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1. Introduction. In order to solve a two point boundary value
problem for a nonlinear ordinary differential equation, it seems useful
to find a solution curve which lies in a suitable set. What conditions
on the set yield such a solution curve then? For this problem, Wazewski
[12] obtained a beautiful result called a retract method in 1947. Namely,
he has solved the problem by investigating properties of solution curves
which pass through boundary points of the set. His method has been
developed by Kluczny [8], Hukuhara [3], Jackson and Klaasen [4], Kelley
[6] and others.

In this paper, a new approach to the problem will be discussed.
Namely, the problem will be solved by finding a condition under which
the outside of the given set can be divided into suitable positively or
negatively invariant sets. Our method is based on Kneser's theorem (see
e.g., [2]), and it is rather close to that of Bebernes and Wilhelmsen [1].
We shall state a fundamental existence theorem (Theorem 1 in this paper)
in Section 3. Applications of the theorem to scalar second order ordinary
differential equations will be discussed in Section 4.

2. Preliminaries from general topology. The family of all nonempty
compact sets in Rn will be denoted by Comp(ϋ!Λ). Let F be a mapping
from a metric space A into Comp(it!w), that is, F is a multivalued mapping
from A into Rn. We call F upper semicontinuous if for every sequence {Xk}
in A which converges to some point λ0 in A and for every point xk in F(Xk),
there exists a subsequence of {xk} which converges to some point in F(X0).

LEMMA 1. Let A be a compact and connected metric space, and let
F: Λ-* Comp(iu*) be an upper semicontinuous mapping. If F(X) is con-
nected for all X in A, then the set F{A) defined by F(A) = JJ {F(X): XeA}
is a compact and connected set in Rn.

PROOF. First it will be verified that F(Λ) is compact. Let {xk} be
an arbitrary sequence in F(A). Then there exists a Xk in A such that
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xk belongs to F(Xk) for each k = 1, 2, . Since A is compact, we may
assume that {λj converges to some point λ0 in A by taking a subsequence
if necessary. The upper semicontinuity of F implies that {xk} has a
subsequence which converges to some point in jP(λ0). This shows the
compactness of F(Λ).

Next we shall show the connectedness of F(A). Suppose that F(A)
is not connected. Then there exist two nonempty and disjoint compact
sets S, and S2 such that St U S2 = F(A), and put Ai = {X 6 A: F(X) ί l S f ^ 0 } ,
i = 1, 2. It is easy to see that ^ and Λ2 are nonempty compact sets and
satisfy Aγ\} A2 — A. Since A is connected, the set A1 Π Λ2 contains at least
one point λ. Put Xt = ί\λ) Π Si9 i = 1, 2. Then Xί and X2 are nonempty
compact sets and satisfy X1[jX2 = F(X). Therefore we have X1f]X2 Φ 0
because F(X) is connected. Since Xx Π X2 is contained in S1Π S2f we have
Si Π S2 ^ 0 , a contradiction. q.e.d.

Let H and if be closed sets in a topological space X. A subset A
of X will be called a bridge from i ϊ to if if the following two conditions
are satisfied.

(Bl) The set A intersects both H and K.
(B2) The set A \ (iϊU if) is connected and its closure coincides with A.

REMARK 1. It follows from (B2) that a bridge is a continuum (i.e.,
closed and connected set). When HΓ\ K = 0, a minimal bridge is an
irreducible continuum from H to K (see [10, p. 14]).

LEMMA 2. Let H and K be disjoint closed sets and M a compact
and connected set in a Hausdorff topological space. If M intersects both
H and K, then M contains a bridge from H to K.

This lemma is a direct corollary to Theorems 41 and 47 in [10, pp.
15-17].

3. An existence theorem. We denote a compact interval [α, b] by
/. Let Ω be an open subset of I x Rn in the relative topology of I x Rn

and f:Ω-+Rns, continuous mapping. We consider the ordinary differential
equation

(1) x' = f(t, x) ( ' - d/dt) .

