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1. Introduction. In this paper we show that the Godbillon-Vey
classes of codimension-one foliations with a certain qualitative property
are zero.

Since the Godbillon-Vey class was defined in Godbillon-Vey [1], many
authors have published studies on it. Thurston [14] proved that the
Godbillon-Vey class gives rise to a surjective homomorphism

gv: ^ΩZi • R

where J^Ω^ is the foliated cobordism group of transversely oriented
codimension-one foliations of closed oriented 3-manifolds. The problem
to determine its kernel is still open. (See Problem 4 in Lawson [4]). In
this point of view it is interesting to investigate what type of foli-
ations are contained in the kernel of gv. Herman [3] proved that a foli-
ation of the 3-torus whose leaves are diffeomorphic to R2 is in the
kernel of gv.

On the other hand, the author has been studying the qualitative
theory in [8]-[ll] and saw that codimension-one foliations with a certain
qualitative property admit nice decompositions. By making use of these
decompositions, we can compute the Godbillon-Vey classes.

The main result is the following.

THEOREM 1. Let ά?~ be a transversely orientable codimension-one
C°° foliation of a closed orientable manifold M. Suppose that the depth
d(^~) of J^ is finite and all holonomy groups of J^ are abelian. Then
we have

(1) // dim M = 3, then gv{^) = 0.
(2) Let dim M > 3. //, for each leaf F of ά^ whose holonomy

group is non-trivial, the cohomology group H£Omv (-^ R) with compact
support is trivial, then gv{J^~) = 0.

The author conjectures that the condition in (2) of Theorem 1 is not
essential.

The author was partially supported by the Sakkokai Foundation.
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With respect to the problem to investigate the kernel of gv, the
following is interesting.

PROBLEM. Let J?~ be a transversely-orίentable codimension-one foli-
ation of a closed orientable 3-manifold M. Suppose that d(J?~) is finite
and all holonomy groups of ^ are abelian. Is J^ cobordant to zero!

In § 2 we define SRH-decompositions and in § 3 we give the proof
of an existence theorem. In § 4 we state results on the relation between
SRH-decompositions and the Godbillon-Vey classes and we give the proof
in § 5 for the case of dimension 3 and in § 6 for the case of dimension

FIXED NOTATION. Throughout this paper, J^~* is a transversely-
orientable codimension-one foliation of a closed orientable C°° manifold M.
We fix a vector field Xo of M transverse to &~ and let φ: M x R -> M
be the flow defined by Xo. We work in the C°° category and omit the
term "C°°".

2. SRH-decompositions of codimension-one foliations. To clarify
the goal of § 2 and § 3 we state an existence theorem of SRH-decomposi-
tions before the definition of the terms used there. For the definition
of depth see Nishimori [10].

THEOREM 2. Let ά^ be a transversely-orientable C°° foliation of
dosed orientable manifold. If the depth d{^) of J^ is finite and all
holonomy groups of ά^~ are abelian, then J^~ has an abelian SRH-de-
composition whose room-cycles and halls are ventilated.

Now we begin by introducing some notations as in Nishimori [10],
[11]. Let F be a compact manifold with or without boundary and N
a transversely-oriented codimension-one compact submanifold of F. Let
C(F, N) be the compact manifold obtained from F — N by attaching
two copies Nl9 N2 of JV as boundary. The suffixes 1, 2 depend on the
transverse orientation of N. For a diffeomorphism /: [0, <5J —> [0, δ2] with
δ1 > δ2 and /(0) = 0, we denote by X(F, N, f) the quotient space of
C(F, N) x [0, <?J by the equivalence relation — defined by

(xu t) ~ (a2, f(t))

for t e [0, δj and x1 e Nl9 x2 e N2 such that xx — x2 as elements of JV. We
denote by ^~(F, JV, /) the foliation of X(F, N, f) induced by that of
G(F, N) x [0, δj with leaves C(F, N) x {«}, t e [0, δj.

DEFINITION 1. A subset S of M is called a staircase of ^~ if there
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are a codimension-zero compact submanifold F of a leaf of J^, a codi-
mension-one transversely-oriented closed submanifold N of F with F — N
connected, a contraction /: [0, <5J —> [0, S2] with δx > <52 and /(0) = 0, and
an embedding h: X(F, N, f) —> M satisfying the following conditions.

(51) h(X(F, N, /)) - S.
(52) h({x} x [0, δj) c ?>({&} x Λ) for all xeF.
(53) fc(a, 0) = x for all xeF.
(54) λ(C(Ff iV) x {δl9 f(δλ)f / 2(^), - -}) is contained in a leaf of j r .
We call F{8) - ί7, C(S) = h(C(F, N) x {δj), TΓ(S) = h(N2 x [δ2, δj) and

D(S) = ̂ (δF x [0, δj) the ̂ Zoor, the ceiling, the wαίi and the door of the
staircase S respectively, where N2 is the copy of N with suffix 2. Note
that 95 - F(S) U C(S) U TF(S) U D(S) and that ^ ^ is tangent to F(S) U C(S)
and transverse to W(S) U D(S). If fe*^^ = jr{F, N, /) , we call S
regular.

DEFINITION 2. A subset R of M is called a room of ̂  if there are
a codimension-zero connected compact submanifold F of a leaf of J^ and
an embedding ft: F x [0, 1] —> M such that

(Rl) Λ - h(F x [0, 1]),
(R2) h({x} x [0, l ] ) c φ } x R) and the curves h\{x] x [0, 1] and

φ\{x) x JB have the same direction for all xeF,
(R3) h(x, 0) = x for all xeF,
(R4) A(F x {1}) is contained in a leaf of &~.
We call ^(JB) = F, C(R) = h(F x {1}) and D(R) = ft(3F x [0, 1]) the

floor, the ceiling and the door of the room i? respectively. Note that
dR - F{R) U C(Λ) U 2}(Λ).

As usual the induced foliation h*^" defines the "global" holonomy
homomorphism

Φ:πx{F,x) >Diff([0,l])

where Diff([0, 1]) is the group of the diffeomorphism of the interval
[0, 1]. If the image of Φ is trivial or abelian, we call R trivial or
abelian respectively.

DEFINITION 3. A subset H of M is called a hall of j r if there are
a codimension-zero connected compact submanifold F of a leaf of ̂  and
a diffeomorphism f: D(f)-> R(f), where D{f) and R(f) are compact con-
nected submanifolds of F, such that

(HI) F=D(f)UR(f),
(H2) for all x e D(f) there is tx > 0 such that <p(x, tx) = /(a?),

(̂{x} x (0, tx))ΠF= 0 and
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H={φ(x,t)\xeD(f\O £t£t.}.

W e cal l D(H) = {φ(x, t)\xe dD{f), O^t^Q t h e door of H. N o t e
that dH = Z>(iϊ) U (£(/) - #(/)) U (#(/) - £>(/)).

The induced foliation φ*^~\{(x,t)\xeD(f),O^t^ta} defines the
"global" holonomy homomorphism

Φ: πάDtf), Xo) > Diff ([0, ί J )

for #0 e D{f). If the image of Φ is abelian, we call H abelian.

DEFINITION 4. A room-cycle is the union of a finite sequence
i?i, , Rt of rooms such that C(R%) n F(Ri+1) Φ 0 for i = 1, , Z — 1

and C(ΛZ) n F(Λi) ̂  0 .

REMARK 1. The structures of a room-cycle and a hall are almost
the same.

DEFINITION 5. A room-cycle p or a hall i ϊ is called ventilated if
the restricted foliation ^~\p or ^~\H has a compact leaf whose holonomy
group is trivial, respectively. A room-cycle p or a hall H is called o -
locked if, for all a? e p or for all xeH, there are s < 0 and t > 0 such
that 9>(ίc, s) ί |O and φ(x, t)ί p or such that φ(x, s)ί H and <£>(#, t)g H
respectively, and otherwise locked.

