are going to construct a vector field X on M transverse to &,
a non-singular 1-form ® on M with T.¥% = {ve TM|w(v) = 0}, a 1-form
7 on M with dw =7 A w, and a 2-form & on M with d&é =7 A dy,
which implies that gv(# ) = [p A dy] = 0.

By downward induction we construct non-negative integer valued
functions «; of $“(4) such that

aS) =a,,S) if ScK;ez and j>1,

and we construct X, , 7, & on j“'(K,) in each step where j“(K,) =
Ui, 79(A) for K, = A,U---UA eZ, A, e4.

Suppose that all are defined for + = n + 1.

(I). Let K,eZ be a hall H. Note that we can construct X, w, 7,
& without restriction since H is maximal in (4, <). We describe H as
in Definition 3. Then we have F, f: D(f) — R(f), t. > 0 for each x e D(f)
such that

H = {p(x, t)|xe D(f), 0 =t <t} .

In the case where H is trivial, we can take X on j“:+/(H) such
that the local l-parameter group defined by X preserves .# |j“»+/(H).
Then we can take @ on j“»+/(H) with dw =0. Let «, = «a,+; and
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7=0,¢=0 on j(H).

Consider the case where H is non-trivial. Let H* be the saturation
of H with respect to # and F* the leaf of &# containing F. Reecall
that H* is a fiber bundle over S' with fiber FF* and & |H* — H is
without holonomy. We can construct a non-singular vector field X on
H* such that

(1) each orbit of X is contained in an orbit of X,

(2) in the case of Theorem 4, the local 1-parameter group defined
by X|(H* — H)UT preserves .# where T is a tubular neighborhood of
a leaf F, of & |H with trivial holonomy, or

(2') in the case of Theorem 5, the local 1-parameter group defined
by X|H* — H preserves .& .

We denote by @ the non-singular 1-form on H* such that

(1) T |H* ={ve TH* w(v) = 0},

(2) oX)=1.

Then we see dw =0 on (H* — H)U T or on H* — H respectively.

Consider the case of Theorem 4. We consider n A d7 as a 3-form
on H* — F¥ with compact support. Since H* — F¥ is diffeomorphic to
F* x R and HZ,,(F¥; R) =0, we see

Hiowy(H* — F¥; R) ENZ Heéomy(F'5 B) @ Heomy(B; B) = 0 .
Therefore there is a 2-form & on H* — FY¥ with compact support satisfy-
ing dé =7 A dp. We can consider ¢ as a 2-form on H*.

Consider the case of Theorem 5. In the Wang exact sequence

ax—idx
—

¢ — :omp(Fl*; R) — Hc.gomp<H*; R) _— .H(?omp(Fx*; R)
Hgomp(Fl*; R) —>

where a: F¥ — Fy is the characteristic diffeomorphism of the bundle,
the groups HZ.,(Fy; R) and H¢ ., (FY; R) are trivial by the assumption.
Therefore H:wn (H*; R) is trivial and there is a 2-form & on H* with
compact support satisfying dé = »n A d».

Let & = {Se.&7(4»+)|Sc H*}. Note that the support of ¢ inter-
sects F*(S) for no Se.9”. By Proposition 7 there is a function
a: L (4%+) — {0, 1, 2, ---} such that

(1) supp &N (U{FW(S)ISe S (L)} = @),

(2) a(S) =0 for Se.(4"*+) — &,

Let a, = aoj™»+) + ;. We fix X, o,7, & on j'(H).

(II). Let K, be a room-cycle p. We can treat o in the same way
as halls and we have a, and X, w, , & on j“~(K,).

(ITII) Consider the case where K, = K, = KU S, U S,, that is, the




CODIMENSION-ONE FOLIATIONS 33

union of rooms and the sandwiching staircases S, S,. Let K* be the
saturation of j“»+V(K,) with respect to

F i (K) U (Ue(8)|Se & (4), S< S or S< S .

Let U be a neighborhood of the boundary o(j»+(K,)) in K*. We take
U sufficiently small so that # |(K* — j‘»+(K,))U U is without holonomy.
As in §5 we have a vector field X on K* such that

(1) X coincides with X already defined in a neighborhood of
Ui (C(5+2(S)) U W (G “»+2(S)))).

(2) each orbit of X is contained in an orbit of ¢.

(8) the local 1-parameter group defined by X|(K* — je+(K.))UU
preserves & .
Let @ be the 1-form on K* defined by

(1) F|Kt={veTK:|oW) =0},

(2) w(X)=1.
Then dw = 0 on (K* — j“+'(K,)) UU. There is a 1-form » on K* such
that

(1) dowo =7 N o,

(2) n=0on (K} — g+ (K,)UU.
We consider A d7 as a 3-form on Int K* with compact support. Since
Int K* is diffeomorphic to F*(S,) x R and H2,.,(F*(S,); R) is trivial by
the assumption, we see

Heowp(K¥; R) = 3 Heowy(F*(8)); B) @ Heomy(R; B) =0 .

Therefore there is a 2-form £ on Int K% with compact support satisfy-
ing d¢ = n A dy. We can consider & as a 2-form on K*. By Proposition
7 there is a function a: &7 (4*»+’) — {0, 1, 2, - - -} such that

(1) suppén (UI“(S)|Se L)) = @,

(2) a(S) =0 for S¢{S e. P (4 )|S < jeni(S,) or S < jent(S,)}.
Let a, = acj ™+’ + a,,,. We fix X, @, 7, & on j»+'(K,).

(IV). Now consider the case where K, is the union of an adjacent
pair of staircases S,, S,. Let K} be the saturation of j*»+1(S,) U jn+2(S,)
with respect to

F|USe L (dn)[S £ jn(S) or S = jlnr(Sy).

By the similar argument as in the case (III) we have X, w, 7, & on K}
and a: & (4en+) — {0, 1,2, ...}, Leta, = acj s+’ + a,,,. We fix X, o,
7, & on g ri(K,).

By (I)-(IV) we have X, w, », & on M, which completes the proof of
Theorem 4 and Theorem 5.
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