ALMOST PERIODIC SOLUTIONS OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE RETARDATION, II

Dedicated to Professor Taro Yoshizawa on his sixtieth birthday

Yoshiyuki Hino

(Received June 28, 1979, revised December 11, 1979)

In [8], we have discussed the existence theorems for almost periodic solutions of functional differential equations with infinite retardation by introducing new concepts of stabilities. Furthermore, the author [9] has considered linear almost periodic systems with bounded solutions which are uniformly stable and discussed the existence of almost periodic solutions. Recently, Sawano [10] has considered a linear almost periodic system with a bounded solution which is uniformly asymptotically stable and discussed the existence of a unique almost periodic solution by utilizing the properties of a Liapunov functional.

For functional differential equations with finite delay, Halanay [2], Hale [4] and Yoshizawa [11] have discussed the existence of a unique almost periodic solution of a linear perturbed system whose perturbed term satisfies a Lipschitz condition, by assuming uniformly asymptotic stability of the null solution of a unperturbed system. In studying these book and papers, it seems meaningful to consider the following problem: Can we extend existence theorems to the case where unperturbed systems are not necessarily linear and perturbed terms do not necessarily satisfy a Lipschitz condition?

In this paper, we shall consider this problem for functional differential equations with infinite retardation and present a partial result.

First, we shall give the space B discussed by Hale [5] (also, refer to [6, 9, 10]). Let |x| be any norm of x in \mathbb{R}^n . Let B be a real linear vector space of functions mapping $(-\infty, 0]$ into \mathbb{R}^n with a semi-norm $|\cdot|_B$. For any elements ϕ and ψ in B, $\phi = \psi$ means $\phi(t) = \psi(t)$ for all $t \in (-\infty, 0]$. For a $\beta \ge 0$ and a $\phi \in B$, let ϕ^{β} denote the restriction of ϕ to the interval $(-\infty, -\beta]$. We shall denote by B^{β} the space of such functions ϕ^{β} . For any $\eta \in B^{\beta}$, we define the semi-norm $|\cdot|_{\beta}$ by

$$|\eta|_{\scriptscriptstyleeta} = \inf_{\psi\in B} \left\{ |\psi|_{\scriptscriptstyle B} : \psi^{\scriptscriptstyleeta} = \eta
ight\} \, .$$

If x is a function defined on $(-\infty, a)$, then for each t in $(-\infty, a)$ we

define the function x_t by the relation $x_t(s) = x(t+s), -\infty < s \leq 0$. For a number a > 0, we denote by A^a the class of functions x mapping $(-\infty, a)$ into R^n such that x is a continuous function on [0, a) and $x_0 \in B$. The space B is assumed to have the following properties:

(I) If x is in A^a , then x_t is in B for all t in [0, a) and x_t is a continuous function of t, where $0 < a \leq \infty$.

(II) There is a K > 0 such that $|\phi|_B \leq K(\sup_{-\beta \leq \theta \leq 0} |\phi(\theta)| + |\phi^{\beta}|_{\beta})$ for any $\phi \in B$ and any β , $\beta \geq 0$.

(III) If a sequence $\{\phi^k\}$, $\phi^k \in B$, is uniformly bounded on $(-\infty, 0]$ with respect to $|\cdot|$ and converges to ϕ uniformly on any compact subset of $(-\infty, 0]$, then $\phi \in B$ and $|\phi^k - \phi|_B \to 0$ as $k \to \infty$.

(IV) There is a positive continuous function $M(\beta)$, $M(\beta) \to 0$ as $\beta \to \infty$, such that $|\tau^{\beta}\phi|_{\beta} \leq M(\beta)|\phi|_{B}$ for any $\phi \in B$ and $\beta \geq 0$, where τ^{β} is a linear operator from B into B^{β} defined by $\tau^{\beta}\phi(\theta) = \phi(\beta + \theta), \ \theta \in (-\infty, -\beta]$.

REMARK 1. In our previous papers [7, 8], the phase space is given in a little different manner. The previous setting involves some vagueness and our present setting based on the work in [6] gives a precise reconstruction. However, in our present context, there is no difference between the two.

