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For linear differential equations it is obvious that the stability of
an arbitrary solution is equivalent to the stability of the zero solution.
However, the situation will be quite different for nonlinear equations.
Such a problem on the stability of each of solutions was posed and
discussed by several authors as extreme stability of the system [5], [10],
(positively) equi-continuous flow [8], stability in variation [2], [3], [6],
[9], and so on.

To study perturbation problems of nonlinear differential equations,
Alekseev's formula of constant variations [1] presents a useful approach,
and it is still more powerful if one assumes some sorts of stability in
variation, (cf. [2], [3], [6], [7], [9].) On the other hand, it is also well-
known that Liapunov's second method is an effective tool for perturba-
tion problems (see [10]). Leela [6] and Kamala-Lakshmikantham [3] gave
a way to construct desirable Liapunov functions under the stability in
variation. However, there was an inaccuracy in their proof, as we see
in Remark 3.

The purpose of this note is to give characterizations of the stability
in variation in the two ways, one by constructing a Liapunov function
and the other by generalizing the idea in [4].

Let Rn be the Euclidean w-space with a norm || ||, and set Sa =
{xeRn: \\x\\ ^ a} for a given a ^ 0. For any matrix A, \\A\\ denotes
the associated norm defined by suplla;Mίa||Ax\\.

Consider the equations

(1) x = f(t, x) ,

where f(t, x) is continuous on I x Rn, / = [ 0 , <*>), and continuously
differentiate with respect to x. Let x(t, s, ξ) be the (unique) solution
of (1) through (s, f), and put Φ(t, s, ξ) = (d/dξ)x(t, s, ξ), which is well-
defined under the assumptions. It is clear that Φ(t, s, ξ) is the funda-
mental matrix of the variational equations
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(2 ) ύ = A(t, α?(ί, s, £))% , A(ί, x) = (d/dx)f(t, x) ,

and satisfies Φ(t, s, sc(e)) = Φ(t, τ, x(τ))Φ(τ, s, x(s)) (t ^ τ ^ s) or more
generally

( 3 ) Φ{t, s, x(s)) = Φ(t, tm, x(tm))Φ(tm, ίm_lf x{tm^)) ' Φ(*i, β, *(«))

for any solution x{t) of (1) and ί ^ ίm ^ ίm_x ^ ^ ίi ^ 8.
The system (1) is said to be uniformly asymptotically stable in

variation, if there is a continuous function p(s, a) of s ^ 0, a ^ 0 such
that |θ(s, α) —> 0 monotonously as s —* ̂  and that

( 4 ) || Φ(ί, s, f) || ^ |θ(ί - s, α) whenever f e Sa and ί ^ s .

The relation (4) holds if, and only if,

( 5 ) \\x(fi, 8, ί) - x(t, β, iy)|| ̂  /o(ί - s, α) | | f - y\\ , f, ^ 6 Sβ ,

for any two solutions &(£, s, ξ) and »(ί, s, ^) of (1), because

a(*, s, ί) - ίc(ί, s, 7̂) = Γ (d/d\)x(t, 8, λf + (1 - λ))7)dλ
Jo

- Γ Φ(ί, 8, λf + (1 - λ))?)dλ - (ί - η) .
Jo

Therefore, in the definition of the uniform asymptotic stability in varia-
tion, the relation (4) can be replaced by (5), and, in this case, we may
drop the differentiability condition on /(ί, x).

REMARK 1. The uniform asymptotic stability of the system given
in [10] actually requires \\x(t, 8, ξ) — x(t9 s, η)\\ <; ρ{t — s, ||£ - η\\) with
pit, a) —> 0 as t —> oo or as a —> 0, which is a concept different from the
stability in the above, though they pretty much resemble each other
and they are coincident for linear equations.

Throughout this paper, (1) is assumed to have a bounded solution
φ(t) with a bound Bo on /. First of all, we shall prove the following
lemmas.

LEMMA 1. // the system (1) is uniformly asymptotically stable in
variation, then the solutions of (1) are uniformly bounded, that is, there
exists a β(ά) for any a ^ 0 such that

(6) l l ί l l ^ α i m p l i e s \ \ x ( t , s , ξ) 11 ^ β { a ) f o r t ^ s .