DEFINITION 6. A finite set Δ of subsets of M is called a quasi-SRH
decomposition of J^~ if

(1) ilf = LLeM, and IntA 's are disjoint,
(2 ) Δ = <9*(A) U ̂ P(4) U 3ί?(Δ) where ^ ( J ) = { i e j μ is a regular

staircase), ^?(J) = {Ae Δ\A is a room}, £έ?(Δ) = {AeJ|A is a hall},
(3) D(A)cUae^>TΓ(S) for all i e i
Furthermore if A is abelian for all i 6 ^ ( J ) U ^ ( / l ) we call Δ

abelian.

PROPOSITION 1. // ^ has an abelian quasi-SRH-decomposition, then
all holonomy groups of ^ are abelian.

PROOF. For a leaf F intersecting no elements in &(Δ) U £έf(Δ) the
leaf F contains the floors of just two staircases Sl9 S2 with F(Sλ) Π
F(S2)Φ 0 by the condition (3) of Definition 6. Since ^\\J{S - F(S)\Se
<9*{Δ)} is without holonomy, the holonomy group of F is isomorphic to
Z or Z φ Z .

For a leaf F intersecting an element Ή.^3ίf(Δ), the intersection
FpiH is connected and F - Hc\J{S - F(S)\SeS"(Δ)}. Therefore the
holonomy group of F is isomorphic to the holonomy group of the leaf
F Π H of the restricted foliation ^~\H, which is abelian.
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For a leaf F intersecting Int R for an element R e &{A) the inter-
section FnR is connected and F - Ra\J{S - F(S)\Se^(A)}. Therefore
the holonomy group of F is isomorphic to the holonomy group of the
leaf FΠR of ^\R, which is abelian.

For a leaf F intersecting F(R) (or C(R)) for an element R e &(A),
the intersection F f l ί i s F(R) (or C(R)) and FΠ R is F(S) for an Se
,(y{Δ) or C(R') (or F(R')) for a different i?' 6 ^ ( J ) . Furthermore .F - #
is contained in (Jί^ — ί7(S)|Se^(zί)}. Therefore in any case the holono-
my group of F is abelian. This completes the proof of Proposition 1.

Let A = *9*{A) U &(A) (J ^f{A) be a quasi-SRH-decomposition of
For 4 , ΰ e J w e write A^B if there is a finite sequence Ao, Ax, -,AkeA
such that

(1) A0 = A,Ak = B,
( 2) T7(A,) n D(Aί+1) Φ 0 for i = 1, . ., k - 1

where T7(Aέ) is considered to be empty if At e&(A){Jβέ?(A). Note that
Ae A is maximal if and only if i e . ^ ( J ) U

DEFINITION 7. A finite set A of subsets of M is called an SRH-de-
composition if J is a quasi-SRH-decomposition and {A, <0 is a partially
ordered set.

Now all terms in Theorem 2 are defined. We give two examples of
SRH-decompositions.

EXAMPLE 1. Let J^R be the Reeb foliation of S\ We can take two
staircases Su S2 whose floors are the compact leaf of ά^R. Then the
connected components Hu H2 of C1(S3 — (SL U S2)) are trivial locked halls
of . i ^ . Let A = {Slf S2, Hlf H2}. Then A is an SRH-decomposition.

EXAMPLE 2. Let Σ2 be the closed orientable surface of genus 2. By
Theorem 4 in Nishimori [10] there is a codimension-one foliation ^~ of
Σ2 x [0, 1] transverse to the last factor [0, 1], with d{^) = d, and with
all holonomy groups abelian. In the case d — 3 we give an SRH-decom-
position of J^ as in Figure 1.

Now we give some propositions on SRH-decompositions.

PROPOSITION 2. // the depth of ^ is finite or if all leaves are proper,
then a quasi-SRH-decomposition of ^ is an SRH-decomposition *

PROOF. Let Mj^~ be the set of leaves of ^ and for Flf F2 e M/J^
let F,^ F2 if JPiCCUίi^). By Proposition 1 in Nishimori [10], the as-

K. Yano proved that if the depth of ^ is finite then all leaves of ^ are proper.
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FIGURE 1

sumption of Proposition 2 implies that {Mj^y ^ ) is a partially ordered
set. Now suppose that {A, <;) is not a partially ordered set for a quasi-
SRH-decomposition A of ^ . Then there are two different staircases Slf

S2 in £f(A) such that S, ^ S2 and S2 ^ Sx. This implies that F*(S 1)^
F*(S2) and F*(S2) ^ F * ^ ) where F * ^ ) is the leaf of ^ containing
the floor F(St), i = 1, 2. Since

F*(S<) - F φ ) c \J{S -

it follows that F*(SX) Φ F*(S2). Therefore
ordered set, which is a contradiction.

PROPOSITION 3. Let A be an SRH-decomposition of ^ . Let
a subset of ,9*\Δ) such that if Se,^ and S^S'e^(A) then S'e.ί/".
Then for each leaf F of J^, the set F — \J{S\ Se^} is connected.

PROOF. Let Fe M/JT and p, q e F - \J{S\Se^}. We number the
elements of Sf so that if St ^ Sj then i ^ j . It is sufficient to construct
curves cw: ([0, 1], 0, 1) —• (F — U?=i ^ , P, 9) by induction on w. Since F
is connected, there is a curve c0: ([0, 1], 0, 1) —> (F, p, g). Now suppose
that cn is constructed. In the case cw([0, 1]) Π Sw+1 = 0 , let cu+1 = cΛ.
Consider the case cΛ([0, 1])Π Sn+1 Φ 0 . We can write

, ^ ) is not a partially

be



CODIMENSION-ONE FOLIATIONS 15

S.+ 1) = U (o i f &,)

where (α ,̂ ft^'s are disjoint. Since Sn+1 is regular and cj[α;, bλ] is a
curve on the same leaf of ^\Sn+u we can show that the points cn(aλ)
and cn(bλ) are on the same leaf of ^~\W(Sn+1). Then we can take curves
Cxi ([aλ, bx], aλ, bλ) -> (W(Sn+1), cn(aλ), cn{bλ)) so that the curve <: [0, 1] — F
defined by

(1) c'n\[aλ, bλ] = cλ

(2) c;|[0, 1] - U fo, &*) - cJ[O, 1] - \Jλ(ah bλ)
is continuous. It is easy to modify c'n and to obtain the desired cn+1.
This completes the proof of Proposition 3.

PROPOSITION 4. For a room R in an SRH-decomposίtion Δ of Sr,
the floor F{R) and the ceiling C(R) are contained in mutually diffeo-
morphic leaves of J^ and the saturation i2* of R, that is, the union of
all leaves of J^ intersecting R, is diffeomorphic to F*(R) x [0, 1] where
F*(R) is the leaf of ^ containing F(R).

PROOF. We use the notation in Definition 2. We number the stair-
cases in Sf(Δ) so that if S, £ S, then i ^ j. Let F*(R) be the leaf of

i Sv) U R containing F(R) and R* the union of all leaves of
iSu)\jR intersecting R. Then F?(R) = F*(R) and Rϊ = i?*. We

construct a diίfeomorphism ht: F?{R) x [0, 1] —> R? such that
(1) ht\F(R)x[0fl] = h
(2) hi\Fϊ+1(R)*[O,ϊ\ = hi+ι

by downward induction on i. Suppose that hi+1 is defined. If F*(R)Γ)
Int Si = 0 then ^(JK) = Ff+iĈ B) and JS? = i2?+1. In this case let fc, = fc<+1.
Otherwise St Π i2<*+1 = TΓίS,) Π Rf+1 by the condition (3) of Definition 6.
The intersection W(St) Π Rΐ+i consists of a countable number of connect-
ed components diffeomorphic to W(Si). Since ^\St — F(St) is without
holonomy it is easy to extend hi+1 \ W(St)Π R*+ί to hilSiΓϊR*. Thus we
have hίf which completes the proof of Proposition 4.

