Tôhoku Math. Journ. 32 (1980), 9-34.

SRH-DECOMPOSITIONS OF CODIMENSION-ONE FOLIATIONS AND THE GODBILLON-VEY CLASSES

TOSHIYUKI NISHIMORI

(Received December 22, 1978, revised April 13, 1979)

1. Introduction. In this paper we show that the Godbillon-Vey classes of codimension-one foliations with a certain qualitative property are zero.

Since the Godbillon-Vey class was defined in Godbillon-Vey [1], many authors have published studies on it. Thurston [14] proved that the Godbillon-Vey class gives rise to a surjective homomorphism

$gv: \mathscr{F} \Omega^{\infty}_{3,1} \longrightarrow R$

where $\mathscr{F} \Omega_{3,1}^{\infty}$ is the foliated cobordism group of transversely oriented codimension-one foliations of closed oriented 3-manifolds. The problem to determine its kernel is still open. (See Problem 4 in Lawson [4]). In this point of view it is interesting to investigate what type of foliations are contained in the kernel of gv. Herman [3] proved that a foliation of the 3-torus whose leaves are diffeomorphic to \mathbb{R}^2 is in the kernel of gv.

On the other hand, the author has been studying the qualitative theory in [8]-[11] and saw that codimension-one foliations with a certain qualitative property admit nice decompositions. By making use of these decompositions, we can compute the Godbillon-Vey classes.

The main result is the following.

THEOREM 1. Let \mathscr{F} be a transversely orientable codimension-one C^{∞} foliation of a closed orientable manifold M. Suppose that the depth $d(\mathscr{F})$ of \mathscr{F} is finite and all holonomy groups of \mathscr{F} are abelian. Then we have

(1) If dim M = 3, then $gv(\mathcal{F}) = 0$.

(2) Let dim M > 3. If, for each leaf F of \mathscr{F} whose holonomy group is non-trivial, the cohomology group $H^2_{\text{comp}}(F; \mathbb{R})$ with compact support is trivial, then $gv(\mathscr{F}) = 0$.

The author conjectures that the condition in (2) of Theorem 1 is not essential.

The author was partially supported by the Sakkokai Foundation.

With respect to the problem to investigate the kernel of gv, the following is interesting.

PROBLEM. Let \mathscr{F} be a transversely-orientable codimension-one foliation of a closed orientable 3-manifold M. Suppose that $d(\mathscr{F})$ is finite and all holonomy groups of \mathscr{F} are abelian. Is \mathscr{F} cobordant to zero?

In §2 we define SRH-decompositions and in §3 we give the proof of an existence theorem. In §4 we state results on the relation between SRH-decompositions and the Godbillon-Vey classes and we give the proof in §5 for the case of dimension 3 and in §6 for the case of dimension >3.

FIXED NOTATION. Throughout this paper, \mathscr{F} is a transverselyorientable codimension-one foliation of a closed orientable C^{∞} manifold M. We fix a vector field X_0 of M transverse to \mathscr{F} and let $\varphi: M \times \mathbb{R} \to M$ be the flow defined by X_0 . We work in the C^{∞} category and omit the term " C^{∞} ".

2. SRH-decompositions of codimension-one foliations. To clarify the goal of §2 and §3 we state an existence theorem of SRH-decompositions before the definition of the terms used there. For the definition of depth see Nishimori [10].

THEOREM 2. Let \mathscr{F} be a transversely-orientable C^{∞} foliation of closed orientable manifold. If the depth $d(\mathscr{F})$ of \mathscr{F} is finite and all holonomy groups of \mathscr{F} are abelian, then \mathscr{F} has an abelian SRH-decomposition whose room-cycles and halls are ventilated.

Now we begin by introducing some notations as in Nishimori [10], [11]. Let F be a compact manifold with or without boundary and Na transversely-oriented codimension-one compact submanifold of F. Let C(F, N) be the compact manifold obtained from F - N by attaching two copies N_1, N_2 of N as boundary. The suffixes 1, 2 depend on the transverse orientation of N. For a diffeomorphism $f: [0, \delta_1] \rightarrow [0, \delta_2]$ with $\delta_1 > \delta_2$ and f(0) = 0, we denote by X(F, N, f) the quotient space of $C(F, N) \times [0, \delta_1]$ by the equivalence relation \sim defined by

$$(x_1, t) \sim (x_2, f(t))$$

for $t \in [0, \delta_1]$ and $x_1 \in N_1$, $x_2 \in N_2$ such that $x_1 = x_2$ as elements of N. We denote by $\mathscr{F}(F, N, f)$ the foliation of X(F, N, f) induced by that of $C(F, N) \times [0, \delta_1]$ with leaves $C(F, N) \times \{t\}$, $t \in [0, \delta_1]$.

DEFINITION 1. A subset S of M is called a staircase of \mathcal{F} if there

are a codimension-zero compact submanifold F of a leaf of \mathscr{F} , a codimension-one transversely-oriented closed submanifold N of F with F - N connected, a contraction $f: [0, \delta_1] \to [0, \delta_2]$ with $\delta_1 > \delta_2$ and f(0) = 0, and an embedding $h: X(F, N, f) \to M$ satisfying the following conditions.

- (S1) h(X(F, N, f)) = S.
- (S2) $h({x} \times [0, \delta_1]) \subset \varphi({x} \times R)$ for all $x \in F$.
- (S3) h(x, 0) = x for all $x \in F$.
- (S4) $h(C(F, N) \times \{\delta_1, f(\delta_1), f^2(\delta_1), \cdots\})$ is contained in a leaf of \mathcal{F} .

We call F(S) = F, $C(S) = h(C(F, N) \times \{\delta_1\})$, $W(S) = h(N_2 \times [\delta_2, \delta_1])$ and $D(S) = h(\partial F \times [0, \delta_1])$ the floor, the ceiling, the wall and the door of the staircase S respectively, where N_2 is the copy of N with suffix 2. Note that $\partial S = F(S) \cup C(S) \cup W(S) \cup D(S)$ and that \mathscr{F} is tangent to $F(S) \cup C(S)$ and transverse to $W(S) \cup D(S)$. If $h^*\mathscr{F} = \mathscr{F}(F, N, f)$, we call S regular.

DEFINITION 2. A subset R of M is called a room of \mathscr{F} if there are a codimension-zero connected compact submanifold F of a leaf of \mathscr{F} and an embedding $h: F \times [0, 1] \to M$ such that

(R1) $R = h(F \times [0, 1]),$

(R2) $h(\{x\} \times [0, 1]) \subset \varphi(\{x\} \times R)$ and the curves $h|\{x\} \times [0, 1]$ and $\varphi|\{x\} \times R$ have the same direction for all $x \in F$,

(R3) h(x, 0) = x for all $x \in F$,

(R4) $h(F \times \{1\})$ is contained in a leaf of \mathscr{F} .

We call F(R) = F, $C(R) = h(F \times \{1\})$ and $D(R) = h(\partial F \times [0, 1])$ the *floor*, the *ceiling* and the *door* of the room R respectively. Note that $\partial R = F(R) \cup C(R) \cup D(R)$.

As usual the induced foliation $h^*\mathscr{F}$ defines the "global" holonomy homomorphism

$$\Phi: \pi_1(F, x) \longrightarrow \mathrm{Diff}([0, 1])$$

where Diff([0, 1]) is the group of the diffeomorphism of the interval [0, 1]. If the image of Φ is trivial or abelian, we call R trivial or abelian respectively.

DEFINITION 3. A subset H of M is called a *hall* of \mathscr{F} if there are a codimension-zero connected compact submanifold F of a leaf of \mathscr{F} and a diffeomorphism $f: D(f) \to R(f)$, where D(f) and R(f) are compact connected submanifolds of F, such that

(H1) $F = D(f) \cup R(f)$,

(H2) for all $x \in D(f)$ there is $t_x > 0$ such that $\varphi(x, t_x) = f(x)$, $\varphi(\{x\} \times (0, t_x)) \cap F = \emptyset$ and

T. NISHIMORI

$$H = \{ \varphi(x, t) | x \in D(f), 0 \leq t \leq t_x \}.$$

We call $D(H) = \{\varphi(x, t) \mid x \in \partial D(f), 0 \leq t \leq t_x\}$ the door of H. Note that $\partial H = D(H) \cup (D(f) - R(f)) \cup (R(f) - D(f))$.

The induced foliation $\varphi^*\mathscr{F} | \{(x, t) | x \in D(f), 0 \leq t \leq t_x\}$ defines the "global" holonomy homomorphism

$$\Phi: \pi_1(D(f), x_0) \longrightarrow \text{Diff} ([0, t_{x_0}])$$

for $x_0 \in D(f)$. If the image of Φ is abelian, we call H abelian.

DEFINITION 4. A room-cycle is the union of a finite sequence R_i, \dots, R_l of rooms such that $C(R_i) \cap F(R_{i+1}) \neq \emptyset$ for $i = 1, \dots, l-1$ and $C(R_l) \cap F(R_1) \neq \emptyset$.

REMARK 1. The structures of a room-cycle and a hall are almost the same.

DEFINITION 5. A room-cycle ρ or a hall H is called *ventilated* if the restricted foliation $\mathscr{F}|\rho$ or $\mathscr{F}|H$ has a compact leaf whose holonomy group is trivial, respectively. A room-cycle ρ or a hall H is called *unlocked* if, for all $x \in \rho$ or for all $x \in H$, there are s < 0 and t > 0 such that $\varphi(x, s) \notin \rho$ and $\varphi(x, t) \notin \rho$ or such that $\varphi(x, s) \notin H$ and $\varphi(x, t) \notin H$ respectively, and otherwise *locked*.

DEFINITION 6. A finite set Δ of subsets of M is called a quasi-SRH decomposition of \mathscr{F} if

(1) $M = \bigcup_{A \in A} A$, and Int A 's are disjoint,

(2) $\Delta = \mathscr{S}(\Delta) \cup \mathscr{R}(\Delta) \cup \mathscr{H}(\Delta)$ where $\mathscr{S}(\Delta) = \{A \in \Delta \mid A \text{ is a regular staircase}\}$, $\mathscr{R}(\Delta) = \{A \in \Delta \mid A \text{ is a room}\}$, $\mathscr{H}(\Delta) = \{A \in \Delta \mid A \text{ is a hall}\}$,

(3) $D(A) \subset \bigcup_{S \in \mathscr{T}(\Delta)} W(S)$ for all $A \in \Delta$.

Furthermore if A is abelian for all $A \in \mathscr{R}(\Delta) \cup \mathscr{H}(\Delta)$ we call Δ abelian.

PROPOSITION 1. If \mathscr{F} has an abelian quasi-SRH-decomposition, then all holonomy groups of \mathscr{F} are abelian.

PROOF. For a leaf F intersecting no elements in $\mathscr{R}(\varDelta) \cup \mathscr{H}(\varDelta)$ the leaf F contains the floors of just two staircases S_1, S_2 with $F(S_1) \cap F(S_2) \neq \emptyset$ by the condition (3) of Definition 6. Since $\mathscr{F}|\bigcup \{S - F(S)|S \in \mathscr{S}(\varDelta)\}$ is without holonomy, the holonomy group of F is isomorphic to Z or $Z \oplus Z$.

For a leaf F intersecting an element $H \in \mathscr{H}(\Delta)$, the intersection $F \cap H$ is connected and $F - H \subset \bigcup \{S - F(S) | S \in \mathscr{S}(\Delta)\}$. Therefore the holonomy group of F is isomorphic to the holonomy group of the leaf $F \cap H$ of the restricted foliation $\mathscr{F}|H$, which is abelian.

For a leaf F intersecting $\operatorname{Int} R$ for an element $R \in \mathscr{R}(\Delta)$ the intersection $F \cap R$ is connected and $F - R \subset \bigcup \{S - F(S) | S \in \mathscr{S}(\Delta)\}$. Therefore the holonomy group of F is isomorphic to the holonomy group of the leaf $F \cap R$ of $\mathscr{F}|R$, which is abelian.