The proof is obvious since by (5)

\\x(t, s, ξ)\\ ̂  \\x{t, s, ξ)-φ{t)\\ + \\φ(t)\\ £p(0, max{||51|, B0))(\\ξ\\ + B0) +Bo .

LEMMA 2. The system (1) is uniformly asymptotically stable in
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variation if, and only if, there are positive constants K(a) and c(a) for
which

(7) \\Φ(t, s , ζ)\\ ̂  K ( φ - c { " H t - s ) i f ξ e S a , t ^ s .

PROOF. The sufficiency is clear. Suppose that the relation (4) holds,
and choose T(a) > 0 so that p(T(a), β{a)) < 1/2, which is possible because
p(t, β(a))->0 as ί —> co, where β(a) is the one given in Lemma 1. Let
ζ eSa, and set tk = s + kT(a). If tm+1 > t ^ tm, then from (3) it follows
that

\\Φ(t, 8,ξ)\\£ p(t - tm, β{a))p{tm - tm_lf β(a)) p(t, - s, β(a))

From this, the relation (7) follows immediately by setting K(a) =
2,0(0, /3(α)), c(α) - Tia)-1 log 2. q.e.d.

This lemma enables us to prove the following theorem.

THEOREM 1. Under the assumptions on f(t, x), the system (1) is
uniformly asymptotically stable in variation if, and only if, there exists
a real-valued continuous function W(t, x, y) defined on I x Rn x Rn which
satisfies

( i ) ' \\x-v\\£ W(t, x, y) ^ M(a)\\x - y\\ ,

( i i ) \W(t, x , y) - W{t, u , v)\ ^ M{ά){\\x - u\\ + \\y - v\\) ,

(in) W(t,x,y)£ -c{a)W(t, x,y)

on I x Sa x Sa for any a ^ 0, where M{a) and c(a) are positive and

W(t, x, y) = lim sup {W(t + h, x + hf{t, x), y + hf(t, y)) - W(t, x, y)}/h .
Λ-»+0

P R O O F . Necessity. P u t

W(t, x , y) = s u p \\x(s, t, x) - x(s, t, y)\\ + \ \\x(s, t, x) - x{s, t, y)\\ds ,

which is well-defined by (5) and (7). The properties (i) and (ii) can be
verified immediately. The property (iii) follows from W(t, x, y) ^
— 11 a5 — y\\ <; —W(t, x, y)/M(a). Somewhat nontrivial is to show the
continuity of W(t, x, y), but it can also be proved by the standard but
tedious arguments, which will be omitted.

Sufficiency. By considering W(t, x, φ(t)) it is not difficult to see the
uniform boundedness of the solutions of (1), that is, there is a β(a) for
which (6) holds. Hence, w{t) = W(t, x(t, s, ζ), x(t, s, η)) satisfies w(t) ^

— c(β(a))w(t), w(s) <; M(a)\\ξ —η\\ if ξ, η 6 Sa, which implies (5), and hence
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(4), with p(t, a) = M{a) exp [-c(/3(α))t]. q.e.d.

REMARK 2. Yoshizawa [10; Theorems 15.5, 21.1] has obtained a
quite similar theorem about the uniform asymptotic stability of the
system.

REMARK 3. Leela [6] (and Kamala-Lakshmikantham [3] for functional
differential equations) constructed a Liapunov function by

S t + T
\\x(s, t,x)\\ds

t

for a suitable T > 0 under the assumption that (1) is uniformly
asymptotically stable in variation and \\x(t, s, 0)|| ^ λ(s) for t ^ s, where
X(t) monotonously tends to 0 as t -> °o. In [6] V(t, x) was expected to
satisfy

(9) V(t, x) £ \\x(fi + T , t , x ) \ \ - \ \ x \ \

among other conditions. However, T in (8) generally depends on x, and
we cannot ignore dT/dx, which makes (9) uncertain.