For a subset A of I x Rn and a r e / , the cross section of A by the
hyperplane t — τ will be denoted by A\T, that is, A\τ = {(t, x)eA:t — r}.
The closure of A will be denoted by A. For a subset A of Ω, we define
the right emission zone Z+(A) from A of (1) by Z+(A) = {(£, x(t)) eΩ:x
is a solution of (1) defined on [t0, £j such that (ί0, &(i0)) e i , t0^ t ^ ί j .
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We denote the set Z+({p}), peΩ, simply by Z+(p). A subset A of Ω
will be called a positively invariant set of (1) if Z+(A) c A. Similarly,
the left emission zone Z~(A) from A of (1) and a negatively invariant
set of (1) are defined.

Let D be a subset of Ω such that D is a compact subset of Ω. Fur-
thermore, we assume that the following condition is satisfied.

(C) The set Ω\D is a sum of a negatively invariant set N (which
is allowed to be empty) of (1) and two positively invariant sets P and
Q of (1) such that PnQ = PPiQ = 0

Our main purpose is to prove the following theorem.

THEOREM 1. Suppose that the condition (C) is satisfied. Let E be a
compact and connected set in D U P U Q. // the right emission zone
ZV(E) intersects both P and Q, then the cross section Z+(E)\b contains a
bridge T from P to Q such that T is the closure of a connected set T Π D.
Furthermore, every solution curve of (1) joining a point in E to a point
in T P{ D lies in D.

REMARK 2. The conclusion of this theorem shows that the set D\h

is nonempty. In other words, if D\b is empty, then the assumptions of
the theorem do not hold.

To prove Theorem 1, we need some lemmas below. We always assume
that the condition (C) holds.

LEMMA 3. If a subset A of Ω is positively invariant, then the set
A Π Ω is weakly positively invariant, that is, the equation (1) has at
least one solution which starts from any given point in A Π Ω and
remains in A f) Ω on its right maximal interval of existence.

The proof follows from Kamke's theorem (see e.g., [2, Theorem 3.2,
pp. 14-15].

LEMMA 4. The set D U P U Q is positively invariant.

PROOF. It suffices to show that Z+(D) c f l U P U β , but this is clear
since Ω \ (D U P U Q) is contained in the negatively invariant set N and
flίl N= 0. q.e.d.

LEMMA 5. There exists an ε > 0 such that every solution x{t) of (1)
with initial value (ί0, x(t0)) 6 D exists for t0 ^ t ^ min{£0 + ε, b).

This lemma is easily proved by [2, Corollary 2.1, p. 11].
We use the following well-known theorem of Kneser's:

LEMMA 6. Let p = (t0, x) e Ω and t0 < r. // every solution of (1)
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passing through p is continuable to t = τ, then the cross section Z+(p)\τ

is compact and connected.

This lemma is easily proved by [2, Theorem 4.1, pp. 15-17].

LEMMA 7. Let A be a compact and connected set mflUPUQ. If A
intersects both P and Q, then A contains a bridge AQ from P to Q such
that Ao is the closure of a connected set Ao Π D. Therefore Ao is contained
in D, and Z+(A0) intersects both P and Q.

PROOF. We define two sets H and K by H = A n P and K = A Π Q.
Then H and K are nonempty compact sets.

First we consider the case where H Π K is nonempty. In this case,
the set H Π K is contained in D because H Π K is contained in P ί l Q ί l
(D U P U Q) but P Π Q Π (P U Q) = (P Π Q) U (P Π Q) = 0 . Therefore an
arbitrary point in if n if is the desired set Ao.

Next we consider the case where H Π K = 0 . It follows from
Lemma 2 that A contains a bridge Ao from if to K. Since A is contained
in D U if U K, so is Ao. This implies that A \ (if U K) c Ao Π D c Λ Since
Ao is the closure of the connected set A0\(HΌK)9 the set A0Γ\D is also
connected and its closure coincides with Ao. q.e.d.

LEMMA 8. Let A be a compact and connected set in D U PU Q-
Suppose that Z+(A) intersects both P and Q. Then A contains a subcon-
tinuum Ao such that AQaD and that Z+(A0) intersects both P and Q.

PROOF. When A does not intersect PU Q, we can set Ao = A, while if
A intersects both P and Q, Lemma 7 assures the existence of the set AQ.