For a leaf F intersecting F(R) (or C(R)) for an element $R \in \mathscr{R}(\varDelta)$, the intersection $F \cap R$ is F(R) (or C(R)) and $F \cap R$ is F(S) for an $S \in \mathscr{S}(\varDelta)$ or C(R') (or F(R')) for a different $R' \in \mathscr{R}(\varDelta)$. Furthermore F - Ris contained in $\bigcup \{S - F(S) | S \in \mathscr{S}(\varDelta)\}$. Therefore in any case the holonomy group of F is abelian. This completes the proof of Proposition 1.

Let $\Delta = \mathscr{S}(\Delta) \cup \mathscr{R}(\Delta) \cup \mathscr{H}(\Delta)$ be a quasi-SRH-decomposition of \mathscr{F} . For $A, B \in \Delta$ we write $A \leq B$ if there is a finite sequence $A_0, A_1, \dots, A_k \in \Delta$ such that

 $(1) \quad A_0 = A, A_k = B,$

(2) $W(A_i) \cap D(A_{i+1}) \neq \emptyset$ for $i = 1, \dots, k-1$

where $W(A_i)$ is considered to be empty if $A_i \in \mathscr{R}(\Delta) \cup \mathscr{H}(\Delta)$. Note that $A \in \Delta$ is maximal if and only if $A \in \mathscr{R}(\Delta) \cup \mathscr{H}(\Delta)$.

DEFINITION 7. A finite set Δ of subsets of M is called an *SRH-de*composition if Δ is a quasi-SRH-decomposition and (Δ, \leq) is a partially ordered set.

Now all terms in Theorem 2 are defined. We give two examples of SRH-decompositions.

EXAMPLE 1. Let \mathscr{F}_R be the Reeb foliation of S^3 . We can take two staircases S_1, S_2 whose floors are the compact leaf of \mathscr{F}_R . Then the connected components H_1, H_2 of $\operatorname{Cl}(S^3 - (S_1 \cup S_2))$ are trivial locked halls of \mathscr{F}_R . Let $\Delta = \{S_1, S_2, H_1, H_2\}$. Then Δ is an SRH-decomposition.

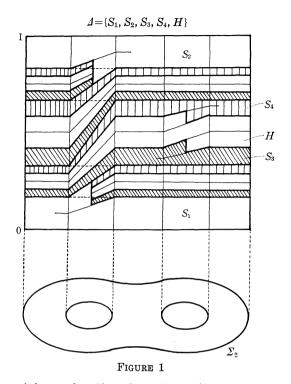
EXAMPLE 2. Let Σ_2 be the closed orientable surface of genus 2. By Theorem 4 in Nishimori [10] there is a codimension-one foliation \mathscr{F} of $\Sigma_2 \times [0, 1]$ transverse to the last factor [0, 1], with $d(\mathscr{F}) = d$, and with all holonomy groups abelian. In the case d = 3 we give an SRH-decomposition of \mathscr{F} as in Figure 1.

Now we give some propositions on SRH-decompositions.

PROPOSITION 2. If the depth of \mathscr{F} is finite or if all leaves are proper, then a quasi-SRH-decomposition of \mathscr{F} is an SRH-decomposition.*

PROOF. Let M/\mathscr{F} be the set of leaves of \mathscr{F} and for F_1 , $F_2 \in M/\mathscr{F}$ let $F_1 \leq F_2$ if $F_1 \subset \operatorname{Cl}_M(F_2)$. By Proposition 1 in Nishimori [10], the as-

^{*} K. Yano proved that if the depth of $\mathscr F$ is finite then all leaves of $\mathscr F$ are proper.



sumption of Proposition 2 implies that $(M/\mathscr{F}, \leq)$ is a partially ordered set. Now suppose that (\varDelta, \leq) is not a partially ordered set for a quasi-SRH-decomposition \varDelta of \mathscr{F} . Then there are two different staircases S_1 , S_2 in $\mathscr{S}(\varDelta)$ such that $S_1 \leq S_2$ and $S_2 \leq S_1$. This implies that $F^*(S_1) \leq$ $F^*(S_2)$ and $F^*(S_2) \leq F^*(S_1)$ where $F^*(S_i)$ is the leaf of \mathscr{F} containing the floor $F(S_i)$, i = 1, 2. Since

$$F^*(S_i) - F(S_i) \subset \bigcup \{S - F(S) \,|\, S \in \mathscr{S}(\varDelta)\}$$
 ,

it follows that $F^*(S_1) \neq F^*(S_2)$. Therefore $(M/\mathscr{F}, \leq)$ is not a partially ordered set, which is a contradiction.

PROPOSITION 3. Let Δ be an SRH-decomposition of \mathscr{F} . Let \mathscr{S} be a subset of $\mathscr{S}(\Delta)$ such that if $S \in \mathscr{S}$ and $S \geq S' \in \mathscr{S}(\Delta)$ then $S' \in \mathscr{S}$. Then for each leaf F of \mathscr{F} , the set $F - \bigcup \{S \mid S \in \mathscr{S}\}$ is connected.

PROOF. Let $F \in M/\mathscr{F}$ and $p, q \in F - \bigcup\{S \mid S \in \mathscr{S}\}$. We number the elements of \mathscr{S} so that if $S_i \leq S_j$ then $i \leq j$. It is sufficient to construct curves $c_n: ([0, 1], 0, 1) \to (F - \bigcup_{i=1}^n S_i, p, q)$ by induction on n. Since F is connected, there is a curve $c_0: ([0, 1], 0, 1) \to (F, p, q)$. Now suppose that c_n is constructed. In the case $c_n([0, 1]) \cap S_{n+1} = \emptyset$, let $c_{n+1} = c_n$. Consider the case $c_n([0, 1]) \cap S_{n+1} \neq \emptyset$. We can write

$$c_n^{-1}(\operatorname{Int} S_{n+1}) = \bigcup_{\lambda \in \Lambda} (a_{\lambda}, b_{\lambda})$$

where $(a_{\lambda}, b_{\lambda})$'s are disjoint. Since S_{n+1} is regular and $c_n | [a_{\lambda}, b_{\lambda}]$ is a curve on the same leaf of $\mathscr{F}|S_{n+1}$, we can show that the points $c_n(a_{\lambda})$ and $c_n(b_{\lambda})$ are on the same leaf of $\mathscr{F}|W(S_{n+1})$. Then we can take curves $c_{\lambda}: ([a_{\lambda}, b_{\lambda}], a_{\lambda}, b_{\lambda}) \to (W(S_{n+1}), c_n(a_{\lambda}), c_n(b_{\lambda}))$ so that the curve $c'_n: [0, 1] \to F$ defined by

 $(1) \quad c'_n | [a_\lambda, b_\lambda] = c_\lambda$

 $(2) \quad c'_{n}[[0, 1] - \bigcup_{\lambda} (a_{\lambda}, b_{\lambda}) = c_{n}[[0, 1] - \bigcup_{\lambda} (a_{\lambda}, b_{\lambda})]$

is continuous. It is easy to modify c'_n and to obtain the desired c_{n+1} . This completes the proof of Proposition 3.

PROPOSITION 4. For a room R in an SRH-decomposition Δ of \mathscr{F} , the floor F(R) and the ceiling C(R) are contained in mutually diffeomorphic leaves of \mathscr{F} and the saturation R^* of R, that is, the union of all leaves of \mathscr{F} intersecting R, is diffeomorphic to $F^*(R) \times [0, 1]$ where $F^*(R)$ is the leaf of \mathscr{F} containing F(R).

PROOF. We use the notation in Definition 2. We number the staircases in $\mathscr{S}(\Delta)$ so that if $S_i \leq S_j$ then $i \leq j$. Let $F_i^*(R)$ be the leaf of $\mathscr{F}|(\bigcup_{\nu \geq i} S_{\nu}) \cup R$ containing F(R) and R_i^* the union of all leaves of $\mathscr{F}|(\bigcup_{\nu \geq i} S_{\nu}) \cup R$ intersecting R. Then $F_i^*(R) = F^*(R)$ and $R_i^* = R^*$. We construct a diffeomorphism $h_i: F_i^*(R) \times [0, 1] \to R_i^*$ such that

 $(1) \quad h_i | F(R) \times [0, 1] = h$

 $(2) \quad h_i | F_{i+1}^*(R) \times [0, 1] = h_{i+1}$

by downward induction on *i*. Suppose that h_{i+1} is defined. If $F^*(R) \cap$ Int $S_i = \emptyset$ then $F_i^*(R) = F_{i+1}^*(R)$ and $R_i^* = R_{i+1}^*$. In this case let $h_i = h_{i+1}$. Otherwise $S_i \cap R_{i+1}^* = W(S_i) \cap R_{i+1}^*$ by the condition (3) of Definition 6. The intersection $W(S_i) \cap R_{i+1}^*$ consists of a countable number of connected components diffeomorphic to $W(S_i)$. Since $\mathscr{F}|S_i - F(S_i)$ is without holonomy it is easy to extend $h_{i+1}|W(S_i) \cap R_{i+1}^*$ to $h_i|S_i \cap R_i^*$. Thus we have h_i , which completes the proof of Proposition 4.

PROPOSITION 5. For a hall H in an SRH-decomposition Δ of \mathscr{F} , the saturation of H is a fiber bundle over S^1 with fiber F^* where F^* is the leaf of \mathscr{F} containing F in the notation of Definition 3.

PROOF. We use the notation of Definition 3. By using downward induction as in the proof of Proposition 4, we can extend $f: D(f) \rightarrow R(f)$ to a diffeomorphism $f^*: F^* \rightarrow F^*$ and find $t_x > 0$ for all $x \in F^*$ such that

- $(1) \quad \varphi(\{x\} \times (0, t_x)) \cap F^* = \emptyset, \ \varphi(x, t_x) = f^*(x),$
- $(2) \quad H^* = \{\varphi(x, t) \mid x \in F^*, \ 0 \leq t \leq t_x\}$

where H^* is the saturation of H. Therefore H^* has the structure of a fiber bundle over S^1 with the characteristic diffeomorphism f^* .

Now we introduce the term "thinning" of an SRH-decomposition which will be useful in the computation of the Godbillon-Vey classes.

DEFINITION 8. Let S be a staircase of \mathscr{F} and n a non-negative integer. We use the notation of Definition 1. Then S = h(X(F, N, f)). The *n*-thinning $S^{(n)}$ of S is the subset $h(C(F, N) \times [0, f^{n}(\delta_{1})]/\sim)$.

PROPOSITION 6. Let Δ be an SRH-decomposition and α a nonnegative integer valued function on $\mathcal{S}(\Delta)$. Then there are a uniquely defined SRH-decomposition $\Delta^{(\alpha)}$ and a bijection $j^{(\alpha)}: \Delta \to \Delta^{(\alpha)}$ such that

 $\begin{array}{ccc} (1) & j^{(\alpha)}(\mathscr{S}(\varDelta)) = \mathscr{S}(\varDelta^{(\alpha)}), \ j^{(\alpha)}(\mathscr{R}(\varDelta)) = \mathscr{R}(\varDelta^{(\alpha)}) & and & j^{(\alpha)}(\mathscr{H}(\varDelta)) = \mathscr{H}(\varDelta^{(\alpha)}), \end{array}$

(2) $j^{(\alpha)}(S) \cap S$ is the $\alpha(S)$ -thinning of S for all $S \in \mathscr{S}(\Delta)$,

 $(3) \quad j^{(\alpha)}(A) \supset A \text{ for all } A \in \mathscr{R}(\varDelta) \cup \mathscr{H}(\varDelta).$

PROOF. We construct $j^{(\alpha)}(A)$ for $A \in \Delta$ by induction on the partial order \leq . A minimal element A of Δ is a staircase or a room. In the case $A \in \mathscr{S}(\Delta)$, let $j^{(\alpha)}(A)$ be the $\alpha(S)$ -thinning of A. In the case $A \in \mathscr{R}(\Delta)$, let $j^{(\alpha)}(A) = A$.