REMARK 2. As was stated in [6], Properties (I) ~ (IV) imply that all bounded continuous functions ϕ mapping $(-\infty, 0]$ into \mathbb{R}^n are in B, and it will not be difficult to see that $|\phi|_B \leq K \sup_{s \leq 0} |\phi(s)|$. Hence, for any bounded continuous function ϕ defined on R, we have $\sup_{t \in R} |\phi_t|_B \leq$ $K|\phi|^{\infty}$, where $|\phi|^{\infty} = \sup_{t \in R} |\phi(t)|$.

Consider the systems

$$\dot{x}(t) = A(t, x_t)$$

and

(2)
$$\dot{x}(t) = A(t, x_i) + \eta F(t, x_i)$$
,

where $A(t, \phi)$ and $F(t, \phi)$ are continuous in $(t, \phi) \in \mathbb{R} \times B$ and almost periodic in t uniformly for $\phi \in B$, and $\eta \ge 0$ is a parameter. In addition, we shall assume that $A(t, \phi)$ and $F(t, \phi)$ satisfy the following conditions, respectively:

(A) For any $\alpha > 0$, there exists a positive, continuous and increasing function $M_{A}(\alpha)$ such that $|A(t, \phi)| \leq M_{A}(\alpha)$ on $R \times \overline{B}_{\alpha}$, where $\overline{B}_{\alpha} = \{\phi \in B : |\phi|_{B} \leq \alpha\}$.

(F) For any r > 0 and N > 0, there exists an $L_F > 0$ such that for any $\phi, \psi \in R^-_{r,N}$ and $t \in R$, $|F(t, \phi) - F(t, \psi)| \leq L_F |\phi - \psi|_B$, where $R^-_{r,N} = \{\phi \in C((-\infty, 0], R^n): |\phi(t)| \leq r \text{ for } t \in (-\infty, 0] \text{ and } |\phi(t_1) - \phi(t_2)| \leq N |t_1 - t_2|,$

526

 $t_1, t_2 \in (-\infty, 0]$, which is a subset of B by Remark 2.

Condition (F) is weaker than a Lipschitz condition. In fact, the following example presents a function which does not satisfy a Lipschitz condition but satisfies Condition (F).

EXAMPLE. Let \mathscr{C} be the space which consists of all continuous functions mapping $(-\infty, 0]$ into \mathbb{R}^n such that $\phi(\theta)e^{\gamma\theta} \to 0$ as $\theta \to -\infty$ with norm $|\phi|_{\mathscr{C}} = \sup_{-\infty < \theta \le 0} |\phi(\theta)|e^{\gamma\theta}$, where $\gamma > 0$ is a fixed constant. This space satisfies all the conditions given for the space B (cf. [6, 7]). Consider a function $F(t, \phi) = \phi(-|\phi(0)|)$. Then it is known that $F(t, \phi)$ defined on $\mathbb{R} \times \mathscr{C}$ does not satisfy a Lipschitz condition but satisfies Condition (F) (refer to [3]).

Define AP by

 $AP = \{\phi \in C(R, R^n): \phi(t) \text{ is almost periodic in } t\}.$

For r > 0 and N > 0, define $R_{r,N}$ and $AP_{r,N}$ by

 $R_{r,N} = \{\phi \in C(R, R^{*}) \colon |\phi|^{\infty} \leq r \text{ and } |\phi(t_1) - \phi(t_2)| \leq N|t_1 - t_2| \text{ for } t_1, t_2 \in R\}$ and $\operatorname{AP}_{r,N} = \operatorname{AP} \cap R_{r,N}$, respectively.

LEMMA. Let r > 0 and N > 0. Then $\operatorname{AP}_{r,N}$ is a closed subset of the Banach space $C_0(R, R^n)$ with norm $|\cdot|^{\infty}$, where $C_0(R, R^n)$ consists of all bounded continuous functions mapping R into R^n . Furthermore, if $\phi \in \operatorname{AP}_{r,N}$ and $t \in R$, then $F(t, \phi_t) \in \operatorname{AP}$ and it is bounded uniformly for $\phi \in \operatorname{AP}_{r,N}$ and $t \in R$.