Therefore it remains only to prove the assertion in the case where
A intersects only one of P or Q, say P. Since Z+(A) intersects Q, the
set A contains a point p such that Z+(p) intersects Q. It will be verified
that p belongs to D. Since A is contained in D U P, we see that p
belongs to ΰ U P . Suppose p e P. Then the positive invariance of P
and the assumption that P n Q = 0 imply that Z+(p) Π Q = 0 . This is
a contradiction, and hence p belongs to D.

When p belongs to P, we can set Ao = {p}. So we consider the case
where p does not belong to P. In this case, P and {p} are disjoint closed
sets and each of them intersects A. It then follows from Lemma 2 that
A contains a bridge Ao from P to {p}. Clearly A0\(P{J{p}) is contained
in D, and hence we have 4 0 c ΰ . Since p belongs to Ao, we see that
Z+(A0) intersects Q. Of course Z+(A0) intersects P because Z+(A0) contains
Ao and Ao intersects P. q.e.d.

PROOF OF THEOREM 1. We denote by 2Ω the family of all subsets of
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Ω, and define a mapping F: I x Ω —> 2Ω in the following way. For τ el
and p = (t, x) e i2, the set F(τ9 p) in Ω is defined by

for r > ί ,

for τ <^ t .

For a subset A of J2, the set F(τ9 A) is defined by F(τ9 A) = \J {F(τ, p):
peA}. Take a partition a = ί0 < £x < < ίm = 6 of the interval / such
that maxft* — ί,̂ : 1 <; ΐ <; m} < ε, where ε is the number given in Lemma
5.

By Lemma 8, the set E contains a compact and connected set Eo such
that EQcD and that Z+(E0) intersects both P and Q. It follows from
Lemmas 5 and 6 that the set F(tl9 p) is compact and connected for all
peE0. Furthermore by Kamke's theorem, it is easy to see that the
mapping F(tl9 •) is upper semicontinuous on Eo. Therefore it follows
from Lemma 1 that F(tu EQ) is a compact and connected set.

By Lemma 3, the set P n Ω is weakly positively invariant. There-
fore we easily observe Z+(F(tlf Eo)) must intersect P. Similarly, Z+(F(t19

Eo)) intersects Q. It follows from Lemma 4 that F(tl9 Eo) is contained
in ΰ U P U Q . Therefore by Lemma 8, the set F(tu Eo) contains a sub-
continuum Eγ such that EιdD and that Z+(Ej) intersects both Pand Q.
Here, we note that Z+(EX) aZ+(E0) aZ+(E).

By repeating this procedure, we obtain a compact and connected set
Em in F(tm9 Em_λ) such that EmaD and that Z+(Em) intersects both P
and Q. Clearly, Z+(EJ aZ+(E) c f l U P U Q. Since tm = bf we have
Z+(Em) = Em. Therefore by Lemma 7, we can find the desired continuum
T in Em9 that is, in Z+(E)\b.

The last assertion of the theorem follows from Lemma 4, the positive
invariance of P U Q and the assumption that D Π (P U Q) = 0 . q.e.d.

4. An application. In this section we consider a scalar second order
ordinary differential equation

(2) x" = f(fi, x, x') .

We denote the compact interval [α, b] by /. Let a and β be twice

continuously differentiate functions on / satisfying a(t) ^ β(t) on /, and

define the (ί, a)-set W by

Let φ and ψ be continuously differentiate functions on W, and let WQ

be the compact subset of W defined by

Wo :(t,x)eW, Φ(t, x) ^ ψ(ί, x) .
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The function / = /(ί, x, y) in the equation (2) is assumed to be continuous
on the compact (t, x, τ/)-set D given by

D : ( ί , x) e Wo, φ(t, x ) £ y ^ ψ ( t , x) .

For a function θ — φ or ^ , we define the function Γ{β) on TF0 by

[Γ(θ)](jb, x) = /(ί, x, θ{t, x)) - θt(t, x) - θm(t, x)θ(t, x) ,

where θt and θx denote the partial derivatives of θ with respect to t and
x, respectively. Suppose that a and β satisfy

(3) a?\t)>f{t,a(t\a'{t)) for (t, a(t), a'(t)) eD

and

(4) β"(t) £ f(t, β(t), β'(f)) for (t,β(t),β'(t))eD.