Consider $S \in \mathscr{S}(\Delta)$ and suppose that $j^{(\alpha)}(S')$ is defined for all S' < S. Let $j^{(\alpha)}(S)$ be the union of leaves of

$$\mathscr{F}|\mathrm{Cl}(\bigcup\{S'|S \ge S' \in \mathscr{S}(\varDelta)\} - \bigcup\{j^{(\alpha)}(S')|S > S' \in \mathscr{S}(\varDelta)\})$$

intersecting the $\alpha(S)$ -thinning of S. Since $\mathscr{F}|\bigcup\{S' - F(S')|S > S' \in \mathscr{S}(\Delta)\}$ is without holonomy, it is easy to see that $j^{(\alpha)}(S)$ is a staircase of \mathscr{F} .

Consider $A \in \mathscr{R}(\varDelta) \cup \mathscr{H}(\varDelta)$ and suppose that $j^{(\alpha)}(S)$ is defined for all S < A. Let $j^{(\alpha)}(A)$ be the union of leaves of

$$\mathscr{F} | A \cup \operatorname{Cl}(\bigcup \{S | A > S \in \mathscr{S}(\varDelta)\} - \bigcup \{j^{(\alpha)}(S) | A > S \in \mathscr{S}(\varDelta)\})$$

intersecting A. Then $j^{(\alpha)}(A)$ is a room or a hall if $A \in \mathscr{R}(\Delta)$ or $A \in \mathscr{H}(\Delta)$ respectively.

Let $\Delta^{(\alpha)} = \{j^{(\alpha)}(A) | A \in \Delta\}$. Then $\Delta^{(\alpha)}$ is an SRH-decomposition with the desired property. We can check the uniqueness by induction and omit the proof.

DEFINITION 9. The SRH-decomposition $\Delta^{(\alpha)}$ in Proposition 4 is called the α -thinning of Δ . In the case where α is a constant function with value *n*, we call it the *n*-thinning of Δ .

PROPOSITION 7. (1) The α -thinning of the β -thinning of Δ is the $(\alpha + \beta)$ -thinning of Δ . (2) Let Δ be an SRH-decomposition and S a

subset of $\mathscr{S}(\Delta)$. If a compact subset K of M does not intersect the leaf $F^*(S)$ of \mathscr{F} containing F(S) for each $S \in \mathscr{S}$, then there is a nonnegative integer valued function α of $\mathscr{S}(\Delta)$ such that $K \cap (\bigcup_{S \in \mathscr{S}} j^{(\alpha)}(S)) = \emptyset$ and $\alpha(S) = 0$ for all $S \in \mathscr{S}(\Delta) - \mathscr{S}$.

PROOF. (1) is clear. (2) We number the elements in \mathscr{S} so that if $S_i \leq S_j$ then $i \leq j$. Let $\alpha(S) = 0$ for $S \in \mathscr{S}(\varDelta) - \mathscr{S}$. We define $\alpha(S_i)$ by induction on *i*. Since $F^*(S_1) \cap K = \emptyset$, there is a positive integer $\alpha(S_1)$ such that the $\alpha(S_1)$ -thinning of S_1 does not intersect *K*. Now suppose that $\alpha(S_1), \dots, \alpha(S_n)$ are defined. Let β_n be a function of $\mathscr{S}(\varDelta)$ defined by

(a) $\beta_n(S_i) = \alpha(S_i), i = 1, \dots, n,$

(b) $\beta_n(S) = 0$ for $S \in \mathscr{S}(\varDelta) - \{S_1, \dots, S_n\}$.

Consider the β_n -thinning of Δ . Since $F^*(S_{n+1}) \cap K = \emptyset$, there is a positive integer $\alpha(S_{n+1})$ such that the $\alpha(S_{n+1})$ -thinning of $j^{(\beta_n)}(S_{n+1})$ does not intersect K.

Note that $j^{(\beta_n)}(S_i) = j^{(\beta_{n+1})}(S_i)$ for $i \leq n$. Let $l = \#(\mathscr{S})$. Then $\alpha = \beta_l$ is the desired function of $\mathscr{S}(\Delta)$.

3. The proof of Theorem 2. By Proposition 2, it is sufficient to construct an abelian quasi-SRH-decomposition whose room-cycles and halls are ventilated. Let $d = d(\mathcal{F})$. We may suppose that M is connected.

FIRST STEP. By induction we construct non-empty finite sets $\mathcal{S}_1, \dots, \mathcal{S}_{d-1}$ of staircases and finite sets $\mathcal{R}_1, \dots, \mathcal{R}_{d-1}$ of rooms such that

(A1) the interiors of all elements in $\mathcal{S}_1 \cup \cdots \cup \mathcal{S}_{d-1} \cup \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_{d-1}$ are disjoint,

(A2) the door of each element in $\mathcal{S}_i \cup \mathcal{R}_i$ is contained in the wall of a staircase in $\mathcal{S}_1 \cup \cdots \cup \mathcal{S}_{i-1}$,

(A3) the floor of each element in $\mathscr{S}_i \cup \mathscr{R}_i$ is contained in a leaf, of \mathscr{F} , of depth i,

(A4) each leaf, of \mathcal{F} , of depth *i* is contained in

 $\bigcup \{A \mid A \in \mathscr{S}_1 \cup \cdots \cup \mathscr{S}_i \cup \mathscr{R}_1 \cup \cdots \cup \mathscr{R}_i\},\$

(A5) $\mathscr{R}_1 \cup \cdots \cup \mathscr{R}_{d-1}$ has no room-cycle.

Let $\mathscr{S}_0 = \emptyset$ and $\mathscr{R}_0 = \emptyset$. Let $0 \leq k < d-1$ and suppose that \mathscr{S}_i and \mathscr{R}_i are already constructed for all $i \leq k$. Let $M_k = \bigcup \{A | A \in \mathscr{S}_0 \cup \cdots \cup \mathscr{S}_k \cup \mathscr{R}_0 \cup \cdots \cup \mathscr{R}_k \}$.

Lemma 3.1. $M - M_k \neq \emptyset$.

PROOF. If k = 0 it is clear. Let $k \ge 1$. The condition (A2) implies that the wall of each staircase in \mathscr{S}_k has no neighborhood, with respect

T. NISHIMORI

to the topology of M, in M_k . Since $\mathscr{S}_k \neq \emptyset$, it follows that $M - M_k \neq \emptyset$.

LEMMA 3.2. For a leaf F of the restricted foliation $\mathscr{F}|M$ – Int M_k we denote by $d_k(F)$ the depth of F with respect to $\mathscr{F}|M$ – Int M_k . Let F^* be the leaf of \mathscr{F} containing F. Then $d(F^*) = d_k(F) + k$.

PROOF. The condition (A4) implies that $d(G^*) > k$ for each leaf G of $\mathscr{F}|M$ – Int M_k . Therefore $d_k(F) + k \leq d(F^*)$.

The condition (A2) implies that $\operatorname{Cl}(F^*) \cap M_k \subset \bigcup \{S \mid S \in \mathscr{S}_0 \cup \cdots \cup \mathscr{S}_k\}$. Let $d' = d(F^*)$. Then there are leaves $F_1, \dots, F_{d'}$ of \mathscr{F} such that (1) $F_{d'} = F^*$,

(2) $F_i \subset Cl(F_{i+1}) - F_{i+1}$ for $i = 1, \dots, d' - 1$.

If a leaf of \mathscr{F} is contained in $\bigcup \{S | S \in \mathscr{S}_0 \cup \cdots \cup \mathscr{S}_k\}$ then it is the floor of a staircase in $\mathscr{S}_0 \cup \cdots \cup \mathscr{S}_k$. Therefore F_1, \cdots, F_k are the floors of staircases in $\mathscr{S}_0 \cup \cdots \cup \mathscr{S}_k$ and $F_{k+1}, \cdots, F_{d'}$ are not contained in $\bigcup \{S | S \in$ $\mathscr{S}_0 \cup \cdots \cup \mathscr{S}_k\}$. It follows that $d' - k \leq d_k(F)$. Therefore $d' - k = d_k(F)$. This completes the proof of Lemma 3.2.

Since a connected component of $M - \operatorname{Int} M_k$ contains the wall of a staircase in \mathscr{S}_k , the set $M - \operatorname{Int} M_k$ has a finite number of connected components. Let K be one of them. By Lemma 3.1 and Lemma 3.2, there are leaves F_1, F_2 of $\mathscr{F} | K$ such that F_1 is compact and $\operatorname{Cl}(F_2) \supset F_1$. Since the holonomy group of F_1 is abelian, there is a staircase S_1 with $F(S_1) = F_1$ and with $C(S_1) \subset F_2$ by Theorem 1 in Nishimori [9]. By the proof of Lemma 9 in [10], for each $x \in K$ there is a neighborhood U(x) of x in K satisfying one of the following.

(I) U(x) intersects no compact leaf of $\mathcal{F} \mid K$.

(II) U(x) intersects just one compact leaf of $\mathscr{F} \mid K$.

(III) There is an abelian room R(x) such that $D(R(x)) \subset \partial M_k$, $R(x) \cap \text{Int } S_1 = \emptyset$ and R(x) contains all compact leaves of $\mathscr{F} \mid K$ intersecting U(x).

Since $K - \text{Int } S_1$ is compact, there are $x_1, \dots, x_a \in K - \text{Int } S_1$ such that $U(x_1) \cup \dots \cup U(x_a) \supset M - \text{Int } S_1$. By renumbering x_i 's if necessary, we can suppose that $U(x_1), \dots, U(x_b)$ are of type (III). Let $\{L_{\lambda} | \lambda \in \Lambda\}$ be the set of connected components of

$$L = \bigcup_{i=1}^{b} R(x_i) - \bigcup_{i=1}^{b} F(R(x_i)) - \bigcup_{i=1}^{b} C(R(x_i))$$

Then for each L_{λ} the closure $\operatorname{Cl}(L_{\lambda})$ is an abelian room and $\bigcup_{\lambda \in A} \operatorname{Cl}(L_{\lambda}) = \operatorname{Cl}(L) = \bigcup_{i=1}^{b} R(x_{i})$. Let $\mathscr{R}'_{k+1} = \{\operatorname{Cl}(L_{\lambda}) \mid \lambda \in A\}$ and \mathscr{R}_{k+1} the union of the \mathscr{R}'_{k+1} 's for all connected components K of $M - \operatorname{Int} M_{k}$. Then (A1) and (A2) are clearly satisfied. The floor of the room $\operatorname{Cl}(L_{\lambda})$ is a compact leaf of $\mathscr{F} \mid K$ and then it is contained in a leaf of \mathscr{F} of depth 1 + k

by Lemma 3.2. Thus (A3) is satisfied.

LEMMA 3.3. \mathcal{R}_{k+1} has no room-cycle.

PROOF. Suppose that \mathscr{R}_{k+1} has a room-cycle ρ . Then \mathscr{R}'_{k+1} has a room-cycle for a connected component K of $M - \operatorname{Int} M_k$. Since each connected component of $\partial \rho$ is without boundary and is contained in ∂M_k , it is a connected component of ∂M_k . Therefore $\partial \rho \subset \partial K$ and ρ is a closed open subset of K, which implies that $\rho = K$. On the other hand since $R(x_i) \cap S_1 = \emptyset$ for all i, it follows that $\rho \cap S_1 = \emptyset$. This is a contradiction.

By Lemma 3.3 the condition (A5) is satisfied.

Now we construct \mathscr{S}_{k+1} . The restricted foliation $\mathscr{F} | K - \operatorname{Int} (\bigcup_{i=1}^{b} R(x_i))$ has a finite number of compact leaves. Since all holonomy groups of the compact leaves are abelian, by Theorem 1 in [9] for each compact leaf F of $\mathscr{F} | K - \operatorname{Int}(\bigcup_{i=1}^{b} R(x_i))$ we can take a staircase whose floor is F and whose door is contained in ∂M_k if F is in the boundary of $\bigcup_{i=1}^{b} R(x_i)$ and otherwise two staircases. We denote by \mathscr{S}'_{k+1} the set of such staircases and by \mathscr{S}_{k+1} the union of \mathscr{S}'_{k+1} 's for all connected components K of $M - \operatorname{Int} M_k$. Clearly \mathscr{S}_{k+1} satisfies the conditions (A1), (A2) and (A3). By Proposition 3 and Lemma 3.2 for each leaf F^* of \mathscr{F} of depth k + 1 the intersection $F^* \cap (M - \operatorname{Int} M_k)$ is empty or a compact leaf of $\mathscr{F} | M - \operatorname{Int} M_k$. Therefore the sets $\mathscr{S}_1, \dots, \mathscr{S}_{k+1}, \mathscr{R}_1, \dots, \mathscr{R}_{k+1}$ satisfy the condition (A4).