PROPOSITION 5. For a hall H in an SRH-decomposition Δ of ά^,
the saturation of H is a fiber bundle over S1 with fiber F* where F *
is the leaf of ^ containing F in the notation of Definition 3.

PROOF. We use the notation of Definition 3. By using downward
induction as in the proof of Proposition 4, we can extend /: D(f)—> R(f)
to a diffeomorphism / * : F * - > F * and find tx > 0 for all xeF* such
that

( 1 ) φ({x} X (0, tx)) Π F * = 0 , φ{x, t.) = f*(x),
(2) H* = {φ(x, t) I x e F * , 0 ̂  t ^ t,}



16 T. NISHIMORI

where i ί* is the saturation of H. Therefore H* has the structure of
a fiber bundle over S1 with the characteristic diffeomorphism /*.

Now we introduce the term "thinning" of an SRH-decomposition
which will be useful in the computation of the Godbillon-Vey classes.

DEFINITION 8. Let S be a staircase of ^ and n a non-negative
integer. We use the notation of Definition 1. Then S = h(X(F, N, /)).
The n-thinning Sin) of S is the subset h(C(F, N) x [0, /*(δ1)]/~).

PROPOSITION 6. Let A be an SRH-decomposition and a a non-
negative integer valued function on £^(Δ). Then there are a uniquely
defined SRH-decomposition A{a) and a bijection j { a ) : A -» Aw such that

(1) j{a)(^(A)) = ,9*(AW), jw(.^(A)) = .<5?(J(β)) and j

(2) j{a)(S)f)S is the a(S)-thinning of S for all
( 3 ) jm(A)i) A for all A e &(Δ) U 2ίf(Δ).

PROOF. We construct j(a)(A) for AeA by induction on the partial
order <|. A minimal element A of A is a staircase or a room. In the
case i e y ( 4 let jw(A) be the α(S)-thinning of A. In the case Ae
.02(4), let j(a\A) = A.

Consider SeS^(A) and suppose that j{a)(S') is defined for all S' < S.
Let j{a)(S) be the union of leaves of

^ S' 6 ̂ (z/)} - UU(α)(S')l S > S' e

intersecting the α(S)-thinning of S. Since J^WJiS' - F(S')\S > S' e
is without holonomy, it is easy to see that j{a)(S) is a staircase of ̂ ~.

Consider i e ^ ( J ) U ^ ( z ί ) and suppose that j{a)(S) is defined for all
S < A. Let i(α)(A) be the union of leaves of

^\Al)Cl(\J{S\A> Se^(A)} - \JU{a)(S)\ A >

intersecting A. Then j{a)(A) is a room or a hall if 4 e ^ ( J ) or Ae

(s^(A) respectively.
Let A{a) = {i(α)(A)|Ae J}. Then J(α) is an SRH-decomposition with the

desired property. We can check the uniqueness by induction and omit
the proof.

DEFINITION 9. The SRH-decomposition A{a) in Proposition 4 is called
the a-thinning of A. In the case where a is a constant function with
value n, we call it the ^-thinning of Δ.

PROPOSITION 7. (1) The a-thinning of the β-thinning of A is the
(a + β)-thinning of A. (2) Let A be an SRH-decomposition and ,9"' a
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subset of *9*(A). If a compact subset K of M does not intersect the leaf
F*(S) of ά?~ containing F(S) for each SeS^9 then there is a non-
negative integer valued function a of S^(Δ) such that Kf] (\Jses-J{a)(S))= 0
and a(S) = 0 for all

PROOF. (1) is clear. (2) We number the elements in Sf so that
if Si^Sj then i^j. Let a(S) = 0 for Se<9"(Δ) - <9*. We define

by induction on i. Since F*(S1)ΠK = 0 , there is a positive integer
such that the αCS^-thinning of Sλ does not intersect K. Now sup-

pose that α(Sχ), -",a(Sn) are defined. Let βn be a function of S^{Δ)
defined by

(a) β^St) = a(St), i = l , - - . , Λ ,

(b) β%(S) = 0 for Se ^(Δ) - {Su - , SΛ}.
Consider the /3w-thinning of Δ. Since F*(Sn+ί)f) K = 0 , there is a posi-
tive integer α(Sw+i) such that the α(Sw+1)-thinning of j{βn)(Sn+1) does not
intersect K.

Note that jtM(St) = i(^+l)(S,) for i ^ n. Let i - # ( ^ ) . Then α = /3z

is the desired function of £f(Δ).

3. The proof of Theorem 2. By Proposition 2, it is sufficient to
construct an abelian quasi-SRH-decomposition whose room-cycles and halls
are ventilated. Let d = d(J?~). We may suppose that M is connected.

FIRST STEP. By induction we construct non-empty finite sets
,5ί, , ,P5_! of staircases and finite sets ^ , , ^d^ of rooms such
that

(Al) the interiors of all elements in ^ t U U .51_i U ^ U U &d-t

are disjoint,
(A2) the door of each element in ^ U . ^ is contained in the wall

of a staircase in ^?U U^t_i,
(A3) the floor of each element in ^ U . ^ is contained in a leaf, of
of depth i,

(A4) each leaf, of <^~y of depth i is contained in

(A5) ^ U U^d_i has no room-cycle.
Let S^ = 0 and ^ 0 = 0 . Let 0 ^ ifc < d — 1 and suppose that SS\

and ^ are already constructed for all i ^ k. Let Λffc = U ί ^ l^. 6
Sf* U U &% U ^ o U U &k}.

LEMMA 3.1. M— MhΦ 0 .

PROOF. If ft = 0 it is clear. Let ft ^ 1. The condition (A2) implies
that the wall of each staircase in £fk has no neighborhood, with respect



18 T. NISHIMORI

to the topology of M, in Mk. Since S*% Φ 0 , it follows that M — Mk Φ 0 .

LEMMA 3.2. For a leaf F of the restricted foliation <^~\M — Intikf*
we denote by dk(F) the depth of F with respect to ^ \M — Int Mk. Let
F* be the leaf of &~ containing Έ. Then d{F*) = dk(F) + k.

PROOF. The condition (A4) implies that d(G*) > k for each leaf G
of &*\M - Int Mk. Therefore dk{F) + k^ d{F%

The condition (A2) implies that C\(F*) Π Mkd \J{S\Se<9"0U ΌS^}.
Let d' = d(F*). Then there are leaves Fl9 , Fd, of J ^ such that

(1) Fd, = F*,
(2) FtdCKFi+1)-Fi+ί for i = 1, - . . , d ' - l .

If a leaf of ^ is contained in U ί ^ l S e ^ U USi} then it is the floor
of a staircase in ,PJ U U *P*. Therefore F^ , Fk are the floors of
staircases in S^Ό USi and Fk+1, , FA, are not contained in Uί^l Se
SΌΌ U^ί}. It follows that d' - k <, dk(F). Therefore d' - k = ^ ( F ) .
This completes the proof of Lemma 3.2.

Since a connected component of M — Int Λf̂  contains the wall of a
staircase in .9%, the set M — Int ΛΓΛ has a finite number of connected
components. Let K be one of them. By Lemma 3.1 and Lemma 3.2,
there are leaves Flf F2 of &~\K such that Fx is compact and C1(1<7

2)3.F1.
Since the holonomy group of Fx is abelian, there is a staircase Sx with
F(SX) = JF\ and with C(S1)(zF2 by Theorem 1 in Nishimori [9]. By the
proof of Lemma 9 in [10], for each x e K there is a neighborhood U(x)
of x in if satisfying one of the following.