Furthermore, we suppose that each of functions Γ(φ) and Γ(ψ) does
not change the sign on Wo, that is, nonnegative on Wo or nonpositive
on Wo.

Consider the conditions
( i ) Γ(φ) ̂  0 on Wo and φ(t, a(t)) ^ a\t) on /,
(ϋ) Γ(φ) ̂  0 on Wo and φ(t, β(t)) ^ β\t) on /,
(iii) Γ(ψ) ̂  0 on Wo and αf(ί) ^ ψ(ί, a(t)) on 7,
(iv) Γ('f) ̂  0 on If0 and β\t) ^ ^(ί, β(t)) on J.

Then, by combinations of these conditions, there are four cases. However
as will be seen in Section 5, it turns out that there are essentially two
cases, and in each of the cases we can state an existence theorem.

THEOREM 2. Suppose that both of the conditions (i) and (iii) hold.
Then the equation (2) has at least one solution x(t) satisfying

( 5 ) a{t) ̂  x{t) ̂  β(t) on I

and

( 6 ) φ(t, x(t)) ^ x\t) ^ ψ(t, x(t)) on I.

THEOREM 3. Suppose that both of the conditions (i) and (iv) hold,
and that the inequality φ(t, x) ̂  ψ(t, x) holds on W, namely, W = Wo.
Then for an arbitrary number f] with a(b) ^ ΎJ ^ β(b), the equation (2)
has at least one solution x(t) satisfying (5), (6) and x(b) = Ύ].

Theorem 3 is an extension of Nagumo's theorem [11] (also, see [3], [5]),
which has already been proved in [5] by means of Hukuhara's theory
[3] based on the fact that the family F of all solution curves of the
system
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&' = y , v' = /(*, x, y),

which are defined on compact intervals and contained in D, forms a left
Kneser family under the assumptions of Theorem 3. However, the proof
given here is simpler than that in [5], and it seems impossible to prove
that F is a left Kneser family or a right Kneser family under the
assumptions of Theorem 2. Theorems 2 and 3 include Lemma 11 in
Knobloch [9] (also, see [3]).

We can prove Theorems 2 and 3 in the same manner, but the proof
of Theorem 2 is more complicated than that of Theorem 3 because the
condition W — Wo is not assumed in Theorem 2. So we give a proof of
Theorem 2 and only sketch the proof of Theorem 3.

To prove Theorem 2, the function / will be extended to the domain
Ω = / x R x R suitably, and we shall apply Theorem 1 then. / will be
extended step by step, and therefore it will be convenient to give the
following lemma which can be easily proved by Tietze's extension theorem.

LEMMA 9. Let X be a metric space and Y a compact subset of X.
Then we have the following.

(a) Suppose that Y is the sum of compact sets D and At and that
u: D —> R and ut: Ai—>R are continuous functions, where i runs through
1, •• ,m. // u{x)^ui{x) on D Π Aif then there exists a continuous
function U:Y-+ R such that U(x) — u{x) on D and that U{x) Ξ> ut(x) on At.

(b) Suppose that g:X-^R is continuous and that A is a compact
subset of X. If a continuous function v: A—> R satisfies v(x) ^ g{x) on
Y Π A, then there exists a continuous function G: X—> R such that G(x) —
g(x) on Y, G(x) ^ g(x) on X and that G(x) ^ v(x) on A.

PROOF OF THEOREM 2. We denote the surface {(t, x, φ(t, x)): (t, x) e W)
by S. Put M(t, x) = max{̂ (£, x), f(t, x)} for (t, x) e W. The boundary of
Wo in W will be denoted by dW0, that is, dW0 is the intersection of Wo

with the closure of W \ Wo.
Set Y = D\JS, Ax = Γn{(ί, /3(t), £'(«)):«€/}, A2 = S and A8 =

{(£, x, φ(t, x)): (t, x) e closure of W\ Wo}. Then Alf A2 and Az are compact
sets a n d Γ ^ D U ^ U Λ U Az. If u(t, x, y) = f(t, x} y) and if ut(t, x, y)
are defined by ut = β"(t\ u2 = φt(t, x) + φx(t9 x)φ(t, x) and u3 = ψt(t9 x) +
ψx(t, x)ψ(t, x), then the assumptions in Lemma 9 (a) are satisfied, where
we note that DnAz coincides with the set {(t, x, φ(t, x)): (ί, x)edW0} and
φ = ψ on dW0. Therefore there exists a continuous extension fλ{t, x, y)
of /(£, x, y) to Y satisfying /x(ί, x, y) ^ ut(t9 x, y) on D Π Aif that is,