SECOND STEP. By Lemma 3.2 all leaves of the restricted foliation $\mathscr{F}|M-\operatorname{Int} M_{d-1}$ have trivial holonomy groups and then the leaves are all compact. As in the First step the set $M-\operatorname{Int} M_{d-1}$ has a finite number of connected components. Let K be one of them. Let F_1, \dots, F_l be the leaves of $\mathscr{F}|K$ intersecting the ceiling C(S) for a staircases in $\mathscr{S}_1 \cup \cdots \cup \mathscr{S}_{d-1}$. Each connected component K_l of $K - (F_1 \cup \cdots \cup F_l)$ is diffeomorphic to $F \times (0, 1)$ for a submanifold F of one of F_i 's and $\mathscr{F}|K_l$ is a product foliation. If $K - (F_1 \cup \cdots \cup F_l)$ is connected then l = 1 and K is a trivial hall. Let \mathscr{H} be the set of such halls. If $K - (F_1 \cup \cdots \cup F_l)$ is not connected then the closure of K_l is a trivial room and K is a ventilated room-cycle. Let \mathscr{R}_d be the set of such rooms where K varies.

Now let $\Delta = \mathscr{S}_1 \cup \cdots \cup \mathscr{S}_{d-1} \cup \mathscr{R}_1 \cup \cdots \cup \mathscr{R}_d \cup \mathscr{H}$. Clearly the set Δ satisfies the conditions (1)-(3) of Definition 6 and Δ is a quasi-SRH-decomposition. By the construction of \mathscr{R}_i each room-cycle ρ in Δ consists of rooms in \mathscr{R}_d , hence ρ is ventilated. Each hall in Δ is trivial, hence ventilated. This completes the proof of Theorem 2.

T. NISHIMORI

4. The relation between SRH-decompositions and the Godbillon-Vey classes. In this section we state the results of computation of the Godbillon-Vey classes by using SRH-decompositions.

THEOREM 3. Let dim M = 3. If \mathscr{F} has an abelian SRH-decomposition whose room-cycles and halls are ventilated or unlocked, then the Godbillon-Vey class $gv(\mathscr{F})$ of \mathscr{F} is zero.

THEOREM 4. Let dim M > 3. If \mathscr{F} has a ventilated SRH-decomposition and, for each leaf F of \mathscr{F} whose holonomy group is non-trivial, the cohomology group $H^2_{\text{comp}}(F; \mathbf{R})$ with compact support is trivial, then $gv(\mathscr{F}) = 0$.

THEOREM 5. Let dim M>3. If \mathscr{F} has an SRH-decomposition and, for each leaf F of \mathscr{F} whose holonomy group is non-trivial, the cohomology group $H^i_{\text{comp}}(F; \mathbf{R})$ with compact support are trivial for i = 2, 3, then $gv(\mathscr{F}) = 0$.

Now Theorem 1 follows from Theorems 2, 3 and 4.

We recall the Herman's theorem and strengthen it, whose proof suggests the proof of Theorem 3.

THEOREM 6 (Herman [3]). Let \mathscr{F} be a codimension-one foliation of the 3-torus $S^1 \times S^1 \times S^1$ transverse to the last factor. Then $gv(\mathscr{F}) = 0$.

THEOREM 7. Let Σ_g be a closed orientable surface of genus g. Let \mathscr{F} be a codimension-one foliation of $\Sigma_g \times S^1$ transverse to the last factor S^1 . The foliation \mathscr{F} defines the "global" holonomy homomorphism $\Phi: \pi_1(\Sigma_g) \to \operatorname{Diff}(S^1)$. If the image of Φ is abelian, then $gv(\mathscr{F}) = 0$.

PROOF OF THEOREM 7. Let $p: \Sigma_g \times S^1 \to \Sigma_g$ be the projection. We choose circles $\alpha_1, \dots, \alpha_g, \beta_1, \dots, \beta_g$ in Σ_g such that α_i and β_i intersect at one point for $i = 1, \dots, g$ and any other pair of the circles do not intersect. Let $T(\alpha_1), \dots, T(\alpha_g), T(\beta_1), \dots, T(\beta_g)$ be small closed tubular neighborhoods of $\alpha_1, \dots, \alpha_g, \beta_1, \dots, \beta_g$. Since the image of Φ is abelian, the restricted foliation $\mathscr{F} | \Sigma_g \times S^1 - p^{-1}(\bigcup_{i=1}^g (\alpha_i \cup \beta_i))$ is isomorphic to a product foliation of $(\Sigma_g - \bigcup_{i=1}^g (\alpha_i \cup \beta_i)) \times S^1$. We can construct a non-singular 1-form ω of $\Sigma_g \times S^1$ such that

 $(1) \quad T\mathscr{F} = \{v \in TM | \omega(v) = 0\},\$

(2) Supp $(d\omega) \subset \bigcup_{i=1}^{g} \operatorname{Int}(T(\alpha_i) \cup T(\beta_i))$

where $\operatorname{Supp}(d\omega)$ is the support of $d\omega$. Then there is a 1-form η of $\Sigma_g \times S^1$ such that $d\omega = \eta \wedge \omega$ and $\operatorname{Supp} \eta \subset \bigcup_{i=1}^g \operatorname{Int}(T(\alpha_i) \cup T(\beta_i))$. Therefore the Godbillon-Vey number

20

of \mathscr{F} equals to $\sum_{i=1}^{g} \int_{T(lpha_i) \cup T(eta_i)} \eta \wedge d\eta$.

In order to compute $\int_{T(\alpha_i)\cup T(\beta_i)}\eta\wedge d\eta$, we attach a quadrangle Q to $T(\alpha_i) \cup T(\beta_i)$ so that we obtain the 2-torus $S^1 \times S^1$. Since the foliation $\mathscr{F}|p^{-1}(T(\alpha_i)\cup T(\beta_i)-\alpha_i\cup\beta_i)$ is isomorphic to a product foliation, we can extend it to a foliation \mathscr{F}_i on the 3-torus $S^{\scriptscriptstyle 1} imes S^{\scriptscriptstyle 1} imes S^{\scriptscriptstyle 1}$ and construct a non-singular 1-form ω_i of $S^1 \times S^1 \times S^1$ such that $T\mathscr{F}_i = \{v \in T(S^1 \times S^1 \times S^1) | i \in V\}$ $\omega_i(v) = 0$ } and $\omega_i | p^{-1}(T(\alpha_i) \cup T(\beta_i)) = \omega | p^{-1}(T(\alpha_i) \cup T(\beta_i)).$ Let η_i be the 1-form defined by

(1) $\eta_i|S^1 imes S^1 imes S^1-p^{-1}(T(lpha_i)\cup T(eta_i))=0$,

(2) $\eta_i | T(\alpha_i) \cup T(\beta_i) = \eta | T(\alpha_i) \cup T(\beta_i).$ Then $d\omega_i = \eta_i \wedge \omega_i$ and $\int_{S^1 \times S^1 \times S^1} \eta_i \wedge d\eta_i = \int_{T(\alpha_i) \cup T(\beta_i)} \eta \wedge d\eta.$ By Theorem 6 the Godbillon-Vey number $\int_{S^1 \times S^1 \times S^1} \eta_i \wedge d\eta_i$ of \mathscr{F}_i is zero. Therefore

$$gv(\mathscr{F})[\varSigma_g imes S^{\scriptscriptstyle 1}] = \int_{\varSigma_g imes S^{\scriptscriptstyle 1}} \eta\,\wedge\,d\eta = 0$$

and then $gv(\mathcal{F}) = 0$, which completes the proof of Theorem 7.

The proof of Theorem 3. Let \mathcal{F} be a transversely-orientable 5. codimension-one foliation of a closed orientable 3-manifold M and Δ an abelian SRH-decomposition of \mathscr{F} whose room-cycles and halls are ventilated or unlocked. Recall that X_0 is a vector field of M transverse to \mathcal{F} and φ is the flow defined by X_0 .

FIRST STEP. We can suppose that for each staircase S in \varDelta the ceiling C(S) has trivial holonomy, by taking 1-thinning of \varDelta if necessary. Let \mathcal{X} be the set of connected components of $M - \operatorname{Int}(\bigcup |\{S | S \in \mathcal{S}\})$ $\mathcal{S}(\Delta)$

LEMMA 5.1. Let $K \in \mathcal{K}$. Then K is one of the following;

(I) a hall,

(II) a room-cycle,

the union of a sequence of rooms sandwiched by two stair-(III) cases.

PROOF. Suppose that K contains a hall H in Δ . By the definition of SRH-decompositions the boundary ∂H of H is contained in $\bigcup \{\partial S | S \in$ This implies that $\partial H \subset \partial K$ and then that H is a closed open $\mathscr{S}(\Delta)$. subset of K. Therefore H = K and the case (I) occurs.

Suppose that K contains no hall in Δ . Let R be a room in Δ con-By Proposition 4 the union R^* of all leaves of $\mathcal F$ intertained in K. secting R is diffeomorphic to $F^*(R) \times [0, 1]$. Note that $R^* - R \subset \text{Int}$ $(\bigcup\{S \mid S \in \mathscr{S}(\varDelta)\})$. This implies that, for rooms R_1, R_2 in \varDelta contained in K, if $C(R_1) \cap C(R_2) \neq \emptyset$ then $R_1 = R_2$, and if $F(R_1) \cap F(R_2) \neq \emptyset$ then $R_1 = R_2$. Suppose that K is not a room-cycle in \varDelta . Then we can number the rooms in \varDelta contained in K so that

$$C(R_i) \cap F(R_{i+1}) \neq \emptyset$$
 for $i = 1, \dots, l-1$

where R_1, \dots, R_l are the numbered rooms. It is easy to see that $F(R_1) \cap F(S) \neq \emptyset$ and $C(R_l) \cap F(S') \neq \emptyset$ for some $S, S' \in \mathcal{S}(\Delta)$. This is the case (III), which completes the proof of Lemma 5.1.

Let K^* be the saturation of K with respect to \mathscr{F} . In the cases (I) and (II) the set K^* is a fiber bundle over circle and in the case (III) a fiber bundle over an interval.

From now we are going to find a subset s of K^* (or the union of K^* and the sandwiching staircases S_1, S_2 in the case (III)) such that $\mathscr{F}|K^* - s$ (or $\mathscr{F}|(K^* \cup S_1 \cup S_2) - s$ respectively) is without holonomy. We call such s a holonomy-killing slit.

DEFINITION 10. For a compact orientable surface Σ_g of genus g with or without boundary, a set Γ of 2g circles $\alpha_1, \dots, \alpha_{2g}$ in Σ_g is called a *basic system* of circles in Σ_g if, for i < j, the intersection $\alpha_i \cap \alpha_j$ is one point in the case i + 1 = j = 2k for some $k \in \{1, \dots, g\}$ and otherwise $\alpha_i \cap \alpha_j$ is empty.