( I ) U(x) intersects no compact leaf of &~ \ K.
(II) U(x) intersects just one compact leaf of &" \ K.
(III) There is an abelian room R(x) such that D(R(x)) c dMk,

R(x) Π Int Sι= 0 and R(x) contains all compact leaves of &~ \ K inter-
secting U(x).
Since K — Int Sλ is compact, there are xl9 , xa e K — Int Sx such that
Uix^U U ί7fe)3ikf — Int Si. By renumbering x/s if necessary, we can
suppose that ϋfo), , Z7(cc6) are of type (III). Let {Lλ\XeΛ} be the set
of connected components of

L - U R(xΰ - U *W>«)) - U C(R(xt)) .

Then for each Lx the closure Cl(Lλ) is an abelian room and U^e^Cl(L^) =
C1(L) = U i « i % ) . L e t ^ ί + i = {Cl(L )̂ I λ, 6/ί} and ^ f c + 1 the union of the
^ ί + i ' s for all connected components K oί M — Int ikffc. Then (Al) and
(A2) are clearly satisfied. The floor of the room G\(LX) is a compact
leaf of &~ I ίΓ and then it is contained in a leaf of J?~* of depth 1 + k
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by Lemma 3.2. Thus (A3) is satisfied.

LEMMA 3.3. ^ f c +i has no room-cycle.

PROOF. Suppose that ^?A + 1 has a room-cycle p. Then &£+1 has a
room-cycle for a connected component if of M — Int Jkffc. Since each
connected component of dp is without boundary and is contained in
dMk, it is a connected component of dMk. Therefore dpadK and p is a
closed open subset of K, which implies that p = K. On the other hand
since ϋ ί^JnSi = 0 for all i, it follows that ρf]S1= 0 . This is a con-
tradiction.

By Lemma 3.3 the condition (A5) is satisfied.
Now we construct Si+1. The restricted foliation &~ \K — Int (U*=i

#(#,)) has a finite number of compact leaves. Since all holonomy groups
of the compact leaves are abelian, by Theorem 1 in [9] for each compact
leaf F of Jr\K— Int(Uί=i•#(&<)) we can take a staircase whose floor is
F and whose door is contained in 3Mk if F is in the boundary of
Ui=i-R(#<) a n d otherwise two staircases. We denote by *$ί'+1 the set of
such staircases and by ,$Ί+ι the union of *P*'+i's f° r a ^ connected com-
ponents K oί M — Int Mfc. Clearly ,9%+1 satisfies the conditions (Al), (A2)
and (A3). By Proposition 3 and Lemma 3.2 for each leaf F* of J^ of
depth k + 1 the intersection F* Π (M — IntM^) is empty or a compact
leaf of &~ \M — Int Mk. Therefore the sets Sζ, , £sk+1, &u , ,^ fc+1

satisfy the condition (A4).
SECOND STEP. By Lemma 3.2 all leaves of the restricted foliation

^\M — Int Md_x have trivial holonomy groups and then the leaves are
all compact. As in the First step the set M — Int Md_x has a finite
number of connected components. Let K be one of them. Let Flf , Fι

be the leaves of J?r\ K intersecting the ceiling C(S) for a staircases in
Sζ\J U^1_i. Each connected component Kλ of K - (2^11 Ui^) is
diffeomorphic to f x (0, 1) for a submanifold F of one of Ft's and
^"Ίlζ i is a product foliation. If K — (i^U UFt) is connected then
I — 1 and if is a trivial hall. Let 3ίf be the set of such halls. If
K — (i*\ U U Ft) is not connected then the closure of if̂  is a trivial
room and K is a ventilated room-cycle. Let &d be the set of such
rooms where K varies.

Now let Δ = Si\J U 5^_xU ^ U U ^ U 3ίf. Clearly the set J
satisfies the conditions (l)-(3) of Definition 6 and A is a quasi-SRH-de-
composition. By the construction of ^ each room-cycle p in Δ consists
of rooms in ^?d, hence p is ventilated. Each hall in Δ is trivial, hence
ventilated. This completes the proof of Theorem 2.
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4. The relation between SRH-decompositions and the Godbillon-Vey
classes. In this section we state the results of computation of the God-
billon-Vey classes by using SRH-decompositions.

THEOREM 3. Let dimikf = 3. If J^ has an abelian SRH-decomposi-
tion whose room-cycles and halls are ventilated or unlocked, then the
Godbillon-Vey class gv{^") of ά^ is zero.

THEOREM 4. Let dim M > 3. // &~ has a ventilated SRH-decom-
posίtion and, for each leaf F of ά^ whose holonomy group is non-
trivial, the cohomology group H*oτΐιϊ>{F\ R) with compact support is
trivial, then gv(J?~) — 0.

THEOREM 5. Let dimikf>3. If J^ has an SRH-decomposition and,
for each leaf F of J?" whose holonomy group is non-trivial, the coho-
mology group HcomV(F: R) with compact support are trivial for i = 2, 3,
then gv{^) = 0.

Now Theorem 1 follows from Theorems 2, 3 and 4.
We recall the Herman's theorem and strengthen it, whose proof

suggests the proof of Theorem 3.

THEOREM 6 (Herman [3]). Let ^ be a codimension-one foliation of
the Z-torus S1xS1xS1 transverse to the last factor. Then gv{^) — 0.

THEOREM 7. Let Σg be a closed orientable surface of genus g. Let
ά?" be a codimension-one foliation of Σg x S1 transverse to the last factor
S1. The foliation Jf defines the "global" holonomy homomorphism
Φ: πx{Σg) -> DiffCS1). // the image of Φ is abelian, then gv{^) = 0.

PROOF OF THEOREM 7. Let p: Σg x S1 -> Σg be the projection. We
choose circles al9 , ag, βu , βg in Σg such that α* and βt intersect
at one point for i = 1, , g and any other pair of the circles do not
intersect. Let T{ax), , T(ag), T{βd, , T{βg) be small closed tubular
neighborhoods of alf , ag, βu , βg. Since the image of Φ is abelian,
the restricted foliation ^\Σg x S 1 - P~1(U?=i(^ίU A)) is isomorphic to a
product foliation of {Σg — U?=i (aί U βt)) x S1. We can construct a non-
singular 1-form ω of Σg x S1 such that

(1) T^ = {veTM\ω(v) = 0},
(2) Supp(dω) c \JU Int(T(at) U Γ(/9,))

where Supp(ώίy) is the support of dω. Then there is a 1-form η of
^ x S 1 such that dω = η /\(*> and Supp^cU?=i lr&(T(aύΌ T(βt)). There-
fore the Godbillon-Vey number

\ v A drj
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of ^ equals to Σ?=i \

In order to compute I

η A dη .

η A dv, we attach a quadrangle to

T{a%) U T(/3i) so that we obtain the 2-torus S1 x S1. Since the foliation
^\V~\T{a%) U Γ(A) — «iUft) is isomorphic to a product foliation, we can
extend it to a foliation ^ on the 3-torus S1 x S1 x S1 and construct a
non-singular 1-form ω, of S1 x S1 x S1 such that Γ j ^ = {ve Γ(SX x S1 x S1)!
O>«(Ϊ;) - 0} and Wtlp-KTίajΌ T(β%)) = OJIJ

1-form defined by
Γ(/9,)). Let ^ be the

( 2) ^|Γ(α4) U / )

Then cuft)̂  = ηt A o)i and I

6 the Godbillon-Vey number \

) U
U

Λ

= 0,

JTia

ηt A dvt of

v A dv. By Theorem

is zero. Therefore

x S1] -

= 0, which completes the proof of Theorem 7.and then

5. The proof of Theorem 3. Let J^ be a transversely-orientable
codimension-one foliation of a closed orientable 3-manifold M and Δ an
abelian SRH-decomposition of &~ whose room-cycles and halls are venti-
lated or unlocked. Recall that Xo is a vector field of M transverse to
&~ and φ is the flow defined by Xo.

