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1. Introduction. In a recent paper by Busenberg and Cooke [1],
the scalar differential-delay equation

(1.1) x\t) = p(t)x(t - h)(l - x(t)) - exit) , t ^ 0 ,

was studied, where c and h are positive constants and p(t) is a positive
continuous periodic function of minimal period a) > 0. Equation (1.1) is
modelled on the proportion of infectious persons with a communicable
disease carried by a vector. The motivation for studying this model is
to explain periodic outbreaks of certain infectious diseases. See also [3],
[4], or [5] for discussions of similar models. In [1], it was shown that
a positive periodic solution exists if c is less than a certain threshold
value ch, and that no positive periodic solution exists if c is greater than
or equal to ch.

In this paper, using the same ideas as in [1], we obtain similar
results for a system more general than (1.1) (see Section 3). In Section
4, we shall show the existence of periodic solutions of (1.1) as a corollary
to our results, and moreover, we shall discuss further applications of the
results obtained in Section 3. Particularly, Equation (4.3) has some con-
nection with the scalar differential-delay equation x'(t) = —since(ί — h)f

studied by the author in [6].
We thank the referee for pointing out that Busenberg and Cooke

[2] also generalized their results to a system more general than (1.1).

2. Notations and assumptions. Throughout this paper, we shall
employ the same notations as in [1], but we repeat those for convenience.
Let I and R denote the intervals 0 ^ t < oo, and — co < t < co f respec-
tively. For any continuous periodic function u(t) defined on /, the symbols
u and ΰ will denote min ί e 7 u(t) and mzxteIu(t), respectively. For a given
h > 09

r^h denotes the space of continuous functions mapping the interval
[ — h, 0] into R. The norm we use is the supremum norm in all cases.
<&\ will denote the set of φ 6 rtfh such that φ(θ) ̂  0 for θ e [-h, 0]. For
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any continuous function x(u) defined on — h ^ u < A, A > 0 and any-
fixed t, 0 <^t < A, the symbol xt will denote the restriction of x(u) to
the interval [t — h, t\ i.e., xt is an element of ^ h defined by xt(θ) =
x(t + θ), -h^θ^ 0.

Consider a scalar nonlinear functional differential equation

(2.1) x\t) = p(t)f(t, xt) - c{t)x{t\ ί ^ 0 ,

where p(t) and c(t) are continuous periodic functions of period ω > 0,
and moreover, p(t) is positive. We define the sets C£, if, and ifr by

C£ = {x: [ — h, oo) —> iϋ, a (t) is continuous and periodic of period ω > 0} ,

If = {aeC£: a(ί) ^ 0 for all te[-h, -)} ,

and

ifr - {z 6 C£: 0 ^ »(i) ^ r for all t e [-h, co)} ,

respectively. We make the following assumptions.
(H1) f(t, φ) is a scalar functional which is defined on I x ^ \ is

continuous in (t, φ), satisfies f(t, φ) ̂  0 for φ^^\ and f(t + ω, φ) =
f(t, φ) for all t 6 /, ^ 6 i f \

(H2) For ΛΓ(r) = sup{/( ί , φ): t e l , 0 ^ φ(θ) £ r for θe[-h,0]}9

\imr^ M(r)/r = 0.

(H 3) There exists a continuous functional A(t, φ), which is linear in
φ, and the following conditions hold:

( i ) a I x(t)dt ^ I Λ(t, xt)dt ^b\ x(t)dt f o r xeK, w h e r e α, 6 a r e
Jo Jo Jo

positive constants.
(ii) {A(t, φ) - f(t, φ)}/\φ\ ->0 uniformly in t as φe^l tends to 0.
(H 4) A(t, φ) > f(t, φ) for all t e I, φe <&\ such that φ(θ) > 0 for

0e[-Λ,O].
Busenberg and Cooke imposed certain conditions on their equation,

and considered the existence of periodic solutions x(t) in 0 < x < 1, since
they considered in [2] an equation which is modelled on the proportion of
infectious persons. But our equation (2.1) does not necessarily be modelled
on the proportion of infectious persons. Thus the above conditions are
different from those in [2]. We allow c(t) with c < 0 and consider the
existence of periodic solutions x(t) which is not necessarily in 0 < x < 1.