Now consider the case (I). Let H be a hall. By the assumption H is ventilated or unlocked. We use notations in Definition 3. Then

$$H = \{ \varphi(x, t) \mid x \in D(f), 0 \leq t \leq t_x \}.$$

(I-1). Suppose that H is ventilated. There is a compact leaf G of $\mathscr{F}|H$ with trivial holonomy group. There is $0 < s_x < t_x$ for each $x \in D(f)$ such that $G = \{ \mathscr{P}(x, s_x) | x \in D(f) \}$. Since $\mathscr{F} | H^* - H$ is without holonomy where H^* is the saturation of H with respect to \mathscr{F} , there is $r_x < 0$ for each $x \in D(f)$ such that $\mathscr{P}(\{x\} \times (r_x, 0)) \cap G^* = \emptyset$ and $\mathscr{P}(x, r_x) \in G^*$ where G^* is the leaf of \mathscr{F} containing G, and there is $u_x > 0$ for each $x \in R(f)$ such that $\mathscr{P}(\{x\} \times (0, u_x)) \cap G^* = \emptyset$ and $\mathscr{P}(x, t_x) \in G^*$. Let $\tilde{H} = H \cup \{\mathscr{P}(x, t) | x \in D(f) - R(f), r_x \leq t \leq 0\} \cup \{\mathscr{P}(x, t) | x \in R(f) - D(f), 0 \leq t \leq u_x\}$ and $\tilde{D}(f) = G \cup \{\mathscr{P}(x, s_x) | x \in D(f) - R(f)\}$. Then \tilde{H} is a hall. Note that $\tilde{H} \subset j^{(1)}(H) \in \mathcal{A}^{(1)}$. Now $\tilde{D}(f)$ is a compact 2-manifold with boundary. Choose a basic system Γ of circles in $\tilde{D}(f)$ and, for $\alpha \in \Gamma$, let

$$ar{lpha}(arepsilon) = \{arphi(x, t) \, | \, x \in lpha, \, arepsilon < t < s_x - r_x - arepsilon \}$$

Let $s(H, \varepsilon) = \bigcup \{ \overline{\alpha}(\varepsilon) \mid \alpha \in \Gamma \}$. Since the hall \widetilde{H} is also abelian and the

holonomy group of $\widetilde{D}(f)$ is trivial, the foliation $\mathscr{F} | H - s(H, \varepsilon)$ is without holonomy for all sufficiently small $\varepsilon > 0$. Therefore $s(H, \varepsilon)$ is a holonomy-killing slit.

(I-2). Suppose that H is unlocked. Then there is a positive integer n such that $F \subset \bigcup_{i=0}^{n} f^{i}(D(f) - R(f))$. We take a basic system Γ_{1} of circles in $\operatorname{Cl}(D(f) - R(f))$. Furthermore we take a set Γ_{2} of circles in $(D(f) - R(f)) \cup f(D(f) - R(f))$ such that $\Gamma = \Gamma_{1} \cup \Gamma_{2} \cup \{f(\alpha) | \alpha \in \Gamma_{1}\}$ is a basic system of circles in $(D(f) - R(f)) \cup f(\operatorname{Cl}(f) - R(f))$. For each $x \in D(f)$ there is $s_{x} > 0$ such that $\varphi(x, s_{x}) = f^{n}(x)$. For $\alpha \in \Gamma_{1} \cup \Gamma_{2}$ let

$$ar{lpha}(arepsilon) = \{arphi(x,\,t) \,|\, x \in lpha,\,arepsilon < t < s_x - arepsilon\}$$
 .

Let $s(H, \varepsilon) = \bigcup \{\overline{\alpha}(\varepsilon) \mid \alpha \in \Gamma_1 \cup \Gamma_2\}$. Then the foliation $\mathscr{F} \mid H^* - s(H, \varepsilon)$ is without holonomy for all sufficiently small $\varepsilon > 0$. Therefore $s(H, \varepsilon)$ is a holonomy-killing slit.

Now consider the case (II) in Lemma 5.1. Let $\rho = R_1 \cup \cdots \cup R_l$ be a room-cycle in Δ . We may suppose that

$$egin{array}{ll} C(R_i)\cap F(R_{i+1})
eq arnothing & ext{for} \quad i=1,\,\cdots,\,l-1 \;, \ C(R_l)\cap F(R_1)
eq arnothing & arnothi$$

By Proposition 4 the saturation R_i^* of R_i with respect to \mathscr{F} is diffeomorphic to $F^*(R_i) \times [0, 1]$. Therefore $\bigcup_{i=1}^l R_i^*$ is a fiber bundle over S^1 . For each $x \in F^*(R_1)$ there is $t_x > 0$ such that $\mathscr{P}(\{x\} \times (0, t_x)) \cap F^*(R_1) = \emptyset$ and $\mathscr{P}(x, t_x) \in F^*(R_1)$. Let

$$D=\left\{x\in F^{*}(R_{\scriptscriptstyle 1})\,|\,arphi(\{x\} imes[0,\,t_{\scriptscriptstyle x}])\cap \left(igcup_{i=1}^{\iota}R_{i}\,
ight)
eqarnothing
ight\}\,,$$

and

$$H = \{\varphi(x, t) \mid x \in D, 0 \leq t \leq t_x\}.$$

By Proposition 7 there is a positive integer n such that H intersects no staircase in the *n*-thinning of Δ . Note that H is a hall. Then we can apply the arguments in the case (I) and we have a holonomy-killing slit $s(\rho, \varepsilon)$ in $\bigcup_{i=1}^{l} R_{i}^{*}$.

Consider the case (III). Let $K = R_1 \cup \cdots \cup R_l$ where

$$egin{aligned} C(R_i) \cap F(R_{i+1})
eq \oslash & ext{for} \quad i=1,\,\cdots,\,l-1 \ F(S_1) \cap F(R_1)
eq \oslash &, \quad F(S_2) \cap C(R_l)
eq \oslash & R_1,\,\cdots,\,R_l \in \mathscr{R}(\varDelta) \ , \quad S_1,\,S_2 \in \mathscr{S}(\varDelta) \ . \end{aligned}$$

Let R_i^* be the saturation of R_i with respect to \mathscr{F} as before and let S_i^* be the saturation of S_i with respect to the foliation

$$\mathscr{F} | \bigcup \{ S \in \mathscr{S}(\varDelta) | S \leq S_i \} .$$

Then by Proposition 4 the subset $\hat{K} = \text{Int}(S_1^* \cup R_1^* \cup \cdots \cup R_l^* \cup S_2^*)$ is diffeomorphic to $F^*(R_1) \times (0, 1)$. For each $x \in F^{**}(R_1)$ there are $s_x < 0$ and $t_x > 0$ such that

- $(1) \quad \varphi(\{x\} \times (s_x, t_x)) \subset \widehat{K},$
- $(2) \quad \varphi(x, s_x) \in F(S_1), \ \varphi(x, t_x) \in F(S_2).$

It is easy to see that there is a compact submanifold \widetilde{F} of $F^*(R_1)$ such that $\widetilde{K} = \{ \varphi(x, t) | x \in \widetilde{F}, s_x < t < t_x \}$ contains K. We take a basic system Γ of circles in F. For $\alpha \in \Gamma$ let

$$\overline{\alpha}(\varepsilon) = \{ \varphi(x, t) | x \in \alpha, s_x - \varepsilon < t < t_x + \varepsilon \} .$$

Let $s(K, \varepsilon) = \bigcup \{\overline{\alpha}(\varepsilon) | \alpha \in \Gamma\}$. Since $\mathscr{F} | S_1 - F(S_1)$ and $\mathscr{F} | S_2 - F(S_2)$ are without holonomy and all R_i 's are abelian, the foliation $\mathscr{F} | \widehat{K} - s(K, \varepsilon)$ is without holonomy for all sufficiently small $\varepsilon > 0$.

By Proposition 7 for a sufficiently large integer n the n-thinning $\Delta^{(n)}$ of Δ satisfies that each $S \in \mathscr{S}(\Delta^{(n)})$ intersects no circles in the basic systems taken in the above argument in the cases (I) and (II). By a similar argument as the proof of Proposition 7 we may suppose that each \widetilde{F} in the above argument in the case (III) is contained in some $S \in \mathscr{S}(\Delta^{(n)})$.

Let $S_1, S_2 \in \mathscr{S}(\mathcal{A}^{(n)})$ satisfy $F(S_1) \cap F(S_2) \neq \emptyset$. We call such a pair an *adjacent pair* of staircases and denote by \mathscr{P} the set of adjacent pairs. Note that $G = F(S_1) \cup F(S_2)$ is connected and that $F^*(S_1) - G$ and $F^*(S_2) - G$ have no holonomy. Take a basic system Γ of circles in G. For each $x \in G$ there are $s_x < 0$ and $t_x > 0$ such that

 $(1) \quad \varphi(\{x\} \times (s_x, t_x)) \subset \operatorname{Int}(S_1 \cup S_2)$

(2) $\varphi(x, s_x), \varphi(x, t_x) \in C(S_1) \cup C(S_2).$ For $\alpha \in \Gamma$ let

$$ar{lpha}(arepsilon) = \{arphi(x, t) \, | \, x \in lpha_i, \, s_x + arepsilon < t < t_x - arepsilon \}$$

and $s(\{S_1, S_2\}, \varepsilon) = \bigcup \{\overline{\alpha}(\varepsilon) | \alpha \in \Gamma\}$. Then $\mathscr{F}|(S_1 \cup S_2) - s(\{S_1, S_2\}, \varepsilon)$ is without holonomy for all sufficiently small $\varepsilon > 0$.

Let $\Sigma(\varepsilon)$ be the set of all holonomy-killing slits constructed above and let

$$M(\varepsilon) = M - \bigcup \{s \mid s \in \Sigma(\varepsilon)\}$$
.

Then $\mathscr{F} | M(\varepsilon)$ is without holonomy for all sufficiently small $\varepsilon > 0$. We fix such ε from now.

SECOND STEP. We are going to construct a vector field X on $M(\varepsilon)$ such that

 $\mathbf{24}$

 $(*) \quad \begin{cases} \text{the local 1-parameter group generated by } X \text{ preserves } \mathscr{F} \text{ and} \\ \text{the orbits of } X \text{ are the orbits of } X_0 | M(\varepsilon) . \end{cases}$

We construct $X|A \cap M(\varepsilon)$ for $A \in \Delta^{(n)}$ by induction on the partial order \leq . Let $H = j^{(n)}(H') \in \mathscr{H}(\Delta^{(n)})$. Then H is maximal with respect to the partial order \leq . Let H^* be the saturation of H with respect to \mathscr{F} and let $s(H', \varepsilon)$ be the holonomy-killing slit constructed in the First step. Note that $s(H', \varepsilon) \subset H$. The foliation $\mathscr{F}|H^* - s(H', \varepsilon)$ is without holonomy. Take a C^{∞} map $c \colon R \to H^* - s(H', \varepsilon)$ such that

- (1) c is transverse to \mathcal{F} ,
- (2) c(t+1) = c(t) for all $t \in R$,

(3) $c(t_1)$ and $c(t_2)$ are on the same leaf of $\mathscr{F} | H^* - s(H', \varepsilon)$ if and only if $t_1 - t_2 \in \mathbb{Z}$.

Now let $x \in H^* - s(H', \varepsilon)$. Choose a neighborhood U of x in $H^* - s(H', \varepsilon)$ and a number $\delta > 0$ such that $\varphi(U \times [-\delta, \delta])$ does not intersect some leaf of $\mathscr{F} | H^* - s(H', \varepsilon)$. Let $(y, t) \in U \times [-\delta, \delta]$ and let $u \in R$ satisfy that c(u) and y are on the same leaf of $\mathscr{F} | H^* - s(H', \varepsilon)$. Then there is unique $\tau \in (-1, 1)$ such that $\tau t \ge 0$ and $c(u + \tau)$ and $\varphi(y, t)$ are on the same leaf of $\mathscr{F} | H^* - s(H', \varepsilon)$. Let $\tau = f(y, t)$. Then we have a C^{∞} map $f: U \times [-\delta, \delta] \rightarrow (-1, 1)$. Let

$$X(x) = \left(rac{\partial f}{\partial t} \Big|_{(x,0)}
ight) \cdot X_0(x) \; .$$

It is easy to see that X(x) gives rise to the desired vector field X on $H - s(H', \varepsilon)$ satisfying the condition corresponding to (*).

Let $R = j^{(n)}(R') \in \mathscr{R}(\Delta^{(n)})$. Then R is maximal. Consider the case where R' is contained in a room-cycle ρ . By the argument looking for the holonomy-killing slit $s(\rho, \varepsilon)$, we can work in the same way as in the case of a hall and we have an adequate vector field on $\rho^* - s(\rho, \varepsilon)$. We take its restriction to $R - s(\rho, \varepsilon)$ as the desired vector field X there. We make the construction for all rooms contained in ρ at the same time.