FIRST STEP. We can suppose that for each staircase S in Δ the
ceiling C(S) has trivial holonomy, by taking 1-thinning of Δ if neces-
sary. Let .5Γ be the set of connected components of M — Int(U|{S|Se

LEMMA 5.1. Let KeSyΐf~. Then K is one of the following;
( I ) a hall,
(II) a room-cycle,
(III) the union of a sequence of rooms sandwiched by two stair-

cases.

PROOF. Suppose that K contains a hall H in Δ. By the definition
of SRH-decompositions the boundary dH of H is contained in U{dS|Se
£f(Δ)}. This implies that dHadK and then that H is a closed open
subset of K. Therefore H = K and the case (I) occurs.

Suppose that K contains no hall in Δ. Let R be a room in Δ con-
tained in K. By Proposition 4 the union i£* of all leaves of J?" inter-
secting R is diffeomorphic to F*(R) x [0, 1]. Note that i2* - i 2 c l n t
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(\J{S\SeS^(Δ)}). This implies that, for rooms Ru R2 in Δ contained in
K, if C{R,) n C(R2) Φ 0 then R, = R2, and if ί 7 ^ ) Π F(R2) Φ 0 then
i?i = R2. Suppose that K is not a room-cycle in Δ. Then we can num-
ber the rooms in Δ contained in K so that

C{Rτ)ΐ\F{Rί+1) Φ 0 for i = 1, - , i - 1

where i^, , Rt are the numbered rooms. It is easy to see that
F(R,) Π F(S) Φ 0 and C(Rι) Π F(S') =£ 0 for some S, S' 6 ,S (̂zf). This is
the case (III), which completes the proof of Lemma 5.1.

Let if* be the saturation of K with respect to ^ . In the cases
(I) and (II) the set K* is a fiber bundle over circle and in the case (III)
a fiber bundle over an interval.

From now we are going to find a subset s of K* (or the union of
K* and the sandwiching staircases Su S2 in the case (III)) such that
^~\K* — s (or ^~\(K* U ̂  U S2) — s respectively) is without holonomy.
We call such s a holonomy-killing slit.

DEFINITION 10. For a compact orientable surface Σg of genus g with
or without boundary, a set Γ of 2g circles alt •••, α2ί/ in 2^ is called a
δαsic system of circles in 2^ if, for i < i, the intersection at Π α, is one
point in the case i + 1 = j — 2k for some k e {1, , g) and otherwise
α̂  Π oί5 is empty.

Now consider the case (I). Let H be a hall. By the assumption H
is ventilated or unlocked. We use notations in Definition 3. Then

H - {φ{x, t)\xβ D(f), 0 rg t ^ Q .

(1-1). Suppose that ί ί is ventilated. There is a compact leaf G
of ^~\H with trivial holonomy group. There is 0<sx<tx for each
a?eD(f) such that G = {φ(χ, sx)\xeD(f)}. Since ^^|H* - H is without
holonomy where i ϊ* is the saturation of H with respect to J^, there
is ? β < 0 for each x e D(f) such that φ{{x) x (rβ, 0)) Π G* = 0 and
9?(x, r j 6 G* where G* is the leaf of ^ ^ containing G, and there is t&β > 0
for each xeR(f) such that φ({x) x (0, ux)) Π G* = 0 and
Let ff = HU Ma?, ί)|» 6 D(f) - R{f\ r . ^ ί ^ 0} U M^, t) |s e
0 ^ ί ^ u,} and D{f) = G U {φ(x, s j |x 6 JD(/) - i2(/)}. Then i ϊ is a hall.
Note that Hdj{1)(H) e Δa). Now D(f) is a compact 2-manifold with
boundary. Choose a basic system Γ of circles in D(f) and, for aeΓ, let

Let s(H, ε) = U(^( ε)l^ e ^} Since the hall iΐ is also abelian and the
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holonomy group of D(f) is trivial, the foliation ^\H — s(H, ε) is with-
out holonomy for all sufficiently small ε > 0. Therefore s(H, ε) is a
holonomy-killing slit.

(1-2). Suppose that H is unlocked. Then there is a positive integer
n such that F c U L o / W ) ~ ^ ( / ) ) We take a basic system Γ1 of
circles in C1(Z?(/) — i£(/)). Furthermore we take a set Γ2 of circles in
(D(f) - R(f)) U/(/?(/) - #(/)) such that Γ = Λ U Λ U {/(α)|αeΛ} is a

. basic system of circles in (£(/) - R(f))\jf(Gl(D(f) - #(/))). For each
a; e D{f) there is s, > 0 such that <p(x, sx) = fn{x). For aeΓ1l)Γ2 let

α(ε) = {<£>(#, t) I a? 6 α, ε < t < sx — ε} .

Let s(£Γ, ε) = Uί«(e)|α e AU ΓJ. Then the foliation , ^ | i ϊ * - s(iϊ, ε) is
without holonomy for all sufficiently small ε > 0. Therofore s(H, ε) is a
holonomy-killing slit.

Now consider the case (II) in Lemma 5.1. Let p = RX\J \jRι be
a room-cycle in Δ. We may suppose that

CiRi) Π F(Ri+1) Φ 0 for i = l, - . . , ί - l ,

C(Rt) Π TOO ^ 0 .

By Proposition 4 the saturation Rf of i2f with respect to &~ is diffeo-
morphic to F*(Rt) x [0, 1]. Therefore U U ^ f is a fiber bundle over S\
For each xeF*(Rλ) there is ίβ > 0 such that φ({x} x (0, t^ΠF^RJ = 0
and φiX QeF*^). Let

Z) = {* e F CΛJ 19K{»} x [0, tJ) n ( U Λ4) ^ 0} ,

and
H = {̂ (ΛJ, t) I a G Z>, 0 ^ ί ^ ίβ} .

By Proposition 7 there is a positive integer % such that H intersects no
staircase in the ^-thinning of Δ. Note that H is a hall. Then we can
apply the arguments in the case (I) and we have a holonomy-killing slit
s(ftε) in UUΛ?

Consider the case (III). Let K = R1 U U Rι where

F ( δ i + i ) ^ 0 for ΐ = 1, ---, ϊ — 1

Π F(RJ Φ 0 , F(S2) Π 0(220 ^ 0

Rlf ••',Rιe^(Δ), SlfS2e^(Δ).

Let 2Ϊ* be the saturation of Rt with respect to &~ as before and let S*
be the saturation of Si with respect to the foliation
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Then by Proposition 4 the subset K = Int(Sf U JBf U U JS? U S*) is dif-
feomorphic to F*(Rt) x (0, 1). For each xeF*(Ri) there are sx < 0 and
ίβ > 0 such that

(1) φ({x}x(sx,tx))(ZKf

(2) 9>(s, sx) 6 2TO, ?>(*, ί.) e F(S2).
It is easy to see that there is a compact submanifold F of F*(Rλ) such
that 1£ = {<P(xf t)\xeF, sx < t < tx} contains K. We take a basic system
Γ of circles in F. For aeΓ let

α(ε) = {<£>(#, t)\xea, 8, — ε <t < tx + e} .

Let s(iζ ε) = Uίά(e)|αeΓ}. Since ^\S, - Ffa) and &~\St -^F(S2) are
without holonomy and all i2/s are abelian, the foliation ^\K — s{K, ε)
is without holonomy for all sufficiently small ε > 0.