PROOF. Since AP is the Banach space with norm $|\cdot|^{\infty}$ (cf. [1]), we can easily show that $AP_{r,N}$ is a closed subset of the Banach space $C_0(R, R^n)$ with norm $|\cdot|^{\infty}$. It is well known that if a continuous function f(t, x) is almost periodic in t uniformly for $x \in R^n$ and if x(t) is almost periodic in t uniformly for $x \in R^n$ and if x(t) is almost periodic in t and takes its value in some compact set S in R^n , then f(t, x(t)) is almost periodic in t (cf. Theorem 2.7 in [12]) and f(t, x) is bounded on $R \times S$ (cf. Theorem 2.1 in [12]). Hence, we have the second assertion, because for any $\phi \in AP_{r,N}$ and $t \in R$, $\phi_t \in R^-_{r,N}$ and $R^-_{r,N}$ is compact in B.

Now we shall give our theorem.

THEOREM. Suppose that there exists a Liapunov functional $V(t, \phi, \psi)$ defined on $I \times B \times B$, $I = [0, \infty)$, which has the following properties:

(V.1) $M_{\nu} |\phi(0) - \psi(0)| \leq V(t, \phi, \psi) \leq b(|\phi - \psi|_{B})$, where M_{ν} is a positive constant and b(r) is a continuous and increasing function on I with b(0) = 0.

 $\begin{array}{ll} (V.2) & |V(t,\,\phi_1,\,\psi_1) - V(t,\,\phi_2,\,\psi_2)| \leq L_V |(\phi_1 - \phi_2) - (\psi_1 - \psi_2)|_B, \ where \ L_V \\ is \ a \ positive \ constant. \end{array}$

(V.3) $\check{V}_{(1)}(t, \phi, \psi) = \limsup_{\delta \to 0^+} [V(t + \delta, x_{t+\delta}, y_{t+\delta}) - V(t, x_t, y_t)]/\delta \leq -cV(t, \phi, \psi), \text{ where } (x, y) \text{ is a solution of the product system}$

$$(1)^*$$
 $\dot{x}(t) = A(t, x_t), \qquad \dot{y}(t) = A(t, y_t)$

with initial data (t, ϕ, ψ) and c is a positive constant. Moreover, we assume that (1) has a solution $\xi(t)$ such that $|\xi(t)| \leq \beta$ for $t \in I$ and some positive constant β . Then for any $r > \beta$ and $N > M_A(K\beta)$, there is an $\eta_0 > 0$ such that if $0 \leq \eta < \eta_0$, then the system (2) has a unique solution in $AP_{r,N}$.

(Throughout this paper we shall denote by * the product system associated with an equation considered.)

Let u(t) and v(t) be solutions of $\dot{u}(t) = A(t, u_t) + f(t)$ and $\dot{v}(t) = A(t, v_t) + g(t)$, respectively. Define $\dot{V}(t, u_t, v_t)$ by

$$\dot{V}(t, u_t, v_t) = \limsup_{s \to a^+} \left[V(t + \delta, u_{t+\delta}, v_{t+\delta}) - V(t, u_t, v_t) \right] / \delta$$
 .

Then we shall note that

$$(3) \qquad \dot{V}(t, u_{t}, v_{t}) \leq KL_{V} |f(t) - g(t)| - c V(t, u_{t}, v_{t})$$

by Properties (II), (V.2) and (V.3).

PROOF OF THEOREM. Let $r > \beta$ and let $N > M_A(K\beta)$. First, we shall show that there is an $\eta_1 > 0$ such that if $0 \leq \eta < \eta_1$, then for any $\phi \in \operatorname{AP}_{r,N}$ the system