3. Existence of positive periodic solutions. In this section we shall
discuss the existence of positive periodic solutions of (2.1) by modifying
the manner in [1]. For xeC%, define the nonlinear operator G by

(Gx)(t) = x(t) + / ( ί , xt), if t ^ 0 ,

(GaO(ί) - (Gx)(kω + t) , if -h ^ θ < 0 ,
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and define the linear operator L by

(Lx)(t) = e-r{t){(e>M - I)"1 (V8)p(s)α;(s)ds + ίV(s)p(s)^(s)ds} , if t ^ 0 ,

(Lx)(t) = (Lx)(kω + t) , if -h ^ t < 0 ,

where y(t) = I (c(s) + p(s))ds with the assumption y(ώ) > 0 and k is the
Jo

smallest positive integer such that kω > h. Since G takes C£ into C£,
we can define the operator N on C£ by (Nx)(t) = ((LoG)x)(t) for £ 6 [—ft, oo).

By the definition of AT and Assumption (H 1), if cc(ί) ^ 0 for all t e
[ — h, co), then «(t) + /(£, a;t) ^ 0 for all t ^ 0, and consequently (Nx)(t) ;>
0 for all ί ^ 0. Moreover, the following lemmas hold.

LEMMA 3.1. Let f(t, φ) satisfy Assumptions (H 1) and (H 2). Then
the operator N has the following properties:

( i ) For any c = c(t) satisfying y((ύ) > 0 and the following condition

(3.1) (e^>_ i)-i Γ c( sy
( β )ds + Γc(βy ( f )ώ > 0 , for all ί ^ 0 ,

J J

βxisί r = r{c) and a — a(c) e (0, 1) such that N takes Kr into Kar.
(ii) x{t) is a periodic solution (of period ώ) of (2.1) such that 0 <̂

x(t) ^ r* /or ί 6 [ — h, oo) i/ α^d (mZs/ i/ iVb? = a? and x e iΓr*.

PROOF. First we show that xeCt implies LxeCl and consequently
Nx e C£. We only need to prove that (Lx)(t) is continuous and periodic
of period ω for t > 0. Clearly, (Lx)(t) is continuous on ί > 0 by the
definition of (Lx)(t) on ί ^ 0. Since we have y(t) — y(t + α>) = — τ(ω) by
the periodicity of c(£) and p(t), we obtain

ω) = e-r(*+

( ω ) - I ) " 1 \ωer{8)p(s)x(s)ds

= (Lx)(jt)

for ί > 0, and consequently LxeC*.
Secondly, we show that for any c = c(ί) satisfying y(ω) > 0 and (3.1),

there exist r = r(c) > 0 and α = a(c) 6 (0, 1) such that N takes ίΓr into
Kar. Since we have

0 ^ a;(8) + /(s, x.) ^ r + M(r) for all s ^ 0 ,

for xeKr, it follows that
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0 ^ (Nx)(t) ^ (r + M{r))e-'[t)\{er'ω) - I ) - 1

^ (r + Λf(r))e-'(ί){(e'(M) - l ) " 1 ^ 8 5 ] : ^ +

- (eriω) - I ) - 1

^ (r + Af(r))Γl - e-rWker{ω) - I ) " 1

for ί ^ 0. If we define d{t) by

d(t) = <r'( t) ta(ω> - I ) " 1 ίβc(β)β r(β)ώ + Γc(sy ( 8 )ds[ , t ^ 0

then c£(£) is positive by the assumption and is continuous. Moreover we
easily see that d(t + ώ) = d(ί) for £ ̂  0 by an argument similar to the
one we used above to show that x e Cl implies Lx e C£. Thus, we have
m(c) = mint2ίOd(£) > 0, while m(c) ^ d(0) < 1. Now let a = α(c) = (2 —
ra(c))/2 and r = r(c) be numbers such that M(r)/r ^ m(c)/{2(l — m(c))}.
Then we have 0 < a < 1, and 0 ^ (i\fc)(0 ^ (1 + M(r)/r)(l - m(c))r ^ αr .
This completes the proof of (i).