By Proposition 7 for a sufficiently large integer n the w-thinning
J{n) of Δ satisfies that each SeS^(Δ{n)) intersects no circles in the basic
systems taken in the above argument in the cases (I) and (II). By a
similar argument as the proof of Proposition 7 we may suppose that
each F in the above argument in the case (III) is contained in some

Let Su S2e<9*(Δ{n)) satisfy FiSJ Π F(S2) Φ 0. We call such a pair
an adjacent pair of staircases and denote by & the set of adjacent pairs.
Note that G = F&) U F(S2) is connected and that F*(S1)-G and F*(S2)-G
have no holonomy. Take a basic system Γ of circles in G. For each
x e G there are sx < 0 and tx > 0 such that

(1) <K{x}x(s.,t.))dnt(S1uSJ
(2) ?>(&, *-), <?(*> *.) e W U C(S2).

For α 6 Γ let

, t)\xeai9 sx + s <t <tx - ε)

and β({Slf SJ, ε) - \J{a(ε)\a eΓ}. Then ^ ^ K ^ U S J - s({Sl9 S2}, ε) is with-
out holonomy for all sufficiently small ε > 0.

Let Σ(ε) be the set of all holonomy-killing slits constructed above
and let

M(ε) = M- \J{s\seΣ(ε)} .

Then ^\M{ε) is without holonomy for all sufficiently small ε > 0. We
fix such ε from now.

SECOND STEP. We are going to construct a vector field X on M(ε)
such that



CODIMENSION-ONE FOLIATIONS 25

[the local 1-parameter group generated by X preserves &~ and

(the orbits of X are the orbits of Xo \ M(ε) .

We construct X\A Π Λf(e) for A e Δ{n) by induction on the partial order <;.
Let H = j{n)(H') e <%?(A{n)). Then H is maximal with respect to the

partial order <S. Let 22"* be the saturation of H with respect to ά^
and let s(H', ε) be the holonomy-killing slit constructed in the First
step. Note that s(H', ε)cff. The foliation ^\H* - s(H', ε) is without
holonomy. Take a C°° map c: R —> 2ϊ* — s(ϋΓ', ε) such that

(1) c is transverse to ^~f

(2) c(ί + 1) = c(ί) for all teR,
(3) c(ίi) and c(t2) are on the same leaf of ^~\H* — s(H', ε) if and

only if tx — t2 e Z.
Now let x e H* — s(H', ε). Choose a neighborhood U of α? in

H* — s(2Γ, ε) and a number <5 > 0 such that φ(U x [ —δ, S]) does not in-
tersect some leaf of ^\H* — s(H', ε). Let (y, t) e U x [—δ, δ] and let
ueR satisfy that c(u) and y are on the same leaf of ,^122"* — s(H', ε).
Then there is unique τ e ( — 1, 1) such that τt >̂ 0 and c(u + τ) and 93(2/, t)
are on the same leaf of ^r\H* - s(H', ε). Let τ = /(?/, ί). Then we
have a C°° map / : C7 x [-δ, δ]-> ( -1, 1). Let

X(x) =

It is easy to see that X(x) gives rise to the desired vector field X on
H — s(iϊ', ε) satisfying the condition corresponding to (*).

Let R = j{n\R')e&(Δ{n)). Then 22 is maximal. Consider the case
where R' is contained in a room-cycle p. By the argument looking for
the holonomy-killing slit s(p, ε), we can work in the same way as in the
case of a hall and we have an adequate vector field on p* — s(p, ε). We
take its restriction to R — s(p, ε) as the desired vector field X there.
We make the construction for all rooms contained in p at the same
time.

Consider the case R' is contained in Ke,5Γ oί the case (III) in
Lemma 5.1. We describe K as in the argument looking for the holono-
my-killing slit s(K, ε) in the First step:

(1) K = R1U U Rι where Rt 6 &{Δ),
( 2) C(Ri) Π 2 (̂22i+1) Φ 0 for % = 1, , I - 1,
( 3) F(R,) = 2<7(S1), C(2?,) = F(S2) for some Slf S2 e S^(A).

Let # + = j^KSJ U iw(i?i) U U iw(2^) U jw(S2). By the assumption of
the induction
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X

is already defined. We are going to construct X for K+ — s(K, ε).
Choose a line segment L in K+ — s(K, ε) such that L is transverse

to j ^ " * and 3LcU 2 =i C(i(w)(S«)). We see that each leaf of ^\K+ - s(K, ε)
intersecting W(j{n){S^)) U W(j{n)(S2)) intersects L at a finite number of
points. Let

The leaf of ^ \ K+ ~ s(K, ε) passing x)

intersects W(j{n)(Si)) . )

i = 1, 2. Let TF, = 9>({w,} x [0, τj) be an orbit of X0\W(jin)(Si)) and let
ΐf̂  = φ({wι) x ( —δ, r j ) and W2 = <p({w2} x (0, τ2 + δ)) for a sufficiently
small δ > 0. For each xeLt the leaf of ^\K+ — s(K, ε) passing x inter-
sects Wi at one point, say ξ(x). For a sufficiently small neighborhood
Ux of x in ^ there is a C°° map T^: J7β —» ^ such that

( 1 ) 17,(05) = f {x),
( 2 ) for each y e Li the points y and ^(2/) is on the same leaf of

= \xeL

We denote by ψ the local 1-parameter group defined by X\W1\JW2.
Then there is a C°° map τx: Ux - » R such that rβ(a0 = 0 and ηx{y) =
φ(ξ(x), τx(y)). It is easy to construct a C°° map e: L-> R such that

0(2/) - e(x) = τx(y)

for each xeL and each yeUx.
Let 2 6 i ? + — S(JK, ε). For a sufficiently small neighborhood Vz of

2; and a number δ* > 0 the set φ{Vz x [ — δz, δz]) is contained in
K+ — 8(K, ε). There is a C°° mapg: F z x [ —δ,, δz] -> R such that w and
flr(w) are on the same leaf of ^\K+ — s(K, ε) for each we Vz. We de-
fine a C°° map /: F z x [ — δz, δ2] ->i2 by the equation

/(w, t) = e(g(φ(w, £))) - e(flr(w))

where weVz,te [ — δs, δs]. Let

Then X(z) gives rise to an adequate vector field on K+ — s(K, ε).
Now consider an adjacent pair (Su S2) e &?. We can construct an

adequate vector field on (Sx (J S2) — s({Si, S2}, ε) in the similar way as
above. Thus we have a vector field X on M(ε) satisfying the condition (*).

THIRD STEP. The goal of this step is to decompose the Godbillon-
Vey number of ά^ to a sum of integrals over neighborhoods of the
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holonomy-killing slits seΣ(ε).
We take disjoint compact regular neighborhoods N(s) of the slits

seΣ(ε). Let M(s) = M- \J{IntN(s)\seΣ{έ)}. There is a non-singular
vector field Y on M such that

(1) Y is transverse to ^ ,
(2 ) Y = X on a neighborhood of Λf(ε).

We denote by a) the C°° 1-form on M defined by
(1) TJ^ = {veTM\ω(v) = 0},
(2) (W(F) is the constant function with value 1.

We use ω for computing the Godbillon-Vey number of

LEMMA 5.2. da) = 0 on a neighborhood of M(ε).

PROOF. Let Zu Z2 be vector fields on a neighborhood of M(ε) tan-
gent to J^. Then in the formula

2dω(Y, Zx) = Yω(Z,) - Zλω{Y) - ω([Y, ZJ) ,

ω(Zi) = 0 and ω(Y) is constant. Furthermore [Γ, ZJ = 0 by the con-
struction of Y. Therefore da)(Y, Z±) = 0. In the formula

2dω(Zlf Z2) =

ω{Zλ) = 0 and ω(Z2) = 0. Furthermore [^, Z2] is tangent to &" by the
Frobenius theorem and so ω([Zlf Z2]) = 0. Therefore dω(Zu Z2) = 0. This
completes the proof of Lemma 5.2.