( 7 ) m, βit\ β\t)) ^ β'\t) for (ί, β(jb), β'(t)) 6 Y ,
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( 8 ) fx{t, x, φ(t, x)) ^ φt(t, x) + φa(t, x)φ(t, x) for (ί, x) 6 W

and

(9 ) ffa x, ψ(t, a?)) ^ f ,(£, a?) + ψ.(ί, aθt(«, *0

for (ί,.a?) 6 closure of TF\TΓ 0 .

It follows from (iii), (9) and the definition of M(t, x) that

(10) fx(t9 x , M ( t , x)) ^ ψt(t, x) + f z ( t , x ) γ ( t , x) f o r ( ί , x ) e W .

In the inequality (8) we can assume the strict inequality

(11) ftf, x, φ(t, a?)) > φt(t, x) + Φ.(t, x)φ(t, x) for (ί, a?) e WvWo

by replacing /x by the function fγ(t, x, y) + dist((ί, a?), Wo), where dist((ί, x),
WQ) denotes the distance from the point (t, x) to the set Wo.

Next it will be shown that fγ has a continuous extension f2 to X =
W x R which satisfies

(12) f2{t, β ( t ) , β \ t ) ) > β " { t ) f o r tel,

(13) /2(ί, a?, i/) ^ /x(ί, x, M(t, x)) for (ί, x) e W , y > M(t, x)

and

(14) fit, x, y) ^ fβb, x, φ(t, x)) for (t, x) e W , # < ^(ί, x) .

To prove this, define the function g:X-^R by

c, M(t, x)) for (ί, x) e W , i/ > M(t, x) ,

c, t/) for (t, x, y) e Y ,

t, x, φ(t, x)) for (t,x)eW, y < Φ(tf x) .

Then clearly g is a continuous extension of flm We denote the compact
set {(ί, /S(ί), β\t)):tel) by A. It follows from (7) that g(t, x, y) ^ β"(t)
on 7 n i . Therefore by Lemma 9 (b), we have a continuous extension
/ 2 of fλ to JE" which satisfies (12), (13) and (14) by the definition of g.

Finally we define a continuous extension h of /2 to Ω — I x 1? x R by

for α > β(t) ,

for α(t) ^ x <; /3(£) ,

k/2(t, α(t), y) + a; — α(ί) for a? < α(t) .

Now instead of the equation (2), we consider the equation

(15) x" = h(t, x, x')

or the equivalent system

(16) x' = y , y' = h(t, x, y) ,
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and examine the properties of solution curves of (16) in Ω.
Let x be a solution of (15) satisfying x(τ) < a(τ) and x\τ) = a\τ)

for some τ in I. Here notice that by the conditions (i) and (iii), we have
(ί, α(ί), θί\t)) 6 D for all t in /, and hence the inequality (3) holds for
all t in J. Then we obtain x"(τ) = h(τ, x(τ), x\τ)) = /2(τ, α(τ), α'(τ)) +
x(τ) — α(r) < f(τ, α(r), α'(r)) ^ α"(r). Therefore we easily observe that
the (ί, x, y)-set Pλ defined by

Pr.a^t^b , x < a(t) , y ^ a\t)

is a positively invariant set of (16) and the (ί, x, y)-set Nt defined by

Nr.a^t^b , x< a(t) , y ^ a\t)

is a negatively invariant set of (16). Similarly, by (12), the following
two (ί, x9 ?/)-sets

P 2 : a ^ t ^ b , x > β(t) , y ^ β\t)

and

N2:a^t^b , α > /S(t) , » ^ /3f(ί)

are, respectively, a positively invariant set and a negatively invariant
set of (16).

Let P3 be the (£, cc, ̂ /)-set defined by

P 3 : a ^ ί ^ b , α(ί) ^ x ^ /3(ί) , y > M(t, x) .