Consider the case R' is contained in $K \in \mathscr{K}$ of the case (III) in Lemma 5.1. We describe K as in the argument looking for the holonomy-killing slit $s(K, \varepsilon)$ in the First step:

(1) $K = R_1 \cup \cdots \cup R_l$ where $R_i \in \mathscr{R}(\varDelta)$,

(2) $C(R_i) \cap F(R_{i+1}) \neq \emptyset$ for $i = 1, \dots, l-1$,

(3) $F(R_1) = F(S_1), C(R_1) = F(S_2)$ for some $S_1, S_2 \in \mathscr{S}(\Delta)$.

Let $K^+ = j^{(n)}(S_1) \cup j^{(n)}(R_1) \cup \cdots \cup j^{(n)}(R_l) \cup j^{(n)}(S_2)$. By the assumption of the induction

$$X \Big| \bigcup_{i=1}^{^{2}} \left(C(j^{_{(n)}}(S_{i})) \cup W(j^{_{(n)}}(S_{i}))
ight)$$

is already defined. We are going to construct X for $K^+ - s(K, \varepsilon)$.

Choose a line segment L in $K^+ - s(K, \varepsilon)$ such that L is transverse to \mathscr{F} and $\partial L \subset \bigcup_{i=1}^{2} C(j^{(n)}(S_i))$. We see that each leaf of $\mathscr{F}|K^+ - s(K, \varepsilon)$ intersecting $W(j^{(n)}(S_1)) \cup W(j^{(n)}(S_2))$ intersects L at a finite number of points. Let

$$L_i = \left\{ x \in L \left| egin{array}{cccc} ext{The leaf of } \mathscr{F} \mid K^+ - s(K, arepsilon) ext{ passing } x \ ext{intersects } W(j^{(n)}(S_i)) \end{array}
ight\}$$

i = 1, 2. Let $W_i = \varphi(\{w_i\} \times [0, \tau_i])$ be an orbit of $X_0 | W(j^{(n)}(S_i))$ and let $\hat{W}_1 = \varphi(\{w_1\} \times (-\delta, \tau_1))$ and $\hat{W}_2 = \varphi(\{w_2\} \times (0, \tau_2 + \delta))$ for a sufficiently small $\delta > 0$. For each $x \in L_i$ the leaf of $\mathscr{F}|K^+ - \mathfrak{s}(K, \varepsilon)$ passing x intersects \hat{W}_i at one point, say $\xi(x)$. For a sufficiently small neighborhood U_x of x in L_i there is a $C^{\infty} \max \eta_x$: $U_x \to \hat{W}_i$ such that

(1) $\eta_x(x) = \xi(x),$

(2) for each $y \in L_i$ the points y and $\eta_x(y)$ is on the same leaf of \mathcal{F} .

We denote by ψ the local 1-parameter group defined by $X | \hat{W}_1 \cup \hat{W}_2$. Then there is a $C^{\infty} \max \tau_x : U_x \to R$ such that $\tau_x(x) = 0$ and $\eta_x(y) = \psi(\xi(x), \tau_x(y))$. It is easy to construct a $C^{\infty} \max e : L \to R$ such that

$$e(y) - e(x) = \tau_x(y)$$

for each $x \in L$ and each $y \in U_x$.

Let $z \in K^+ - s(K, \varepsilon)$. For a sufficiently small neighborhood V_z of z and a number $\delta_z > 0$ the set $\varphi(V_z \times [-\delta_z, \delta_z])$ is contained in $K^+ - s(K, \varepsilon)$. There is a $C^{\infty} \operatorname{map} g: V_z \times [-\delta_z, \delta_z] \to R$ such that w and g(w) are on the same leaf of $\mathscr{F} | K^+ - s(K, \varepsilon)$ for each $w \in V_z$. We define a $C^{\infty} \operatorname{map} f: V_z \times [-\delta_z, \delta_z] \to R$ by the equation

$$f(w, t) = e(g(\varphi(w, t))) - e(g(w))$$

where $w \in V_z$, $t \in [-\delta_z, \delta_z]$. Let

$$X(\pmb{z}) = \left(rac{\partial f}{\partial t} \Big|_{_{(\pmb{z},0)}}
ight) \cdot X_{_0}(\pmb{z}) \; .$$

Then X(z) gives rise to an adequate vector field on $K^+ - s(K, \varepsilon)$.

Now consider an adjacent pair $(S_1, S_2) \in \mathscr{P}$. We can construct an adequate vector field on $(S_1 \cup S_2) - s(\{S_1, S_2\}, \varepsilon)$ in the similar way as above. Thus we have a vector field X on $M(\varepsilon)$ satisfying the condition (*).

THIRD STEP. The goal of this step is to decompose the Godbillon-Vey number of \mathcal{F} to a sum of integrals over neighborhoods of the holonomy-killing slits $s \in \Sigma(\varepsilon)$.

We take disjoint compact regular neighborhoods N(s) of the slits $s \in \Sigma(\varepsilon)$. Let $\hat{M}(\varepsilon) = M - \bigcup \{ \operatorname{Int} N(s) | s \in \Sigma(\varepsilon) \}$. There is a non-singular vector field Y on M such that

(1) Y is transverse to \mathcal{F} ,

(2) Y = X on a neighborhood of $\hat{M}(\varepsilon)$.

We denote by ω the C^{∞} 1-form on M defined by

 $(1) \quad T\mathscr{F} = \{v \in TM | \omega(v) = 0\},\$

(2) $\omega(Y)$ is the constant function with value 1.

We use ω for computing the Godbillon-Vey number of \mathcal{F} .

LEMMA 5.2. $d\omega = 0$ on a neighborhood of $\widehat{M}(\varepsilon)$.

PROOF. Let Z_1, Z_2 be vector fields on a neighborhood of $\hat{M}(\varepsilon)$ tangent to \mathcal{F} . Then in the formula

$$2d\omega(Y, Z_1) = Y\omega(Z_1) - Z_1\omega(Y) - \omega([Y, Z_1]),$$

 $\omega(Z_1) = 0$ and $\omega(Y)$ is constant. Furthermore $[Y, Z_1] = 0$ by the construction of Y. Therefore $d\omega(Y, Z_1) = 0$. In the formula

$$2d\omega(Z_{\scriptscriptstyle 1},\,Z_{\scriptscriptstyle 2})=Z_{\scriptscriptstyle 1}\omega(Z_{\scriptscriptstyle 2})-Z_{\scriptscriptstyle 2}\omega(Z_{\scriptscriptstyle 1})-\omega([Z_{\scriptscriptstyle 1},\,Z_{\scriptscriptstyle 2}])$$
 ,

 $\omega(Z_1) = 0$ and $\omega(Z_2) = 0$. Furthermore $[Z_1, Z_2]$ is tangent to \mathcal{F} by the Frobenius theorem and so $\omega([Z_1, Z_2]) = 0$. Therefore $d\omega(Z_1, Z_2) = 0$. This completes the proof of Lemma 5.2.

By using Lemma 5.2 we can construct a C^{∞} 1-form η such that $d\omega = \eta \wedge \omega$ on M and $\eta = 0$ on a neighborhood of $\hat{M}(\varepsilon)$. Then

$$gv(\mathscr{F})[M] = \int_{_M} \eta \wedge d\eta = \sum_{_{s \in \Sigma(\varepsilon)}} \int_{_{N(s)}} \eta \wedge d\eta \;.$$

THE LAST STEP. Now we compute $gv[s] = \int_{N(s)} \eta \wedge d\eta$. Consider the case $s = s(K, \varepsilon)$ where $K \in \mathscr{K}$ is a hall or a room-Let $P = S^1 \times S^1 - \operatorname{Int} D^2$ and I = [0, 1]. For each connected cvcle. component C of N(s) we have a diffeomorphism $h: P \times I \to C$. Furthermore for a neighborhood V of the boundary $\partial(P \times I)$ of $P \times I$ we may suppose that the leaves of $(h|V)^* \mathscr{F}$ are

$$(P \times \{t\}) \cap V$$

where $t \in I$. By attaching the foliation on $D^2 \times I$ whose leaves are $D^{2} \times \{t\}$ where $t \in I$ we have a foliation \mathscr{T}_{1} on $S^{1} \times S^{1} \times I$. Furthermore by identifying $S^1 \times S^1 \times \{0\}$ and $S^1 \times S^1 \times \{1\}$ we have a foliation \mathscr{F}_2 on $S^{\scriptscriptstyle 1} imes S^{\scriptscriptstyle 1} imes S^{\scriptscriptstyle 1}$. It is easy to construct a non-singular 1-form ω_1 on $S^{\scriptscriptstyle 1} imes$

 $S^{\scriptscriptstyle 1} imes I$ such that

- $(1) \quad T\mathscr{F}_1 = \{v \in T(D^2 \times I) \mid \omega_1(v) = 0\},\$
- $(2) \quad \omega_1 | P \times I = h^* \omega,$
- $(3) \quad d\omega_{\scriptscriptstyle 1} | D^2 imes I = 0.$

Furthermore it is easy to construct a 1-form η_1 on $S^1 \times S^1 \times I$ such that (1) $d\omega_1 = \eta_1 \wedge \omega_1$ on $S^1 \times S^1 \times I$

- (2) $\eta_1 | P \times I = h^* \eta$,
- (3) $\eta_1|D^2 imes I=0.$

We may suppose that ω_1 and η_1 define consistently 1-forms ω_2 and η_2 on $S^1 \times S^1 \times S^1$ respectively. Then

$$egin{aligned} &\int_{\mathcal{C}} \eta \wedge d\eta = \int_{P imes I} h^* \eta \wedge d(h^* \eta) = \int_{S^1 imes S^1 imes I} \eta_1 \wedge d\eta_1 \ &= \int_{S^1 imes S^1 imes S^1} \eta_2 \wedge d\eta_2 = gv(\mathscr{F}_2)[S^1 imes S^1 imes S^1] \end{aligned}$$

By Herman's theorem we see $gv(\mathcal{F}_2) = 0$. Therefore gv[s] = 0.

Consider the case $s = s(\{S_1, S_2\}, \varepsilon)$ where $(S_1, S_2) \in \mathscr{P}$. We represent S_i as

$$h^{(i)}(X(F^{(i)}, N^{(i)}, f^{(i)}: [0, \delta_1^{(i)}] \longrightarrow [0, \delta_2^{(i)}]))$$

as in Definition 1. Extend $f^{(i)}$ to a diffeomorphism

$$\overline{f}^{(i)}$$
: $[0, 3\delta_1^{(i)}] \longrightarrow [0, 3\delta_1^{(i)}]$

such that $f^{(i)}|[2\delta_1^{(i)}, 3\delta_1^{(i)}]$ is the identity map. By using $\overline{f}^{(i)}$ instead of $f^{(i)}$ we construct a manifold \overline{S}_i diffeomorphic to $F^{(i)} \times [0, 3\delta_1^{(i)}]$. We may consider S_i as a subset of \overline{S}_i . We extend the slit *s* naturally to $\overline{s} \subset \overline{S}_1 \cup \overline{S}_2$ such that $\mathscr{F}|\overline{S}_i - S_i - \overline{s}$ is without holonomy. Furthermore we extend N(s) to a compact regular neighborhood $N(\overline{s})$ of \overline{s} . See Figure 2.

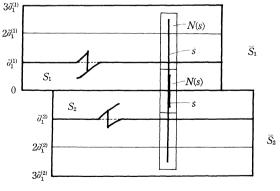


FIGURE 2

28

Then the vector field $Y|S_i$ constructed in the Third step extends to a vector field $Y|\overline{S}_i$ on \overline{S}_i which, on a neighborhood of $\overline{S}_i - N(\overline{s})$, preserves the foliation $\mathscr{F}^{(i)}$ on \overline{S}_i defined by $\overline{f}^{(i)}$. Furthermore $\omega|S_i$ extends to a non-singular 1-form $\omega^{(i)}$ on \overline{S}_i such that

(1) $T\mathscr{F}^{(i)} = \{v \in T\bar{S}_i | \omega^{(i)}(v) = 0\},\$

(2) $d\omega^{\scriptscriptstyle(i)}=0$ on a neighborhood of $ar{S}_i-N(ar{s}),$

and $\eta|S_i$ extends to a 1-form $\eta^{\scriptscriptstyle(i)}$ on $ar{S}_i$ such that

- (1) $d\omega^{\scriptscriptstyle (i)} = \eta^{\scriptscriptstyle (i)} \wedge \omega^{\scriptscriptstyle (i)}$ on \bar{S}_{i} ,
- (2) $\eta^{(i)} = 0$ on a neighborhood of $\overline{S}_i N(\overline{s})$.