By using Lemma 5.2 we can construct a C°° 1-form η such that
dω — η /\ ω on M and 77 = 0 on a neighborhood of M(ε). Then

YΛ\ η A dη .
e e j ( e ) JiVΓ(s)

THE LAST STEP. NOW we compute ^[s] = \ )? Λ dv.
JJV(β)

Consider the case s = s(iΓ, ε) where K 6 ^"~ is a hall or a room-
cycle. Let P= S1 x S1 - intD2 and / = [0, 1]. For each connected
component C of N(s) we have a diffeomorphism h: P x I -+ C. Further-
more for a neighborhood V of the boundary 3(P x /) of P x I we may
suppose that the leaves of (h\V)*^~ are

where te I. By attaching the foliation on D2 x I whose leaves are
D2 x {t} where t e I we have a foliation ^\ on S1 x S1 x I. Furthermore
by identifying S1 x S1 x {0} and S1 x S1 x {1} we have a foliation ^ on
S1 x S1 x S1. It is easy to construct a non-singular 1-form ωλ on S1 x
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S1 x I such that
(1) T^Ί = {v e T(D2 x I) I ω,{v) = 0},
(2) ωx\Px 1= h*ω,
(3) dωι\D*xI=0.

Furthermore it is easy to construct a 1-form ηι on S1 x S1 x I such that
(1) dωί = rj1 A ω, on S'x S'x I
(2) y^Px I=h*η,
(3) ηx\D* x 1=0.

We may suppose that ωλ and rj1 define consistently 1-forms ω2 and τri on
S1 x S1 x S1 respectively. Then

\ V A drj = \ h*η A d(h*η) = \ ηt A d~η1
JC JPXI JS1XS1XI

= I Vz A dη2 = gv{^2)[Sι x S1 x S1] .

By Herman's theorem we see gv{J^2) = 0. Therefore gv[s] = 0.
Consider the case s = s({Sx, S2}, ε) where (Slf S2) e . ^ . We represent

S< as

h{i)(X(F™, N^, / ( ΐ ) : [0, δl"] > [0, δ™]))

as in Definition 1. Extend f{ί) to a diffeomorphism

f{i): [0, 3δlί}] >[0, 3δi°]

such that Z 1 0 ) ^ 0 , ZδP] is the identity map. By using / ( i ) instead of
f[i) we construct a manifold St diffeomorphic to F{ί) x [0, δδί0]. We may
consider 5̂  as a subset of S*. We extend the slit s naturally to
s c § ! U S2 such that ^"IS* — Si — s is without holonomy. Furthermore
we extend N(s) to a compact regular neighborhood N(s) of s. See
Figure 2.

-of

-JVC)

Si

— s

FIGURE 2
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Then the vector field Y\St constructed in the Third step extends to a
vector field Y\St on S< which, on a neighborhood of St — N(s), preserves
the foliation ^~ ( < > on St defined by / ( ί ) . Furthermore ω\St extends to a
non-singular 1-form ω{ί) on S4 such that

(1) T^i] = {v e ΓS, I α>(<)(v) - 0},
(2) dω{ί) = 0 on a neighborhood of S, - N(s),

and 77]^ extends to a 1-form τ?(ί) on St such that
(1) dω{i) = η{ί) A co{i) on Si9

( 2 ) ^ ( ΐ ) = 0 on a neighborhood of St - 2NΓ(s).
Let η be the 1-form on S, U S2 such that η\St = )?(ί). Then

i U S J = ( ^ Λ dη = \ η A dη = 0
JάΊUΛ'2 JjV(β)

since the argument in the case of a hall or a room-cycle is valid also
for N(s). Therefore

( V A dη + [ ψ A dη{l) + (
JN(S) J ά ' ! - ^ J S2-S2

A dη™ = 0 .

Now we compute I η{i) A dη{ί). Let Qt be the quotient space of

R x [0, Z8[ί]] by the equivalence relation — defined by

(r, ί) - (r + 4, / ( ί )(ί))

for all r e J ? and all t e [0, 3 ^ ] . Let gf(i) be the foliation on Q4 induced
from one on R x [0, Zδ[i]] whose leaves are R x {£} where t e [0, 3<?f >]. It
is easy to see that there is a non-singular 1-form ω{

o

ί] on Qt such that
(1) TS?w = {veTQi\ωii

iKv) = 0},
(2) cϊα>ίi) = 0 on a neighborhood of

Z, = [-3, -1] x [0, 3 ^ ] U [-1, 1] x {δδί*1} U [-1, 0] x {δn\J

Furthermore there is a 1-form ^ ί } on Qt such that
(1) dωP = ηP A ωl" on Qi9

(2) η^ — 0 on a neighborhood of i?,.
Then for a neighborhood 5, of N{ί) x [0, 3δί°] in S, there is a C°° map
a: Bi-^Qi such that

(1)
(2)

Since ^ ^ | S t - St - N x [8?\ 3δί°] is without holonomy, there is a non-
singular 1-form o)2} on S< — Ŝ  such that

(1) α>ίί> = α*α)ίi} on_5, Π (S, - SJ,
(2) TjF~(i) = {v 6 TSi I ωί̂ Cv) = 0} on S, - S o
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( 3) dω$ = 0 on St -_St - B,.
Let η%] be the 1-form on Si — Ŝ  such that

( 1 ) 3?2> = α*3 ? «>_onB i Π(S < -S < ) >

( 2) ^ = 0 on St-Si- Bt.

Then dω? = ηφ A ω%] on St - St.

LEMMA 5.3. For i = 1, 2,

J Si-Sf. J #,•-£
uui — # u//°(ί)

) Si-Si

PROOF. Since T^~{t) \ St - St = {v e T(S, - St)J ω{ί)(v) = 0} = {ve T(St-
SJlω^iv) = 0}, there is a positive function g of Si — S< with α)^ = gω{ί).
Since

dα)Jί} = dg A ω{i) + ^ α > ( ί ) = dg A ω{ί) + gη{i) A o){ί)

= (d log g + η{ί)) A gω{ί) ,

we have ηf — η{i) + d log g + hω{i) for some function h. Then

η* A dηV = ()?(ί) + d log g + /ιω(i)) Λ (dη{ί) + dh A ω{ί) + fe^(ί) Λ ω ( i ))

= η{ί) A dη{i) + 7]{i) A dh A ω{i) + d log g A dηw

+ d log g A dh A Q){ί) + d log g A hτ/{i) A 0){ί)

+ hω{ί) A dη(ί)

= ^(<) Λ dψ] - d(hdω{i)) + d(log g dψ])

+ d(log g d(hω{ί))) + / f̂t)(ί) Λ dηw .

Since 0 = ddω{ί) = d(ηw A ω{ί)) = dη{i) A ωw - η{ί) A η{ί) A ω{i), we have
dη{i) A ω{ί) = 0. Therefore

η™ A dη{ί = η{ί) A dηw + d(-hdω{ί) + log g dη{ί) + log g d{hω{i))) .

Since η{£ = τy(ί) = 0 o n a neighborhood V of the boundary of S< — Int S o

we have d l o g ^ + ^α>(i) = 0 on V. Then d(hω{ί))= -ddlogg = 0 o n V.
Therefore -hdω{i) + log gdψ] + log gf d{hω{ί)) = 0 on F. This implies
that fy{« Λ ^ l ^ ] - [y{ί) A dη^] in ^ ^ ( I n t ^ - St); B). Hence the in-
tegrals coincide.