It will be verified that every solution (x(t), y(t)) of (16) starting from a
point in P3 to the right remains in P3 as long as the solution satisfies
the inequality a(t) ^ x(t) <̂  β(t). Indeed otherwise, there exists a solution
x(t) of (15) defined on [t0, t,] such that (ί, x(t), x\t)) e P3 on [ί0, ίx) and
x\Q - M(ίx, 05(0). Define the function V{t) by

V{t) = [x\t) - φ(t, x(t))] exp Γ t,(s,

Then we have for ί e [ί0, ί j ,

ί0 ^ ί ^

= x'\t) — ψt(t, x(t)) — ψx(t,

;> /2(ί, a (ί), Λf(ί, a?(ί))) — Ψt(t, χ(t)) — ψχ(t9 %(t))Ψ(t, x(t)) [by (13)]

^ 0 [by (10)] ,

that is, V\t) ^ 0 on [t0, ί j . Since V(ί0) > 0, we have F(ίJ > 0, that is,
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β'(*i) > ψ(βif ίc(*i))- By the definition of M(t, x) and the assumption that
x\Q = ΛΓC*!, a(ti)), we have &'&) = φ(tlf x(tj) and fo, a?(ίx)) 6 W \ Wo. On
the other hand, the inequality x\t) ^ M(t, x(t)) ^ ψ(t, x(t)) holds on [ί0, t j .
Therefore it follows that

at

namely, h(tlf x(Q, x\Q)<>φt{tu x(tj) + φx(tlf x{tj)φ(tu x(tx)). This contradicts
(11) because h(tίf x{tx\ x\tλ)) = /,(«,, x{tx\ φ(tl9 «%))) and (ίx, &&)) e TΓ\ T ô.
Therefore we are done.

Thus, it turns out that every solution curve of (16) which leaves P3

must enter Px U P2 U Nx U iV2. However, such a solution curve must enter
P2 because P3 does not intersect the negatively invariant set Nλ U N2 of
(16) and the inequality a\t) ^ ψ(t, a(t)) on / prevents the curve from
entering Plm Consequently, P2 U P3 is a positively invariant set of (16).

Now let Nz be the set of points (t, x, y) such that a ^ ί ^ 6, α(ί) ^
» ^ β(t), y < φ(t, x) or that (t, a?) 6 T7 \ Wo, 2/ = ^(ί, x). Then we observe
that N2 U iV3 is negatively invariant by (8), (11), (14) and an argument
similar to the one above.

Thus Ω\D is expressed as the sum of a negatively invariant set
N = JVΊ U iV2 U N3 and two positively invariant sets P = P1 and Q = P2 U
P3 (see Figure 1, where the shaded areas are positively invariant sets).
It is clear that Pf]Q = PnQ = 0 .

a{t) β(t)

FIGURE 1, Ω\u tel.

Let E be a line segment whose endpoints are (α, a(a), a\a)) 6 P and
(a, α(α), ψ(a, a(a)))eQ. Then E satisfies all the assumptions in Theorem



VARIATION OF KNESER'S THEOREM 521

1, and hence we obtain a solution curve of (16) which lies in D on /.
Namely, the equation (15) has a solution x(t) satisfying (5) and (6). Since
/ = h on D, this solution x(t) satisfies (2). q.e.d.

SKETCH OF THE PROOF OF THEOREM 3. Let Pl9 P2, P3, Nlf N2 and NΆ be

the sets defined in the proof of Theorem 2. We can find a continuous
extension h of / to the domain Ω = IxRxRso that P = Px and Q —
P2 are positively invariant sets of (16) and N = Nt U N2 U Ns U P3 is a
negatively invariant set of (16) (see Figure 2, where the shaded areas
are positively invariant sets). Clearly,

FIGURE 2, β | f f £ 6 / .

Let J5 be a continuous curve in D|α joining the point (a,a(a),ψ(a,
α(α))) 6 P to the point (α, /3(α), ψ (α, /3(α))) 6 Q. Then ί? satisfies all the
assumptions in Theorem 1, and hence Z+(E)\h contains a bridge T from
P to Q such that Γ = closure of TnDaD = D. It then follows that
T must intersect the line segment whose endpoints are (6, η, φ(b, η)) and
(6, 7), f(b, η)) for any η, a{b) ^η ^ β(b). Therefore the equation (2) has
a solution x(t) satisfying (5), (6) and x(b) = η.