Let $ar{\eta}$ be the 1-form on $ar{S}_1\cupar{S}_2$ such that $ar{\eta}\,|\,ar{S}_i=\eta^{\scriptscriptstyle(i)}.$ Then

$$gv(\mathscr{F}^{\scriptscriptstyle (1)}\cup\mathscr{F}^{\scriptscriptstyle (2)})[ar{S}_{\scriptscriptstyle 1}\cupar{S}_{\scriptscriptstyle 2}]=\int_{ar{s}_{\scriptscriptstyle 1}\cupar{s}_{\scriptscriptstyle 2}}ar{\eta}\wedge dar{\eta}=\int_{\scriptscriptstyle N(ar{s})}ar{\eta}\wedge dar{\eta}=0$$

since the argument in the case of a hall or a room-cycle is valid also for $N(\bar{s})$. Therefore

$$\int_{m{N}^{(s)}} \, \eta \wedge d\eta + \int_{ar{s_1}-s_1} \eta^{_{(1)}} \wedge d\eta^{_{(1)}} \, + \, \int_{ar{s_2}-s_2} \eta^{_{(2)}} \wedge d\eta^{_{(2)}} = 0 \; .$$

Now we compute $\int_{\bar{s}_i-s_i} \eta^{(i)} \wedge d\eta^{(i)}$. Let Q_i be the quotient space of $\mathbf{R} \times [0, 3\delta_1^{(i)}]$ by the equivalence relation \sim defined by

$$(r, t) \sim (r + 4, f^{(i)}(t))$$

for all $r \in R$ and all $t \in [0, 3\delta_1^{(i)}]$. Let $\mathscr{G}^{(i)}$ be the foliation on Q_i induced from one on $\mathbf{R} \times [0, 3\delta_1^{(i)}]$ whose leaves are $\mathbf{R} \times \{t\}$ where $t \in [0, 3\delta_1^{(i)}]$. It is easy to see that there is a non-singular 1-form $\omega_0^{(i)}$ on Q_i such that

 $(1) \quad T\mathscr{G}^{(i)} = \{v \in TQ_i | \omega_0^{(i)}(v) = 0\},\$

(2) $d\omega_0^{(i)} = 0$ on a neighborhood of

$$egin{aligned} &Z_i = [-3,\,-1] imes [0,\,3\delta_1^{(i)}] \cup [-1,\,1] imes \{3\delta_1^{(i)}\} \cup [-1,\,0] imes \{\delta_1^{(i)}\} \cup \ \{0\} imes [f^{(i)}(\delta_1^{(i)}),\,\delta_1^{(i)}] \cup [0,\,1] imes \{f^{(i)}(\delta_1^{(i)})\} \ . \end{aligned}$$

Furthermore there is a 1-form $\eta_0^{(i)}$ on Q_i such that

(1) $d \pmb{\omega}_{\scriptscriptstyle 0}^{\scriptscriptstyle (i)} = \eta_{\scriptscriptstyle 0}^{\scriptscriptstyle (i)} \wedge \pmb{\omega}_{\scriptscriptstyle 0}^{\scriptscriptstyle (i)}$ on Q_{i} ,

(2) $\eta_0^{(i)} = 0$ on a neighborhood of Z_i .

Then for a neighborhood B_i of $N^{(i)} \times [0, 3\delta_1^{(i)}]$ in \overline{S}_i there is a C^{∞} map $\alpha: B_i \to Q_i$ such that

(1) $\mathscr{F}|B_i = \alpha^* \mathscr{G}^{(i)},$

(2) $\alpha(W(S_i)) = \{0\} \times [\delta_2^{(i)}, \delta_1^{(i)}].$

Since $\mathscr{F}[\bar{S}_i - S_i - N \times [\delta_2^{(i)}, 3\delta_1^{(i)}]$ is without holonomy, there is a nonsingular 1-form $\omega_*^{(i)}$ on $\bar{S}_i - S_i$ such that

- (1) $\omega^{\scriptscriptstyle (i)}_{*} = lpha^* \omega^{\scriptscriptstyle (i)}_{\scriptscriptstyle 0}$ on $B_i \cap (\bar{S}_i S_i)$,
- (2) $T\mathscr{F}^{(i)} = \{v \in T\bar{S}_i \mid \omega^{(i)}_*(v) = 0\}$ on $\bar{S}_i S_i$,

(3) $d\omega_{*}^{(i)} = 0$ on $\bar{S}_i - S_i - B_i$. Let $\gamma_{*}^{(i)}$ be the 1-form on $\bar{S}_i - S_i$ such that (1) $\gamma_{*}^{(i)} = \alpha^* \gamma_0^{(i)}$ on $B_i \cap (\bar{S}_i - S_i)$, (2) $\gamma_{*}^{(i)} = 0$ on $\bar{S}_i - S_i - B_i$. Then $d\omega_{*}^{(i)} = \gamma_{*}^{(i)} \wedge \omega_{*}^{(i)}$ on $\bar{S}_i - S_i$.

LEMMA 5.3. For i = 1, 2,

$$\int_{ar{s}_{i}-s_{i}}\eta^{\scriptscriptstyle(i)}\wedge d\eta^{\scriptscriptstyle(i)}=\int_{ar{s}_{i}-s_{i}}\eta^{\scriptscriptstyle(i)}_{\star}\wedge d\eta^{\scriptscriptstyle(i)}_{\star}\;.$$

PROOF. Since $T\mathscr{F}^{(i)} | \overline{S}_i - S_i = \{v \in T(\overline{S}_i - S_i) | \omega^{(i)}(v) = 0\} = \{v \in T(\overline{S}_i - S_i) | \omega^{(i)}(v) = 0\}$, there is a positive function g of $\overline{S}_i - S_i$ with $\omega^{(i)}_* = g\omega^{(i)}$. Since

$$egin{aligned} d oldsymbol{\omega}^{\scriptscriptstyle(i)}_{st} &= dg \wedge oldsymbol{\omega}^{\scriptscriptstyle(i)} + g d oldsymbol{\omega}^{\scriptscriptstyle(i)} &= dg \wedge oldsymbol{\omega}^{\scriptscriptstyle(i)} + g \eta^{\scriptscriptstyle(i)} \wedge oldsymbol{\omega}^{\scriptscriptstyle(i)} \ &= (d \log g + \eta^{\scriptscriptstyle(i)}) \wedge g oldsymbol{\omega}^{\scriptscriptstyle(i)}$$
 ,

we have $\eta^{\scriptscriptstyle (i)}_{*} = \eta^{\scriptscriptstyle (i)} + d\log g + h\omega^{\scriptscriptstyle (i)}$ for some function h. Then

$$egin{aligned} &\eta_{*}\wedge d\eta_{*}^{(i)} = (\eta^{(i)}+d\log g+h\omega^{(i)})\wedge (d\eta^{(i)}+dh\wedge\omega^{(i)}+h\eta^{(i)}\wedge\omega^{(i)}) \ &= \eta^{(i)}\wedge d\eta^{(i)}+\eta^{(i)}\wedge dh\wedge\omega^{(i)}+d\log g\wedge d\eta^{(i)} \ &+ d\log g\wedge dh\wedge\omega^{(i)}+d\log g\wedge h\eta^{(i)}\wedge\omega^{(i)} \ &+ h\omega^{(i)}\wedge d\eta^{(i)} \ &= \eta^{(i)}\wedge d\eta^{(i)}-d(hd\omega^{(i)})+d(\log g\,d\eta^{(i)}) \ &+ d(\log g\,d(h\omega^{(i)}))+h\omega^{(i)}\wedge d\eta^{(i)} \ . \end{aligned}$$

Since $0 = dd\omega^{(i)} = d(\eta^{(i)} \wedge \omega^{(i)}) = d\eta^{(i)} \wedge \omega^{(i)} - \eta^{(i)} \wedge \eta^{(i)} \wedge \omega^{(i)}$, we have $d\eta^{(i)} \wedge \omega^{(i)} = 0$. Therefore

$$\eta_*^{_{(i)}} \wedge d\eta_*^{_{(i)}} = \eta^{_{(i)}} \wedge d\eta^{_{(i)}} + d(-hd \omega^{_{(i)}} + \log g \, d\eta^{_{(i)}} + \log g \, d(h \omega^{_{(i)}})) \; .$$

Since $\eta_*^{(i)} = \eta^{(i)} = 0$ on a neighborhood V of the boundary of \bar{S}_i – Int S_i , we have $d \log g + h \omega^{(i)} = 0$ on V. Then $d(h \omega^{(i)}) = -dd \log g = 0$ on V. Therefore $-hd\omega^{(i)} + \log g \, d\eta^{(i)} + \log g \, d(h\omega^{(i)}) = 0$ on V. This implies that $[\eta_*^{(i)} \wedge d\eta_*^{(i)}] = [\eta^{(i)} \wedge d\eta^{(i)}]$ in $H^s_{\text{comp}}(\text{Int}(\bar{S}_i - S_i); \mathbf{R})$. Hence the integrals coincide.

Since Q_i is a 2-manifold, we see that the 3-form $\eta_0^{(i)} \wedge d\eta_0^{(i)}$ vanishes. Therefore $\eta_*^{(i)} \wedge d\eta_*^{(i)} = 0$. So we see

$$gv[s] = \int_{N(s)} \eta \wedge d\eta = -\sum_{i=1}^{2} \int_{\bar{S}_{i}-S_{i}} \eta^{(i)} \wedge d\eta^{(i)} = 0 \; .$$

Now we consider the case $s = s(K, \varepsilon)$ where K is the union of a sequence of rooms sandwiched by two staircases. In this case the

30

argument for adjacent pairs of staircases is vaild and we see gv[s] = 0.

Therefore $gv(\mathscr{F})[M] = \sum_{s \in \Sigma(\varepsilon)} gv[s] = 0$ and so $gv(\mathscr{F}) = 0$, which completes the proof of Theorem 3.

6. The proof of Theorem 4 and Theorem 5. Let M be a closed orientable C^{∞} manifold of dimension > 3. Let \mathscr{F} be a foliation of M and Δ an SRH-decomposition satisfying the condition of Theorem 4 or Theorem 5.

Let \mathscr{K} be the set of connected components of $M - \bigcup \{ \operatorname{Int} S \mid S \in \mathscr{S}(\Delta) \}$ and \mathscr{P} the set of adjacent pairs of the staircases in Δ . Let

 $\mathscr{K} = \{K \in \mathscr{K} | K \text{ in the cases (I), (II) of Lemma 5.1}\} \cup \{K_+ | K \in \mathscr{K} \text{ in the case (III) of Lemma 5.1}\}$

where K_+ be the union of K and the sandwiching staircases and let

 $\widetilde{\mathscr{P}}=\{S_1\cup S_2|(S_1,S_2)\in \mathscr{P}\}$.

We can number the elements of the union $\mathscr U$ of $\widetilde{\mathscr K}\cup\widetilde{\mathscr P}$ so that

 $(1) \quad \mathscr{U} = \{K_1, \cdots, K_k\},\$

(2) if $A_j \in \Delta$ is contained in $K_{i(j)}$ for j = 1, 2, and $A_1 \leq A_2$ then $i(1) \leq i(2)$.

We are going to construct a vector field X on M transverse to \mathscr{F} , a non-singular 1-form ω on M with $T\mathscr{F} = \{v \in TM | \omega(v) = 0\}$, a 1-form η on M with $d\omega = \eta \wedge \omega$, and a 2-form ξ on M with $d\xi = \eta \wedge d\eta$, which implies that $gv(\mathscr{F}) = [\eta \wedge d\eta] = 0$.