Since Qi is a 2-manifold, we see that the 3-form η^ A dη^ vanishes.
Therefore ηf A dηΐ = 0. So we see

gv[s] = \ Ύ] A dη= - Σ ( Vw Λ ^ ( i ) = 0 .
JiV(β) i=l J Si-^ί

Now we consider the case s = s(K, ε) where i£ is the union of a
sequence of rooms sandwiched by two staircases. In this case the
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argument for adjacent pairs of staircases is vaild and we see gv[s] = 0.
Therefore gv(^)[M] = Σ.erω gv[a\ = 0 and so flwG^l = 0, which

completes the proof of Theorem 3.

6. The proof of Theorem 4 and Theorem 5. Let M be a closed
orientable C°° manifold of dimension > 3. Let ά^ be a foliation of M
and A an SRH-decomposition satisfying the condition of Theorem 4 or
Theorem 5.

Let 3fΓ be the set of connected components of M — LHIntS\Se
and & the set of adjacent pairs of the staircases in Δ. Let

.2T = {Ke,:?Γ\K in the cases (I), (II) of Lemma 5.1}\J{K+ \KeSΓ

in the case (III) of Lemma 5.1}

where K+ be the union of K and the sandwiching staircases and let

We can number the elements of the union <%S of 3tiΓ U £P so that
(1) <& = {KU - J λ
(2) if Aj e A is contained in Ki{j) for j = 1, 2, and Aλ <; A2 then

We are going to construct a vector field X on M transverse to
a non-singular 1-form ω on M with T ^ " = {ve TM\ ω(y) — 0}, a 1-form
77 on M with dω — η /\ ω, and a 2-form f on ikf with dζ = η Λ dη,
which implies that gv{^) = [17 Λ d^] = 0.

By downward induction we construct non-negative integer valued
functions at of Sf{β) such that

α4(S) = ai+1(S) if S c K3 e <& and i > i ,

and we construct X, ft), 77, f on j{<Xi)(Ki) in each step where j[ai){Kx) =
U U i(β<)(Λ) for JK, = Λ U U At e %r, A, e A.

Suppose that all are defined for i }> n + 1.
(I). Let Kn 6 ^ be a hall if. Note that we can construct X, ω, η,

ξ without restriction since H is maximal in (A, ^ ) . We describe H as
in Definition 3. Then we have F, f: D{f) -> R(f), tx > 0 for each x e D(f)
such that

In the case where H is trivial, we can take X on j{a*+i\H) such
that the local 1-parameter group defined by X preserves ^\jι"*+l)(H).
Then we can take ft) on j{a*+^(H) with dω = 0. Let αrrt = αΛ + 1 and
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η = 0, ξ = 0 on j{a-\H).
Consider the case where H is non-trivial. Let i ϊ* be the saturation

of H with respect to ^ and i*7* the leaf of ^ containing F. Recall
that H* is a fiber bundle over S1 with fiber F * and ^~\H* - if is
without holonomy. We can construct a non-singular vector field X on
H* such that

(1) each orbit of X is contained in an orbit of Xo,
(2) in the case of Theorem 4, the local 1-parameter group defined

by X\(H* — H)l)T preserves &~ where T is a tubular neighborhood of
a leaf Fλ of ^~\H with trivial holonomy, or

(2') in the case of Theorem 5, the local 1-parameter group defined
by X\H* - H preserves J ^ .
We denote by ω the non-singular 1-form on H* such that

(1) T^\H* = {veTH*\ω(y) = 0},
(2) α>(X) = l.

Then we see dft) = 0 on (H* — JS") U ϊ7 or on H* — £Γ respectively.
Consider the case of Theorem 4. We consider η Λ dη as a 3-form

on fΓ* — F* with compact support. Since H* — F? is diίfeomorphic to
F ί x JB and H!orΆV(F*; R) = 0, we see

Therefore there is a 2-form f on H* — F? with compact support satisfy-
ing dζ = η A dη. We can consider ξ as a 2-form on H*.

Consider the case of Theorem 5. In the Wang exact sequence

*; R) > H*omv(H*', R) > Hj!omv(F?', R)

where a: F* —> F* is the characteristic diffeomorphism of the bundle,
the groups HIOΊΆV(F? R) and Hiomv{F*;R) are trivial by the assumption.
Therefore H?omi>(H*; R) is trivial and there is a 2-form ξ on H* with
compact support satisfying dξ = η A drj.

Let Sf = { S e ^ J ^ + i O l £ < = # * } . Note that the support of ξ inter-
sects F*(S) for no SeS^. By Proposition 7 there is a function
α: ^ ( J ( β +i}) -> {0, 1, 2, •} such that

( 1 ) supp ζ n (U{i(α)0S)|S 6 Ss (#*«+*)}) = 0,
( 2) α(S) - 0 for S e ^ ( / P +i') - Sf.

Let αw = α o j ω + «Λ+1. We fix X, ω, 57, f on γ«*\H).
(II). Let ίC% be a room-cycle p. We can treat p in the same way

as halls and we have an and X, ω, η, ξ on j{a»\Kn).
(Ill) Consider the case where Kn = JK+ = iΓU Sx U S2, that is, the
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union of rooms and the sandwiching staircases Sl9 S2. Let K% be the
saturation of jla*+1\K+) with respect to

»+i\κ+) U (\J{J{an+l)(S) IS e Sf(Δ), S<S1oτ S< S2}) .

Let U be a neighborhood of the boundary d(jla*+l)(K+)) in K*. We take
U sufficiently small so that ^\{Kl - j((Xn+ί)(K+)){J U is without holonomy.
As in § 5 we have a vector field X on K* such that

( 1 ) X coincides with X already defined in a neighborhood of

( 2 ) each orbit of X is contained in an orbit of φ.
( 3 ) the local 1-parameter group defined by X\(K% - j{CCn+ί)(K+)){J U

preserves ^ " \
Let ω be the 1-form on K% defined by

( 1 ) ^\Kt = {veTK%\ω(v) = 0}f

(2) ω(X) = l.
Then dω = 0 on (ίΓϊ - i(α»+l)(ίΓ+)) U J7. There is a 1-form 77 on i ί * such
that

( 1 ) dω = 07 Λ α>,
( 2 ) 17 = 0 on ( x ; - i ( β +i)(jκ:+)) u c/.

We consider η Λ d^ as a 3-form on Int ίΓJ with compact support. Since
Int K% is diffeomorphic to F*(S1) x R and iϊ c

2

o m p(F*(S1); Λ) is trivial by
the assumption, we see

Hc\mv(K*; R) ~ Σ flβW^Si); Λ) ® £Γcβomp(Λ; Λ) = 0 .

Therefore there is a 2-form f on Int K% with compact support satisfy-
ing dζ ~ η Λ dη. We can consider ξ as a 2-form on i^J. By Proposition
7 there is a function a: ^(J(af»+i>) -> {0, 1, 2, . .} such that

( 1 ) supp ξ Π (Uίi ( α )(S) IS 6 ̂ ( J ^ +iO}) - 0 ,
( 2 ) a(S) = 0 for S ΰ {S' e ^(J(β»+i>) | S' < j^^iS,) or S' < i^^+^CS^}.

Let an = αojN+i) + «n+1. We fix X, α>, 37, ζ on j{a-+^(K+).
(IV). Now consider the case where if̂  is the union of an adjacent

pair of staircases Slf S2. Let K* be the saturation of iία»+1XjS1)UiUr*+l)OS2)
with respect to

+iO IS ̂  j^^iS,) or S ^ i ( ^

By the similar argument as in the case (III) we have X, ω, η, ξ on Kϊ
and a: ^ ( J « W ) -> {0, 1, 2, .}. Let an = αo^«w + α < ι + 1 . We fix X, ω,
η, ξ on j{a^(Ku).

By (I)-(IV) we have X, ω, η, ξ on M, which completes the proof of
Theorem 4 and Theorem 5.
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