There is no difficulty in proving the part (ii). Actually, the same
explanations as in the proof of [1, Lemma 2 b)] are enough. The following
lemma corresponds to [1, Lemma 4].

LEMMA 3.2. Let f(t,φ) satisfy Assumptions (HI), (H2), and (H3),
and let N: C£ —> Ch

ω be as in Lemma 3.1. Then N is completely continuous
and has a Frechet derivative at 0 with respect to K given by

r{a) - I ) " 1 (V(8);p(s){tf(s) + Λ(s, x8)}ds

^p(s){x(s) + Λ(8, a?.)

and

(N'(0)x)(t) = (N'(0)x)(kω + ί) , kω > h , /or ί e [-Λ, 0) .

TAβ operator N'(0) on Gh

ω is compact.

Now we need to study some of the spectral properties of the operator
JNΓ(O). Throughout this paper, the relation y ^ x for x, y eCt will mean
y — xeK. Also, # > x will mean # — x is in the interior of K.

LEMMA 3.3. Let f(t, φ) and N\ϋ) be as in Lemma 3.2. Then, there
exists a cheC* such that ifc = ch, there exists xeK with N'(0)x = x Φ
0. Also, if c < chf then N'(Q)x = x Φ 0 implies x & K; moreover, there
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exist yeK\{0} and a > 1 such that N'(0)y = ay. On the other hand,
if c > ch, the spectral radius of N'(Q) is less than one. Finally, such a
ch satisfies [ap, bp] Π [ch, ch]Φ 0 .

The proof of the lemma is similar to that of [1, Lemma 5]. If JV/(O)
denotes the operator of Lemma 3.2 for a particular c, and if p(N'e(0))
denotes the spectral radius of the operator ΛΓ'(O), it can be shown that
p(N'c(Q)) is a continuous decreasing function of c.

The verification of [ap, bp] n [ch, ch] Φ 0 is as follows. Let x e K \{0}

satisfy N'(0)x = Xx, λ > 0. Then x(t) is periodic and satisfies

(3.2) x'{t) = {p(ί)(l/λ - 1) - c(t)}x(t) + (l/X)p(t)Λ(t, xt) .

If we put

I = [[{p(t)(llX - 1) - c{t))x{t) + (l/\)p(jb)Λ(t, xt)]dt ,
Jo

then we obtain Ic = 0 by integrating (3.2) from 0 to ft). If X < 1, then
we have

0 = Ic ^ p{(l + a)/X - 1} [ωχ(t)dt - \ωc(t)x(t)dt .
- Jo Jo

For c(ί) = ap, this yields the following contradiction

0 ^ p{(l + α)/λ - (1 + α)} Γa?(ί)dί > 0 .
~ Jo

On the other hand, if X > 1, then we obtain

0 = Ic ^ {(bp)/X) [°x(t)dt - [°c(t)x(t)dt ,
Jo Jo

which is impossible if c(t) = bp. Therefore, we have p(Nάp(0)) ^ 1 ^
p(Nίp(0)). Hence, if ch = ch(t) exists such that N!h(0)x = x, xeK\{0},
then we have [ap, bp] (Ί [ch, ch]Φ 0 .

REMARK. It is easily seen from the above fact that for any deCt
with d > 0, we can choose ch = rd for some positive number r.

Combining the above results, we have the following Theorem 3.1
on the existence of a positive periodic solution of (2.1), which can be
proved as in the case of [1, Lemma 6] by means of the following theorem
in Schmitt [7, Corollary 4.10].