By downward induction we construct non-negative integer valued functions α_i of $\mathscr{S}(\Delta)$ such that

$$lpha_i(S) = lpha_{i+1}(S)$$
 if $S \subset K_i \in \mathscr{U}$ and $j > i$,

and we construct X, ω, η, ξ on $j^{(\alpha_i)}(K_i)$ in each step where $j^{(\alpha_i)}(K_i) = \bigcup_{\nu=1}^l j^{(\alpha_i)}(A_\nu)$ for $K_i = A_1 \cup \cdots \cup A_l \in \mathcal{U}, A_\nu \in \Delta$.

Suppose that all are defined for $i \ge n + 1$.

(I). Let $K_n \in \mathscr{U}$ be a hall H. Note that we can construct X, ω, η , ξ without restriction since H is maximal in (\varDelta, \leq) . We describe H as in Definition 3. Then we have $F, f: D(f) \to R(f), t_x > 0$ for each $x \in D(f)$ such that

$$H = \{\varphi(x, t) \mid x \in D(f), 0 \leq t \leq t_x\}.$$

In the case where H is trivial, we can take X on $j^{(\alpha_{n+1})}(H)$ such that the local 1-parameter group defined by X preserves $\mathscr{F}|j^{(\alpha_{n+1})}(H)$. Then we can take ω on $j^{(\alpha_{n+1})}(H)$ with $d\omega = 0$. Let $\alpha_n = \alpha_{n+1}$ and $\eta = 0, \xi = 0$ on $j^{(\alpha_n)}(H)$.

Consider the case where H is non-trivial. Let H^* be the saturation of H with respect to \mathscr{F} and F^* the leaf of \mathscr{F} containing F. Recall that H^* is a fiber bundle over S^1 with fiber F^* and $\mathscr{F} | H^* - H$ is without holonomy. We can construct a non-singular vector field X on H^* such that

(1) each orbit of X is contained in an orbit of X_0 ,

(2) in the case of Theorem 4, the local 1-parameter group defined by $X|(H^* - H) \cup T$ preserves \mathscr{F} where T is a tubular neighborhood of a leaf F_1 of $\mathscr{F} | H$ with trivial holonomy, or

(2') in the case of Theorem 5, the local 1-parameter group defined by $X|H^* - H$ preserves \mathcal{F} .

We denote by ω the non-singular 1-form on H^* such that

 $(1) \quad T\mathscr{F} \mid H^* = \{v \in TH^* \mid \omega(v) = 0\},\$

 $(2) \quad \omega(X) \equiv 1.$

Then we see $d\omega = 0$ on $(H^* - H) \cup T$ or on $H^* - H$ respectively.

Consider the case of Theorem 4. We consider $\eta \wedge d\eta$ as a 3-form on $H^* - F_1^*$ with compact support. Since $H^* - F_1^*$ is diffeomorphic to $F_1^* \times \mathbf{R}$ and $H_{\text{comp}}^2(F_1^*; \mathbf{R}) = 0$, we see

$$H^{\scriptscriptstyle 3}_{\operatorname{comp}}(H^*-F^*_{\scriptscriptstyle 1};{\pmb R})\cong {\displaystyle\sum\limits_{p+q=3}} H^p_{\operatorname{comp}}(F^*_{\scriptscriptstyle 1};{\pmb R})\otimes H^q_{\operatorname{comp}}({\pmb R};{\pmb R})\cong {\pmb 0}\;.$$

Therefore there is a 2-form ξ on $H^* - F_1^*$ with compact support satisfying $d\xi = \eta \wedge d\eta$. We can consider ξ as a 2-form on H^* .

Consider the case of Theorem 5. In the Wang exact sequence

$$\cdots \longrightarrow H^2_{\text{comp}}(F_1^*; \mathbf{R}) \longrightarrow H^3_{\text{comp}}(H^*; \mathbf{R}) \longrightarrow H^3_{\text{comp}}(F_1^*; \mathbf{R}) \xrightarrow{\mathbf{a}_* - \text{id}_*} H^3_{\text{comp}}(F_1^*; \mathbf{R}) \xrightarrow{\mathbf{a}_* - \text{id}_*} \cdots$$

where $a: F_1^* \to F_1^*$ is the characteristic diffeomorphism of the bundle, the groups $H^2_{\text{comp}}(F_1^*; \mathbf{R})$ and $H^3_{\text{comp}}(F_1^*; \mathbf{R})$ are trivial by the assumption. Therefore $H^3_{\text{comp}}(H^*; \mathbf{R})$ is trivial and there is a 2-form ξ on H^* with compact support satisfying $d\xi = \eta \wedge d\eta$.

Let $\mathscr{S} = \{S \in \mathscr{S}(\varDelta^{(\alpha_n+1)}) | S \subset H^*\}$. Note that the support of ξ intersects $F^*(S)$ for no $S \in \mathscr{S}$. By Proposition 7 there is a function $\alpha: \mathscr{S}(\varDelta^{(\alpha_n+1)}) \to \{0, 1, 2, \cdots\}$ such that

(1) supp $\xi \cap (\bigcup \{j^{(\alpha)}(S) | S \in \mathscr{S}(\Delta^{(\alpha_{n+1})})\}) = \emptyset$,

(2) $\alpha(S) = 0$ for $S \in \mathscr{S}(\Delta^{(\alpha_{n+1})}) - \mathscr{S}$.

Let $\alpha_n = \alpha \circ j^{(\alpha_{n+1})} + \alpha_{n+1}$. We fix X, ω , η , ξ on $j^{(\alpha_n)}(H)$.

(II). Let K_n be a room-cycle ρ . We can treat ρ in the same way as halls and we have α_n and X, ω , η , ξ on $j^{(\alpha_n)}(K_n)$.

(III) Consider the case where $K_n = K_+ = K \cup S_1 \cup S_2$, that is, the

32

union of rooms and the sandwiching staircases S_1 , S_2 . Let K_+^* be the saturation of $j^{(\alpha_{n+1})}(K_+)$ with respect to

$$\mathscr{F}|j^{(lpha_{n+1})}(K_+) \cup (igcup \{j^{(lpha_{n+1})}(S) \,|\, S \in \mathscr{S}(\varDelta),\, S < S_1 \,\,\, \mathrm{or} \,\,\,\,\, S < S_2\})$$
 .

Let U be a neighborhood of the boundary $\partial(j^{(\alpha_{n+1})}(K_+))$ in K_+^* . We take U sufficiently small so that $\mathscr{F}|(K_+^* - j^{(\alpha_{n+1})}(K_+)) \cup U$ is without holonomy. As in §5 we have a vector field X on K_+^* such that

(1) X coincides with X already defined in a neighborhood of $\bigcup_{i=1}^{2} (C(j^{(\alpha_{n+1})}(S_{i})) \cup W(j^{(\alpha_{n+1})}(S_{i}))).$

(2) each orbit of X is contained in an orbit of φ .

(3) the local 1-parameter group defined by $X|(K_+^* - j^{(\alpha_{n+1})}(K_+)) \cup U$ preserves \mathscr{F} .

Let ω be the 1-form on K_{+}^{*} defined by

(1) $\mathscr{F} | K_{+}^{*} = \{ v \in TK_{+}^{*} | \omega(v) = 0 \},$

$$(2) \quad \omega(X) \equiv 1.$$

Then $d\omega = 0$ on $(K_+^* - j^{(\alpha_{n+1})}(K_+)) \cup U$. There is a 1-form η on K_+^* such that

(1) $d\omega = \eta \wedge \omega$,

(2) $\eta = 0$ on $(K_{+}^{*} - j^{(\alpha_{n+1})}(K_{+})) \cup U$.

We consider $\eta \wedge d\eta$ as a 3-form on Int K_+^* with compact support. Since Int K_+^* is diffeomorphic to $F^*(S_1) \times R$ and $H^2_{\text{comp}}(F^*(S_1); R)$ is trivial by the assumption, we see

$$H^{\scriptscriptstyle 3}_{\operatorname{comp}}(K^*_+; {m R})\cong \sum\limits_{p+q=3} H^p_{\operatorname{comp}}(F^{\,*}(S_1); {m R})\otimes H^q_{\operatorname{comp}}({m R}; {m R})\cong 0$$
 .

Therefore there is a 2-form ξ on Int K_{+}^{*} with compact support satisfying $d\xi = \eta \wedge d\eta$. We can consider ξ as a 2-form on K_{+}^{*} . By Proposition 7 there is a function $\alpha: \mathscr{S}(\Delta^{(\alpha_{n+1})}) \to \{0, 1, 2, \cdots\}$ such that

(1) $\operatorname{supp} \xi \cap (\bigcup \{j^{(\alpha)}(S) | S \in \mathscr{S}(\mathcal{A}^{(\alpha_{n+1})})\}) = \emptyset,$

 $\begin{array}{ll} (2) & \alpha(S) = 0 \ \text{for} \ S \notin \{S' \in \mathscr{S}(\varDelta^{(\alpha_{n+1})}) \, | \, S' < j^{(\alpha_{n+1})}(S_1) \ \text{or} \ S' < j^{(\alpha_{n+1})}(S_2) \}. \\ \text{Let} \ \alpha_n = \alpha \circ j^{(\alpha_{n+1})} + \alpha_{n+1}. & \text{We fix} \ X, \ \omega, \eta, \xi \ \text{on} \ j^{(\alpha_{n+1})}(K_+). \end{array}$

(IV). Now consider the case where K_n is the union of an adjacent pair of staircases S_1 , S_2 . Let K_n^* be the saturation of $j^{(\alpha_{n+1})}(S_1) \cup j^{(\alpha_{n+1})}(S_2)$ with respect to

$$\mathscr{F} | \mathsf{U} \{ S \in \mathscr{S}(\varDelta^{(lpha_{n+1})}) | S \leq j^{(lpha_{n+1})}(S_1) \quad ext{or} \quad S \leq j^{(lpha_{n+1})}(S_2) \} \;.$$

By the similar argument as in the case (III) we have X, ω, η, ξ on K_n^* and $\alpha: \mathscr{S}(\mathcal{A}^{(\alpha_{n+1})}) \to \{0, 1, 2, \cdots\}$. Let $\alpha_n = \alpha \circ j^{(\alpha_{n+1})} + \alpha_{n+1}$. We fix X, ω , η, ξ on $j^{(\alpha_{n+1})}(K_n)$.

By (I)-(IV) we have X, ω, η, ξ on M, which completes the proof of Theorem 4 and Theorem 5.

T. NISHIMORI

References

- C. GODBILLON AND J. VEY, Un invariant des feuilletages de codimension 1, C. R. Acad. Sci. Paris 273 (1971), 92-95.
- [2] A. HAEFLIGER, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa 16 (1964), 367-397.
- [3] M. HERMAN, The Godbillon-Vey invariant of foliations by planes of T³, Geometry and Topology, Rio de Janeiro 1976, Lecture Notes in Math. 597, Springer-Verlag, Berlin, 1977.
- [4] H. LAWSON, Foliations, Bull. Amer. Math. Soc. 80 (1974), 369-418.
- [5] J. MILNOR, Characteristic classes, Ann. of Math. Studies No. 76, Princeton, 1974.
- [6] S. MORITA AND T. TSUBOI, The Godbillon-Vey class of codimension-one foliations without holonomy, to appear.
- [7] H. NAKATSUKA, On representations of homology classes, Proc. Japan Acad. 48 (1972), 360-364.
- [8] T. NISHIMORI, Isolated ends of open leaves of codimension-one foliations, Quart. J. Math. Oxford 26 (1975), 159-167.
- [9] T. NISHIMORI, Compact leaves with abelian holonomy, Tôhoku Math. J. 27 (1975), 259-272.
- [10] T. NISHIMORI, Behaviour of leaves of codimension-one foliations, Tôhoku Math. J. 29 (1977), 255-273.
- [11] T. NISHIMORI, Ends of leaves of codimension-one foliations, Tôhoku Math. J. 31 (1979), 1-22.
- [12] G. REEB, Sur certain propriétés topologiques des variétés feuilletées, Actualité Sci. Indust. 1183, Hermann, Paris, 1952.
- [13] R. THOM, Quelques propriétés globales des variétés différentiables, Comm. Math. Helv. 28 (1954), 17-86.
- [14] W. THURSTON, Non-cobordant foliations of S³, Bull. Amer. Math. Soc. 78 (1972), 511-514.

Mathematical Institute Tôhoku University Sendai, 980 Japan