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In [8], we have discussed the existence theorems for almost periodic
solutions of functional differential equations with infinite retardation by
introducing new concepts of stabilities. Furthermore, the author [9] has
considered linear almost periodic systems with bounded solutions which
are uniformly stable and discussed the existence of almost periodic solu-
tions. Recently, Sawano [10] has considered a linear almost periodic
system with a bounded solution which is uniformly asymptotically stable
and discussed the existence of a unique almost periodic solution by
utilizing the properties of a Liapunov functional.

For functional differential equations with finite delay, Halanay [2],
Hale [4] and Yoshizawa [11] have discussed the existence of a unique
almost periodic solution of a linear perturbed system whose perturbed
term satisfies a Lipschitz condition, by assuming uniformly asymptotic
stability of the null solution of a unperturbed system. In studying
these book and papers, it seems meaningful to consider the following
problem: Can we extend existence theorems to the case where unper-
turbed systems are not necessarily linear and perturbed terms do not
necessarily satisfy a Lipschitz condition?

In this paper, we shall consider this problem for functional differential
equations with infinite retardation and present a partial result.

First, we shall give the space B discussed by Hale [5] (also, refer
to [6, 9, 10]). Let |a?| be any norm of x in Rn. Let B be a real linear
vector space of functions mapping (— <*>, 0] into Rn with a semi-norm
I \B. For any elements φ and ψ in J5, φ = ψ means φ(t) = ψ(t) for all
te (— oo, 0]. For a β ^ 0 and a, φeB, let φβ denote the restriction of φ
to the interval (—°°, —/3]. We shall denote by Bβ the space of such
functions φβ. For any ηeBβ, we define the semi-norm \-\β by

If α; is a function defined on (—°°, α), then for each t in (— co? α) we
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define the function xt by the relation xt(s) — x{t + s), — co < s ^ 0. For
a number a > 0, we denote by Aa the class of functions x mapping
(— oo, a) into Rn such that x is a continuous function on [0, a) and x0 e B.
The space B is assumed to have the following properties:

( I ) If x is in Aa, then xt is in B for all £ in [0, a) and &t is a con-
tinuous function of t, where 0 < a <̂  oo.

(II) There is a if > 0 such that \φ\B ̂  if(sup_^^01^(0)1 + Î 1/0 for
any ^ € B and any /9, β ^ 0.

(III) If a sequence {̂ }, ^fc 6 B, is uniformly bounded on (— coy o] with
respect to | | and converges to φ uniformly on any compact subset of
(— oo, 0], then φeB and \φk — φ\B-+0 as k-> op.

(IV) There is a positive continuous function M(β), M(β) —> 0 as
β-*°of s u c h t h a t \τβφ\β^M(β)\φ\B f o r a n y φeB a n d β^0, w h e r e τβ is a

linear operator from 5 into Bβ defined by τβφ(θ) = (̂/3 + θ)9 θe(~^f — ̂ ] .

REMARK 1. In our previous papers [7, 8], the phase space is given
in a little different manner. The previous setting involves some vagueness
and our present setting based on the work in [6] gives a precise recon-
struction. However, in our present context, there is no difference be-
tween the two.

REMARK 2. As was stated in [6], Properties (I) — (IV) imply that
all bounded continuous functions φ mapping (—o°, 0] into Rn are in B,
and it will not be difficult to see that \Φ\B ^ Ksups^01Φ(s)\. Hence, for
any bounded continuous function φ defined on R, we have sup i e*|&U S
K\φ\~, w h e r e \φ\°° - s u p ί 6 i 2 \φ(t)\.

Consider the systems

(1) x(t) = A(t,xt)

and

(2) x(t) = A(t,xt) +ηF(t,xt) ,

where A(t9 φ) and F(ί, φ). are continuous in (t, φ) e R x B and almost
periodic in t uniformly for φeB, and η ^ 0 is a parameter. In addition,
we shall assume that A(t, φ) and F(t, φ) satisfy the following conditions,
respectively:

(A) For any a > 0, there exists a positive, continuous and increasing
function MA(a) such that | A(t, φ) \ ̂  MA(ά) on R x BaJ where Ba =

(F) For any r > 0 and N > 0, there exists an L/(. > 0 such that for
any φ, ψeR~N and t eR, \F(t, φ) - F(t, ψ)\ ̂  LF\φ - ψ\B, where R~N =
{^6C((-oo, 0], Λ ): \φ(t)\^r for t e ( - o o , 0] and
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tl9 t2e(—°of o]}, which is a subset of B by Remark 2.
Condition (F) is weaker than a Lipschitz condition. In fact, the

following example presents a function which does not satisfy a Lipschitz
condition but satisfies Condition (F).