$$\dot{x}(t) = A(t, x_t) + \eta F(t, \phi_t)$$

has a unique solution in $\operatorname{AP}_{r,N}$. Let $C_1 = \sup \{|F(t, \phi_t)| : t \in R, \phi \in \operatorname{AP}_{r,N}\}$. Then $C_1 < \infty$ by Lemma. By choosing $\{\tau_k\}, \tau_k \to \infty$ as $k \to \infty$, suitably, we see that $\xi(t + \tau_k)$ converges to a solution $\zeta(t)$ of (1) uniformly on any compact set in R as $k \to \infty$. Clearly, $|\zeta(t)| \leq \beta$ for all $t \in R$. Let $\phi \in \operatorname{AP}_{r,N}$ and let x(t) be a solution of (4) with $x_0 = \zeta_0$. By the relation (3), we have $\dot{V}(t, \zeta_t, x_t) \leq L_V K \eta |F(t, \phi_t)| - c V(t, \zeta_t, x_t) \leq L_V K \eta C_1 - c V(t, \zeta_t, x_t)$, as long as x_t exists, which implies $M_V |\zeta(t) - x(t)| \leq V(t, \zeta_t, x_t) \leq e^{-ct} V(0, \zeta_0, x_0) + L_V K C_1 \eta / c \leq L_V K C_1 \eta / c$ by (V.1). Hence we have

$$|\mathbf{x}(t)| \leq L_{\scriptscriptstyle V} K C_{\scriptscriptstyle 1} \eta / (c M_{\scriptscriptstyle V}) + |\zeta(t)| \leq L_{\scriptscriptstyle V} K C_{\scriptscriptstyle 1} \eta / (c M_{\scriptscriptstyle V}) + \beta \; .$$

It follows from (5) and Remark 2 that

$$|x_t|_B \leq K\{L_V K C_1 \eta / (c M_V) + \beta\}$$

for all $t \in R$, because $|x(t)| \leq \beta$ for $t \leq 0$. Therefore, since the right hand side of (4) is completely continuous by Property (A), x_t exists for all $t \in R$.

We shall show that x(t) is an asymptotically almost periodic solution of (4). It is known that if the closure of $\{x_t: t \ge 0\}$ is compact, then the existence of a Liapunov functional $V(t, \phi, \psi)$ which has Properties (V. 1), (V. 2) and (V. 3) implies that x(t) is asymptotically almost periodic (see [10]). By (6), we have

$$(7) \qquad |\dot{x}(t)| \leq |A(t, x_t)| + \eta |F(t, \phi_t)| \leq M_A(K^2 L_V C_1 \eta / (cM_V) + K\beta) + \eta C_1$$

for $t \in I$, which implies the closure of $\{x_t : t \ge 0\}$ is compact (cf. see Remark 1 in [7]). Hence x(t) is asymptotically almost periodic.

By the standard arguments (cf. Theorem 1 in [8]), it is easy to show that $x(t + \tau_k)$ converges to an almost periodic solution p(t) of (4) for a suitable sequence $\{\tau_k\}, \ \tau_k \to \infty$ as $k \to \infty$. Clearly, p(t) and $\dot{p}(t)$ are bounded on R and their bounds are given by the right hand sides of (5) and (7), respectively. Since $\dot{V}_{(4)*}(t, \psi, \chi) \leq -c V(t, \psi, \chi)$ by the relation (3), p(t) is a unique almost periodic solution of (4). Hence we can choose a desirable η_1 , because $r > \beta$, $N > M_A(K\beta)$ and $M_A(\alpha)$ is continuous and increasing.

For a unique solution $p(t) \in AP_{r,N}$ of (4), put $T\phi(t) = p(t)$. Then Tis a mapping from $AP_{r,N}$ into $AP_{r,N}$. Let $\phi, \psi \in AP_{r,N}$ and $t \ge 0$. Define a scalar function w(t) by $w(t) = V(t, (T\phi)_t, (T\psi)_t)$. Then it holds that $\dot{w}(t) \le -cw(t) + L_V K\eta |F(t, \phi_t) - F(t, \psi_t)|$ by the relation (3). Hence we have $\dot{w}(t) \le -cw(t) + L_V K\eta L_F |\phi_t - \psi_t|_B \le -cw(t) + L_V K^2 \eta L_F |\phi - \psi|^{\infty}$ by Condition (F) and Remark 2. It follows from (V. 1) that $M_V |T\phi(t) - T\psi(t)| \le V(t, (T\phi)_t, (T\psi)_t) \le w(t) \le e^{-ct}b(|(T\phi)_0 - (T\psi)_0|_B) + L_V K^2 \eta L_F |\phi - \psi|^{\infty}/c$, which implies