5. Several remarks. For ordinary differential equations, the replace-
ment of t by — t does not yield any essential difference. Therefore by
such a replacement, we obtain corresponding theorems in the dual position.

We consider the following condition (C) corresponding to the condition
(C).

(Cf) The set Ω\D is the sum of a positively invariant set P and
two negatively invariant sets N and L such that Nf]L = Nf]L= 0 .

THEOREM 1'. Suppose that the condition (CO holds and that E is a
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compact and connected set in D U N U L. If Z~(E) intersects both N and
L, then Z~(E)\a contains a bridge T from N to L such that T is the
closure of a connected set T Π D. Furthermore, every solution curve of
(1) joining a point in E to a point in T Π D lies in D.

Similarly, by substituting — tίovt and — x for x in (2), the conditions
(i), (ii), (iii) and (iv) are transformed, respectively, into (ii), (i), (iv) and
(iii) provided that [-6, - α ] , - / ( - « , -x, y), -β(-t), -a{-t), φ(-t,
-x) and f(-t, -x) stand for [α, b], f(t, x, y), a(t), β(t), <f>(t, x) and ψ(t, x),
respectively. Here, notice that by this replacement, the conditions (3)
and (4) are preserved. Thus, corresponding to Theorems 2 and 3, we
have the following theorems.

THEOREM 2'. Suppose that both of the conditions (ii) and (iv) hold.
Then the equation (2) has at least one solution x{t) satisfying (5) and (6).

THEOREM 3'. Suppose that both of the conditions (ii) and (iii) hold,
and that the inequality φ(t, x) ^ ψ(t, x) holds on W. Then for an arbi-
trary number ξ with a{a) ^ ξ <Ξ β(a), the equation (2) has at least one
solution x{t) satisfying (5), (6) and x{a) = ξ.

We can prove Theorems 2' and 3' by using Theorem 1, too.
In [7], we considered the boundary layer problem

x"' + 2xx" + 2λ(l -xn) = 0 ,

α?(0) = a/(0) = 0 , ^(co) = l ,

0 < x(t) < 1 for 0 < t < co ,

by reducing it to a singular boundary value problem for a second order
ordinary differential equation. To solve the problem we applied an existence
theorem under the conditions (ii) and (iv), but here the equality sign
could not be allowed for Γ(φ) <̂  0 and Γ(f) <: 0. Therefore by utilizing
Theorem 1 and the same argument as in the proof of Theorem 2 for
the existence theorem used in [7], we can allow the equality sign for
λ > —0.19880 in [7], which is a range to assure the existence of a solution
of the problem.

Until now the interval / was assumed compact. However even in
the case where / is not compact, we can have an existence theorem for
a solution of (1) to remain in a given set. All notations and terminologies
given in Section 3 will remain except that A denotes the closure of A c
/ x Rn in the relative topology of / x Rn and that the compactness of
D c Ω is replaced by the compactness of D Π (J x Rn) c Ω for each compact
set Jdl. Then under the condition (C), we have the following corollaries
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to Theorem 1 which are easily proved by Theorem 1 and the standard
diagonal process.

COROLLARY 1. Let I = [α, 6), — oo < a < b ^ + co, and let E be a

compact and connected set in ΰ U PU Q. If Z+(E) intersects both Pand
Q, then the equation (1) has at least one solution x(t) such that (t0, x(t0)) e
E for some toe I and that (t, x(t)) e D for t0 ^ t < 6.

COROLLARY 2. Let I = (α, 6), — oo <z a < b ^ + <χ>. // there exists
a sequence {tk} in I and a sequence {Ek} of compact and connected sets
in (DU PU Q)\tk such that lim^^ί* = a and that Z+{Ek) intersects both
P and Q for each k = 1, 2, , then the equation (1) has at least one
solution which lies in D on the interval I.

We leave it to the reader to state, under the condition (C), Corollaries
1' and 2' to Theorem 1' analogous to Corollaries 1 and 2 to Theorem 1.
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