EXAMPLE. Let ^ be the space which consists of all continuous
functions mapping (— ̂ , 0] into Rn such that φ(θ)erθ —> 0 as θ —> — co with
norm \.φ\^ = sup_oo<^^0 \φ{θ)\erθ, where 7 > 0 is a fixed constant. This
space satisfies all the conditions given for the space B (cf. [6, 7]).
Consider a function F{t, φ) = Φ(—\Φ(O)\). Then it is known that F(t9 φ)
defined on R x ^ does not satisfy a Lipschitz condition but satisfies
Condition (F) (refer to [3]).

Define AP by

AP = {φ e C(R, Rn): φ(t) is almost periodic in t) .

For r > 0 and N > 0, define 22^ and APr, v by

i?r v = {φeC(R, Rn): \φ\°° ^ r and | ^ ) - <*(ί2j| ^ N\t, - t2\ for ^, UeR}

and APr,^ = AP Π RT,NI respectively.

L E M M A . Let r > 0 and N > 0. Tfoew APr>iNΓ is α closed subset of the

Banach space CQ(R, Rn) with norm \ -1°°, where C0(R, Rn) consists of all
bounded continuous functions mapping R into Rn. Furthermore, if
φ e AFrtN and teR, then F(t, φt) e AP and it is bounded uniformly for
φeKPr>N and teR.

PROOF. Since AP is the Banach space with norm | |°° (cf. [1]), we
can easily show that APr>N is a closed subset of the Banach space
C0(R, Rn) with norm | |°°. It is well known that if a continuous function
fit, x) is almost periodic in t uniformly for xeRn and if x(t) is almost
periodic in t and takes its value in some compact set S in Rn, then
f(t, x(t)) is almost periodic in t (cf. Theorem 2.7 in [12]) and /(ί, x) is
bounded on R x S (cf. Theorem 2.1 in [12]). Hence, we have the second
assertion, because for any ^eAPr, iV and teR, φteR~yN and R~,N is com-
pact in J5.

Now we shall give our theorem.

THEOREM. Suppose that there exists a Liapunov functional V(t, φ, ψ)
defined on I x B x B, I = [0, oo), which has the following properties:

(V.I) Mv\φ(0) - ψ(0)\ ̂  V(t, φ, ψ) ^b(\φ - ψ\B), where Mv is a posi-
tive constant and b{r) is a continuous and increasing function on I with
6(0) = 0.
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(V.2) I V{t, φlf t i ) ~ V(t, fa, fa)\^Lv\(φ1- fa) - fa - ψ2)|B, where L v

is a positive constant.
(V.3) F(1)*(ί, & ψθ = lim s m w [V(t + δ, xt+δ, yt+δ) - V(t, xt, yt)]/δ ^

— cV(t, φ, ψ), where (x, y) is a solution of the product system

( 1 )* i(ί) = A(t, xt) , y(ί) = A(t, yt)

with initial data (ί, ^, ^) αwcZ c is a positive constant. Moreover, we
assume that (1) has a solution £(ί) swcfe £/&α£ |ζ(t) | ^ /3 /or teland some
positive constant β. Then for any r > β and N > MA{Kβ), there is an
η0 > 0 such that if 0 S V < Vo, then the system (2) has a unique solution
in APrtN.

(Throughout this paper we shall denote by * the product system
associated with an equation considered.)

Let u(t) and v(t) be solutions of ύ(t) = A(t, ut) + f(t) and v(t) =A(t, vt) +
g(t), respectively. Define V(t, ut, vt) by

V(t, ut, vt) = lim sup [ V(t + o, ut+δ, vt+δ) - V(t, ut, vt)]/δ .
3—0+

Then we shall note that

( 3 ) V(t, ut, vt) ^ KLVI f{t) - g(t) \ - c V(t, ut, vt)

by Properties (II), (V.2) and (V.3).

PROOF OF THEOREM. Let r > β and let N > MA(Kβ). First, we
shall show that there is an τjι > 0 such that if 0 ^ r] < 7)u then for any
φ e APr,Λr the system

( 4 ) χ(t) = A(t, xt) + yF(t, φt)

has a unique solution in APr,iV. Let C1 = sup {|JFXί, ^ ) | : t eR, φ e APr>iNΓ}.
Then Ci < co by Lemma. By choosing {τk}, τk—>^ as A;—> <*>, suitably,
we see that ζ(t + τk) converges to a solution ζ(t) of (1) uniformly on
any compact set in R as k —> co. Clearly, | ζ(t) \ ̂  β for all t e R. Let
φ e APr,^ and let x(t) be a solution of (4) with x0 = ζ0. By the relation
(3), we have V(t, ζt, xt)^LvKr)\F{t, φt)\-cV(t, ζt, x^LyKyC^cVifi, Ct, xt),
as long as xt exists, which implies Mv \ ζ(t) — x(t) \ ̂  V(t, ζt, xt) ^
e~ctV(0, Co, ̂ o) + LvKCjilc ^ LvKC{η\c by (V.I). Hence we have

( 5 ) I x(t) I ̂  LrKCflKcMy) + I C(ί) I ̂  LyKCflKcMy) + /3 .