THEOREM S. Let E be a real Banach space, let K be a cone in E,
and let D be an open, bounded, nonempty neighborhood of zero in E.
Let D be the closure of D and let N: K Γ) D —> Kbe a completely continuous
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operator such that N(0) = 0 and that N has a Frechet derivative JV'(O)
with respect to K. Assume the following are satisfied:

( i ) All solutions xeK of x = xNx, 0 < λ < 1, satisfy x & 3D.
(ii) There exist y e K, \\y\\ = 1, and a > 1 swcft that N'(0)y = αί/;

αwώ N'(Q)x = x for x Φ 0 implies x ί K.
Then N has a nontrivial fixed point in K Π D.

THEOREM 3.1. Let f(t, φ) satisfy Assumptions (HI), (H2), and (H3),
and let c = c{t) satisfy 7(oo) > 0 and (3.1). Then there exists a cheC*
such that [ap, bp] Π [ch, ch] Φ 0 and the following hold.

( i ) If c < ch, there exists a positive periodic solution of (2.1); and
moreoverj if the solutions of (2.1) are ultimately bounded for bound r0,
then the positive periodic solution x(t) satisfies 0 < x(t) < r0 for all t ^ —h.

(ii) // f(t,φ) satisfies Assumption (H4) also, and if c ^ ch, then
(2.1) has no positive periodic solutions.

In the above, we say that the solutions of (2.1) are ultimately bounded
for bound r0 > 0, if there exists T > 0 such that for every solution x(t)
of Equation (2.1) with the initial conditions (t0, φ), \x(t)\ < r0 for all t ^
t0 + T, where r0 is independent of the particular solution while T may
depend on each solution.

REMARK. Since it is not difficult to find a ceCt which satisfies the
conditions c < 0, 7(0)) > 0, (3.1), and c < ch, there can exist a positive
periodic solution of (2.1) even if c < 0.

4. Applications. Consider the following differential-delay equation,

(4.1) x\t) = p(t)F(x(t), x(t - h)) - cx{t) , t ^ 0 ,

where c, h and p(t) are the same as in (1.1) and where F(x, y) is a function
on R x R defined by

'(1 - x)y , 0 ^ x ^ 1 , O ^ i / ^ 1 ,

min(l, y) , x < 0 , 2/ > 0 ,

0 , otherwise .

Then /(ί, ^) = F(φ(0), φ(-h)) satisfies (HI). Also, (H2) holds, since M(r)
in (H2) satisfies M(r) ^ 1. Moreover (H3) and (H4) are satisfied with
Λ(t, φ) = φ(—h) and a = 6 = 1. Therefore, by Theorem 3.1, there exist
a constant ch e [p, p] such that if c ^ cΛ, (4.1) has no positive periodic
solution and that if 0 < c < ch, (4.1) has a nontrivial positive periodic
solution x(t). Moreover, since we have p(t)F(x, y) — ex < 0 for x ^ 1,
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y e R, and p{t)F(x, y) — ex > 0 for x < 0, y e R, the solutions of (4.1)
are ultimately bounded for bound 1, and consequently 0 < x(t) < 1 for
all t ^ — h. Thus x(t) satisfies the differential-delay equation (1.1), and
hence, we have the following results as a corollary to Theorem 3.1.

COROLLARY 4.1. There exists a constant ch e [p, p] such that the
following hold.

( i ) If c ^ ch, (1.1) has no positive periodic solution in 0 < x < 1.
(ii) // 0 < c < ch, there exists a nontrivial positive periodic solution

of (1.1) in 0 < x < 1.

REMARK. Equation (1.1) is the one studied by Busenberg and Cooke
in [1]. In Corollary 4.1, (i) and (ii) correspond to Theorem 1 a) and b)
in [1], respectively. But Theorem 1 b) contains the uniqueness of positive
periodic solutions of (1.1) with a fixed c. Moreover, Theorem 1 c) asserts
that the map c\-+ xc is continuous and monotone, where xc is the positive
periodic solution. Unfortunately, we do not know whether these results
continue to hold for (2.1).