$$(8) \qquad |T\phi(t) - T\psi(t)| \leq e^{-ct} b(|(T\phi)_0 - (T\psi)_0|_B)/M_v + C_2 \eta |\phi - \psi|^{\alpha}$$

for all $t \ge 0$, where $C_2 = L_V K^2 L_F / (M_V c)$. It is possible to choose a sequence $\{t_k\}, t_k \to \infty$ as $k \to \infty$, so that $T\phi(t + t_k) - T\psi(t + t_k) \to T\phi(t) - T\psi(t)$ as $k \to \infty$ uniformly on R. Therefore, by replacing t with $t + t_k$ in (8) and by setting $k \to \infty$, we have $|T\phi(t) - T\psi(t)| \le C_2 \eta |\phi - \psi|^{\infty}$ for all $t \in R$. Thus if we take $\eta_0 = \min \{\eta_1, 1/C_2\}$, then for $0 \le \eta < \eta_0$ we see that T is a contraction mapping and T has a unique fixed point in $AP_{r,N}$, because $AP_{r,N}$ is a closed subset of a Banach space $C_0(R, R^n)$ with norm $|\cdot|^{\infty}$ by Lemma. This completes the proof.

In addition, we suppose that the space B has the following property: (V) $|\phi(0)| \leq M_1 |\phi|_B$ for an $M_1 > 0$.

We can find a Liapunov functional $V(t, \phi, \psi)$ which has Properties (V. 1), (V. 2) and (V. 3), when $A(t, \phi)$ is linear in ϕ and the null solution of (1) is uniformly asymptotically stable (see [10]). (In this case, we can take

 $M_v = M_1$ and $b(r) = L_v r$.) Hence we have the following:

COROLLARY. Suppose that the space B has Properties (I) ~ (V). Assume that $A(t, \phi)$ is linear in ϕ and the null solution of (1) is uniformly asymptotically stable. Let r > 0 and N > 0. Then there is an $\eta_0 > 0$ such that if $0 < \eta < \eta_0$, then the system (2) has a unique solution in $AP_{r,N}$.

REMARK. We note that $A(t, \phi)$ satisfies Condition (A) automatically, if it is linear in ϕ and almost periodic in t uniformly for $\phi \in B$ (cf. [10]).

References

- A. M. FINK, Almost Periodic Differential Equations, Lecture Notes in Math. 377, Springer-Verlag, Berlin-Heidelberg-New York, 1974.
- [2] A. HALANAY, Differential Equations; Stability, Oscillation, Time Lags, Academic Press, New York, 1966.
- [3] A. HALANAY AND J. A. YORKE, Some new results and problems in the theory of differential-delay equations, SIAM. Review 13 (1971), 55-80.
- [4] J. K. HALE, Periodic and almost periodic solutions of functional differential equations, Arch. Rat. Mech. Anal. 15 (1964), 289-304.
- [5] J. K. HALE, Dynamical systems and stability, J. Math. Anal. Appl. 26 (1969), 39-69.
- [6] J. K. HALE AND J. KATO, Phase space for retarded equations with infinite delay, Functional Ekvac. 21 (1978), 11-41.
- Y. HINO, Asymptotic behavior of solutions of some functional differential equations, Tôhoku Math. J. 22 (1970), 98-109.
- [8] Y. HINO, Stability and existence of almost periodic solutions of some functional differential equations, Tôhoku Math. J. 28 (1976), 389-409.
- [9] Y. HINO, Almost periodic solutions of functional differential equations with infinite retardation, Funkcial. Ekvac. 21 (1978), 139-150.
- [10] K. SAWANO, Exponential asymptotic stability for functional differential equations with infinite retardations, Tôhoku Math. J. 31 (1979), 363-382.
- [11] T. YOSHIZAWA, Extreme stability and almost periodic solutions of functional differential equations, Arch. Rat. Mech. Anal. 15 (1964), 148-170.
- [12] T. YOSHIZAWA, Stability Theory and the Existence of Periodic Solutions and Almost Peridic Solutions, Appl. Math. Sci., 14, Springer-Verlag, 1975.

DEPARTMENT OF MATHEMATICS CHIBA UNIVERSITY CHIBA, 260 JAPAN

530