The following theorem presents another kind of characterization of
the uniform asymptotic stability in variation, which is a generalization
of the idea in [4] concerning the uniform stability in variation, that is,
\\φ(t,8,ξ)\\£p(a) if ξeSa.

THEOREM 2. Under the assumptions on f(t, x), the system (1) is uni-
formly asymptotically stable in variation if, and only if, the solutions
of the product system

(10) x = f(t, x) , ύ = A(t, x)u ,

where A(t, x) is the one given in (2), are uniformly bounded and uni-
formly ultimately bounded, that is, there are β(a), N(a), B and T{a, 7),
depending on the indicated arguments, such that

(11) \\x(t, s , ζ)\\ ίί β { a ) , \ \ Φ ( t , s , ζ ) \ \ ^ N ( a ) i f ξ e S a , t ^ s ,

a n d

(12) \\x(t, 8, ζ)\\ £ B , \ \ Φ ( t , 8 , ξ ) η \ \ £ B

if f e Sa , ηeSr, t^s + T(a, 7 ) .

In the above, we note that (x(t, s, ξ), Φ(t, st ξ)η) is the solution of
(10) through (s, ς, V).

PROOF. Sufficiency. By the first part of (11), the solution x(t) =
x(t,89ξ) of (1) satisfies \\x(t)\\ ̂  β(a) if ξeSa for t ^ s. Hence, the
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second parts of (11) and (12) imply \\Φ(t, τ, x(τ))\\ ^ N(β(a)) for t ^ τ ^ s
and ||Φ(ί, τ, x(τ))\\ ^ 1/2 if t ^ τ + T(β(a), 2B) and τ ^ s. Thus, choosing
ίfc = s + kT(β(a), 2B), we have

||Φ(ί, 8, ξ)\\ ^ iV(^(α))2-m ^ 2iV(^(α))2-(ί-β)/Γ(^α) 2Z?) ,

if tm+i > t ^tm, by applying (3), which proves the uniform asymptotic
stability in variation.

Necessity. Suppose that (1) is uniformly asymptotically stable in
variation. Then the second parts of (11) and (12) hold immediately.
On the other hand, the first part of (11) is nothing but Lemma 1, while
\\x(t, s, ζ)\\ ^ \\χ(t, 8, ξ) - φ(t)\\ + \\ψ(t)\\ £ 1 + Bo for t ^ s + Γ(α), if T{ά)

is chosen so that p(T(a), a) < l/(α + BQ). q.e.d.

COROLLARY. Suppose that there exists a continuous function
U(t, x, u) defined on I x {(x, u)eRn x Rn: \\x\\ + | | ^ | | ^ H) for an H > 0
which satisfies

( i ) α ( | | a j | | + | | u | | ) ^ U(t, x , u) £ b(\\x\\ + \\u\\) ,

( ϋ ) W,x,u)£ -c(\\x\\ + \\u\\),

where a(r) —> <χ> as r -+ <*>, c(r) > 0 and

U(t, x, u) = lim sup {U(t + h, x + hf(t, x), u + hA{t, x)u) - U(t, x, u)}/h .

Then the system (1) is uniformly asymptotically stable in variation.

Since U(t, x, u) guarantees the uniform boundedness and the uniform
ultimate boundedness of the solutions of (10) [10: Theorems 10.2, 10.4],
the conclusion follows from Theorem 2.

EXAMPLE. Consider the system

(13) x = y -F(x) , y= -x-G(y),

where F(x) = \ f(s)dsf G(x) = \ g(s)ds with continuous functions f(x),
Jo Jo

g(x) ^ a > 0 for a constant a. Then the corresponding product system
is

x = y — F{x) , y = -x — G(y) , ύ = v — f(x)u , v = —u — g(y)v ,

and U(tf x, y, u, v) = x2 + y2 + u2 + v2 satisfies the conditions required in
Corollary. In fact, ϋ(t, x, y, u, v)/2 = -F{x)x — G{y)y - f(x)u2 — g(y)v2<*
— aU(t, x, y, u, v). Therefore, the system (13) is uniformly asymptotically
stable in variation.
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