Next, let F(t, x, y) be a function on / x R x R defined by

ia{t)x + b(t)y - xy , t e l , 0 <> x <L b(t) , 0 ^ y ^ α(ί) ,

\a(t)x , t e l , O^x^b(t)f y < 0 ,

F(t, x, y) = - b{t)y , t e l , x<0 , O^y^ a(t) ,

0 , t e l , x < 0 , y < 0 ,

a(t)b(t) , otherwise ,

where a(t) and b(t) are continuous nonnegative co-periodic functions with
a + b > 0. Consider the differential-delay equation

(4.2) x\t) = p{t)F{t, x(t), x(t - h)) - c(t)x(t) , t ^ 0 ,

where fc, p(£) and c(t) are the same as in (2.1). The functional f(t, φ) =
F(t, φ(0), φ(-h)) satisfies (HI). Since M(r) in (H2) satisfies M{r)^άb,
(H2) holds. Also, (H3) and (H4) are clearly satisfied with Λ(t, φ) =
a(t)φ(0) + b(t)φ(-h)f a = a + bf and b = a + 6. Thus, by Theorem 3.1,
we have the following corollary.

COROLLARY 4.2. Let c = c(ί) satisfy j((o) > 0 α?ιcί (3.1). Then there
exists a cheCl such that if c ^ cΛ, (4.2) has no positive periodic solutions,
and if c < ch, (4.2) ftαs α positive periodic solution. Moreover, [ap, bp] Π
[Ck, ch]Φ 0.

Finally, consider the differential-delay equation

(4.3) x\t) - p(t)F(x(t - h)) - c(t)x(t) , t ^ 0 ,
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where h, pit) and c(t) are the same as in (2.1), and where F(y) is a
function on R defined by

0 , otherwise .

Then /(«, φ) = F(φ(-h)) clearly satisfies (HI), (H2), (H3), and (H4) with
A(t, φ) — φ( — h) and a = b — 1. Thus we have the following corollary by
Theorem 3.1.

COROLLARY 4.3. Let c = c{t) satisfy y(ω) > 0 and (3.1). Then there
exists a cheC* such that if c ^ ck, (4.3) fcαs no positive periodic solution
and that if c < cΛ, (4.3) has a positive periodic solution. Moreover,
[p, P] ΓΊ [ch, ch] Φ 0 . Particularly, if c is a constant and if p/πp, then
there exists a positive constant ch e [p, p] such that if p\π < c < ch, (4.3)
has a positive periodic solution x(t) which satisfies 0 < x(t) < π for all
t ^ —Λ.

This corollary is a direct consequence of Theorem 3.1 and the fact
that if c is a constant, and if p < cπ, then the solutions of (4.3) are
ultimately bounded for bound π.

REFERENCES

[ 1 ] S. BUSENBERG AND K. L. COOKE, Periodic solutions of a periodic nonlinear delay dif-
ferential equations, SIAM J. Appl. Math. 35 (1978), 704-721.

[2] S. BUSENBERG AND K. L. COOKE, Periodic solutions of delay differential equations arising
in some models of epidemics, Applied Nonlinear Analysis, Academic Press, New York,
1979, 67-78.

[3] J. A. GATICA AND H. L. SMITH, Fixed point techniques in a cone with applications, J.
Math. Anal. Appl. 61 (1977), 58-71.

[4] H. L. SMITH, On periodic solutions of a delay integral equation modelling epidemics, J.
Math. Biology 4 (1977), 69-80.

[5] H. L. SMITH, Periodic solutions for a class of epidemic equation, J. Math. Anal. Appl.
64 (1978), 467-479.

[6] T. FURUMOCHI, Existence of periodic solutions of one-dimensional differential-delay
equations, Tόhoku Math. J. 30 (1978), 13-35.

[ 7 ] K. SCHMITT, Fixed points and coincidence theorems with applications to nonlinear
differential and integral equations, Rapp #97, Univ. Cath. de Louvain, Belgium, 1976.

DEPARTMENT OF MATHEMATICS

IWATE UNIVERSITY

MORIOKA, 020 JAPAN