It follows from (5) and Remark 2 that

( 6 ) \xt\B£ KiLyKCfllipMy) + β)

for all 16 R, because | x(t) \ ̂  β for t <; 0. Therefore, since the right hand
side of (4) is completely continuous by Property (A), xt exists for all t e R.
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We shall show that x(t) is an asymptotically almost periodic solution
of (4). It is known that if the closure of {xt:t ^ 0} is compact, then
the existence of a Liapunov functional V(t, φ, ψ) which has Properties
(V. 1), (V. 2) and (V. 3) implies that x(t) is asymptotically almost periodic
(see [10]). By (6), we have

( 7 ) Ix(t)I ^ I A(t, xt)\+V\F(t, φt)I SMA{K>LvC{ηl(cMv) + Kβ) + ηCx

for 16 J, which implies the closure of \xt: t ^ 0} is compact (cf. see
Remark 1 in [7]). Hence x(t) is asymptotically almost periodic.

By the standard arguments (cf. Theorem 1 in [8]), it is easy to show
that x(t + τk) converges to an almost periodic solution p(t) of (4) for a
suitable sequence {τk}, τk-^ ^ as k-^°°. Clearly, p(t) and p(t) are
bounded on R and their bounds are given by the right hand sides of
(5) and (7), respectively. Since VU) (t, ψ, X) S —cV(t, ψ, X) by the rela-
tion (3), p(t) is a unique almost periodic solution of (4). Hence we can
choose a desirable ηu because r > β, N > MA{Kβ) and MA(a) is continu-
ous and increasing.

For a unique solution p(t)e&?r,N of (4), put Tφ(t) = p(t). Then T
is a mapping from APr>^ into APr,^. Let φtψe AFrtN and t Ξ> 0. Define
a scalar function w(t) by w(t) = V(t, (Tφ)t, (Tψ)t). Then it holds that
w(t) ^ -cw(t) + LvKη\F(t, φt) - F(t, ψt)\ by the relation (3). Hence we
have w(t) ̂  -cw(t) + LvKηLF\Φt - ft\B ^ -cw(t) + LvK

2ηLF\φ - a/r|°° by
Condition (F) and Remark 2. It follows from (V. 1) that Mv\Tφ(t) -
Tψ(t)\ ^ V(t, (Tφ)t, (Tψ)t) £ wit) £ e-ctb(\(Tφ)Q - (Tψ)0\B) + LvK*yLF\φ -
ψ\°°/cf which implies

( 8 ) I Tφ(t) - Tψ{t) I :£ e~ctb{\ (Tφ\ - {Tψ\ \B)/MV + C2η \ φ - f Γ

for all t ^ 0, where C2 = LvK
2LF/(Mvc). It is possible to choose a se-

quence {tfc}, tk -+ co as k -> oo, so that Tφ(t + tk) - Tψ(t + tk) -> Tφ(t) -
Tψ(t) as & —» oo uniformly on J?. Therefore, by replacing ί with £ + ίfc

in (8) and by setting fc-> oo, W e have | Γ^(ί) - Γf(ί)| ^ C2̂ 71̂  - ψ|°° for
all teR. Thus if we take ηQ — min {ηu 1/C2}, then for 0 ̂  ^ < % we see
that Γ is a contraction mapping and T has a unique fixed point in APr>N,
because AVrtN is a closed subset of a Banach space C0(i2, Rn) with norm
| |°° by Lemma. This completes the proof.

In addition, we suppose that the space B has the following property:
(V) |0(O)| ^ M,\Φ\B for an M1 > 0.

We can find a Liapunov functional V(t, φ, ψ) which has Properties (V. 1),
(V. 2) and (V. 3), when A(ΐ, φ) is linear in φ and the null solution of (1)
is uniformly asymptotically stable (see [10]). (In this case, we can take
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Mv = Mx and b(r) = Lvr.) Hence we have the following:

COROLLARY. Suppose that the space B has Properties (I) ~ (V).
Assume that A(t, ψ) is linear in φ and the null solution of (1) is uni-
formly asymptotically stable. Let r > 0 and N > 0. Then there is an
η0 > 0 such that if 0 < η < τjQf then the system (2) has a unique solution
in

REMARK. We note that A(t, φ) satisfies Condition (A) automatically,
if it is linear in φ and almost periodic in t uniformly for φeB(cf. [10]).
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